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Caenorhabditis	Elegans	 is	a	 type	of	 roundworm	
that	 is	being	genetically	modified	and	 recorded	
for	analysis	of	 their	 simple	neural	network.	The	
worms	are	recorded	using	a	640x480	camera	at	
30	 fps.	 The	 segmentation	 code	 which	 extracts	
the	worm’s	 centroid	 location	 is	 being	 improved	
for	time	performance	in	order	to	be	fast	enough	
to	process	images	at	a	higher	resolution	of	4K	in	
real	 time.	 Time	 performance	 is	 being	 improved	
by	translating	the	C++	code	to	CUDA.	By	running	
the	 code	 on	 CUDA,	 we	 are	 able	 to	 utilize	 the	
GPUs	 of	 the	 computer	 and	 parallelize	
segmentation.	 This	 significantly	 improved	 the	
speed	of	the	segmentation.	Our	work	focused	on	
translating	 certain	 functions—contouring,	
thresholding,	 blurring—in	 the	 Open	 CV	 library	
into	 CUDA.	 Future	work	 of	 this	 project	 involves	
running	 the	 code	 on	 a	 distributive	 system	 such	
as	 Spark	 or	 Hadoop	 and	 having	 the	
segmentation	 code	 detect	 the	 head,	 tail,	 and	
medial	axis	of	the	worm.		

1. 	

1. Introduction	

1. C.Elegans	Background	Information	

The	 non-parasitic	 soil	 nematode,	 Caenorhabditis	
elegans,	is	part	of	the	Animalia	kingdom	and	is	safely	
and	 commonly	 used	 for	 experimentation	 in	
laboratories.	 The	 size	 of	 the	 adult	 worm	 is	 small,	
approximately	1	mm	in	length	and	the	most	distance	
it	 can	 cover	 in	 a	 second	 is	 approximately	 0.5	 mm.	
C.elegans	 is	 also	 transparent,	 which	 allows	 for	
visualization	 of	 cells	 and	 neural	 networks	 under	
proper	 magnification	 conditions.	 Since	 the	 worm	
lives	 for	 about	 2-3	weeks	 in	 normal	 environmental	

conditions,	 it	 makes	 for	 useful,	 rapid	
experimentation	in	the	biology	community.	The	wild	
type	worm	contains	a	constant	number	and	position	
of	cells,	959	to	be	exact,	making	it	easy	to	track	and	
follow	cell	mutations	and	development.	The	worms	
also	 have	 a	 simple	 neural	 network	 of	 302	 neurons	
and	 approximately	 7000	 synaptic	 connections	 [1].	
Genetic	 engineers	 are	 able	 to	 utilize	 C.elegans	 to	
determine	how	specific	mutants	behave	when	their	
genome	 is	 altered.	 Since	 their	 cell	 count	 and	
position	 doesn’t	 change,	 it	makes	 it	 easier	 to	 alter	
the	 worm’s	 genome.	 C.elegans’s	 diet	 is	 simple,	 as	
they	 feed	 on	 common	 bacteria	 such	 as	E.	 coli.	The	
worms	 have	 two	 sexes,	 hermaphrodite	 and	 male.	
The	hermaphrodites	 can	either	mate	with	males	or	
self-fertilize	 to	 make	 an	 offspring,	 but	 males	 are	
unable	 to	 self-fertilize,	 making	 them	 infrequent	 in	
cultivated	 worms	 [4]	 [7].	 For	 this	 specific	
experiment,	the	worms	were	genetically	modified.		

2. Tracking	Background	Information	

Tracking	 of	 the	 worm	 serves	 the	 purpose	 of	
producing	 images	 of	 the	 worm	 at	 each	 position	 in	
time.	 The	 camera	 we	 have	 been	 working	 with	
captures	 the	 worm’s	 position	 at	 30	 fps.	 Tracking	
output	 is	 a	 collection	 of	 grayscale	 jpg	 images	 that	
are	 then	processed	 through	the	segmentation	code	
and	analyzed.	The	 tracking	 is	not	only	 the	 software	
that	 captures	 the	 worm	 images,	 but	 it’s	 also	 the	
housing	of	the	worm.	The	worm	must	be	placed	on	
an	agar	plate	that	could	house	food	for	the	worm	if	
need	be.	The	base	of	the	housing	must	not	capture	
any	 movement	 noise,	 since	 that	 would	 produce	
noisy	images.	The	camera	must	also	be	able	to	move	
around	 on	 a	 X-Y	 translational	 stage	 to	 follow	 the	
worm	as	it	moves	on	the	agar	plate.	



3. Segmentation	Background	Information	

The	 segmentation	
code	works	on	any	
type	 of	 C.elegans	
worm	 so	 long	 as	
each	 agar	 plate	
holds	 only	 one	
worm.	 The	
segmentation	 of	
the	 worm	 must	
accurately	 and	
efficiently	 locate	
the	 worm.	 Various	
methods	 exist	 for	
locating	 the	worm.	
Some	 of	 the	 more	
obvious	 ones	 are	
using	 the	 head	 or	
tail,	 depending	 on	
which	end	is	at	the	
front	of	 the	displacement	vector.	One	of	 the	 issues	
with	 this	 method	 is	 that	 the	 location	 changes	
drastically	 if	 the	 worm	 begins	 moving	 backwards,	
causing	the	location	of	the	worm	to	jump	its	 length	
even	 though	 it	 obviously	 hasn’t	 moved	 that	 far.	
Another	 viable	 option	 for	 determining	 the	 position	
of	the	worm	is	by	using	its	centroid.	Computing	the	
centroid	begins	with	 isolating	the	worm	by	creating	
a	 rectangular	 box	 around	 the	 area	 it	 spans.	 From	
there,	 the	 length	 and	 width	 of	 each	 side	 of	 the	
rectangle	are	divided	by	half,	and	a	cross	 section	 is	
created	 between	 the	 4	 values.	 The	 point	 of	
intersection	becomes	the	centroid	of	the	worm,	and	
it	might	not	always	lie	on	the	worm	itself.		

2. Materials	and	Methods	

2.1																Hardware	

The	 hardware	 components	 include	 the	 base	 of	 the	
tracker	with	 its	 camera,	 the	housing	of	 the	worms,	
and	 the	 computer	 that	 facilitates	 the	 execution	 of	
the	tracking	system.	The	base	of	the	tracker	consists	
of	 all	 the	 fundamental	 tracking	 components	
necessary	 for	 recording	 the	worm.	 It	 includes	a	X-Y	
translational	 stage,	 a	 camera,	 two	 stepper	motors,	
and	a	motor	control	board.	The	two	step	motors	and	
stage	 are	 controlled	 by	 an	 EiBotBoard.	 A	 new	 4K	
camera	has	been	purchased,	but	the	housing	for	the	
new	camera	has	to	be	rebuilt,	so	we	have	not	been	
able	to	utilize	the	new	camera	for	recording	yet.	The	
current	tracker	is	capable	of	recording	in	1280x960,	
1280x720,	and	640x480;	we	are	currently	recording	
in	640x480	resolution.	

The	 housing	 is	 responsible	 for	 encasing	 the	 worm	
while	 the	 tracker	 is	 recording	 its	 movements.	 It	
consists	 of	 a	 150	mm	 agar	 plate,	 which	 is	 isolated	

from	 the	 base	 to	 avoid	 any	 vibrations	 from	
interfering	 with	 the	 recording	 of	 the	 worm	 and/or	
its	 behavior.	 The	worm	 is	 placed	 on	 the	 agar	 plate	
and	 recorded	 from	 underneath.	 The	 computer,	 a	
dedicated	Intel	NUC	small	form	factor	PC,	is	used	for	
executing	 the	 tracking	 software	 and	 controlling	 the	
base’s	translational	stage	movements	[9].		

2.2																Software	

There	are	two	components	to	the	software	used	for	
tracking	 when	 recording	 the	 worm	 or	 when	
segmenting	 the	 recorded	 images	 to	 retrieve	
information	from	the	worms’	movements.		

2.2.1																Worm	Tracking	

The	 current	 tracking	 code	 is	 using	 SarXos	Webcam	
Capture	 API	 to	 control	 the	 camera	 [3].	 Once	 the	
resolution	 of	 the	 camera	 is	 set	 up,	 various	
parameters	must	be	set.	Segmentation	window	size,	
minimal	 size	 of	 the	 component	 to	 be	 considered	 a	
possible	 worm,	 motor	 pixel	 movement	 per	 step	 in	
the	 X	 direction,	motor	 pixel	movement	 per	 step	 in	
the	Y	direction,	move	decision	confidence	distance,	
and	 move	 decision	 boundary	 pixel	 are	 all	 the	
necessary	parameters.	

The	 new	 tracking	 software	 produces	 an	 output	 log	
text	 file	 with	 four	 columns:	 frame	 number,	 time,	
centroid	 X	 value,	 and	 centroid	 Y	 value.	 The	 older	
software	produces	a	four	column	output	log	text	file	
with	the	frame	number,	centroid	X	value,	centroid	Y	
value,	 and	 area	 size	 of	 the	 bounded	worm.	One	 of	
the	 main	 reasons	 the	 output	 file	 contains	 the	
centroid	is	to	facilitate	segmentation	by	determining	
the	relative	location	of	the	centroid.		

2.2.2																Worm	Segmentation	

Our	 worm	 segmentation	 code	 has	 undergone	
various	 modifications	 since	 first	 written	 in	 Java.	
Since	 then	 it	 has	been	 rewritten	 in	C++	 to	 improve	
time	performance,	and	it’s	been	translated	to	CUDA	
[2].	 Using	 CUDA,	 the	 code	 can	 run	 on	 the	 GPU	
(graphical	 processing	 unit)	 instead	 of	 the	 CPU	
(central	 processing	 unit),	 which	 increased	 time	
performance.	The	CPU	holds	a	 few	cores	with	a	 lot	
of	 cache	memory,	whereas	 the	GPU	has	 thousands	
of	 cores,	 making	 it	 easy	 to	 handle	 thousands	 of	
threads.	This	means	that	you	can	run	the	same	code	
on	thousands	of	cores	vs	a	handful,	which	increases	
time	performance	by	a	large	factor	[6].		

One	 of	 the	 main	 reasons	 work	 was	 being	 done	 to	
improve	 time	 performance	 of	 the	 worm	
segmentation	is	due	to	the	resolution	of	our	camera	
being	 increased.	The	previous	camera	was	640x480	
resolution,	which	isn’t	a	high	enough	resolution.	It	is	
difficult	 to	 differentiate	 the	 head	 and	 tail	 of	 the	
worm	when	the	resolution	is	too	low.	Another	issue	



with	 lower	 resolution	 cameras	 is	 the	 translational	
stage	moves	more	and	produces	output	images	with	
greater	 precipitate	 or	 inaccurate	 images	 of	 the	
worm.	 Precipitate	 arises	when	water	 droplets	 form	
on	the	agar	plate,	or	there	is	noise	from	not	cleaning	
the	 plate	 properly.	 Improving	 time	 performance	 of	
the	 segmentation	 code	 is	 key	 for	when	 the	 camera	
resolution	 is	 increased	 to	 4K,	 so	 information	 can	
accurately	be	retrieved	from	the	collected	data.	The	
camera	 records	 the	 worm	 at	 30	 fps,	 so	 the	 code	
needs	to	process	the	frames	at	30	fps	or	more.	This	
way,	 segmentation	 of	 the	 worm	 can	 occur	 in	 real	
time	with	the	tracking.		

Segmentation	works	by	taking	the	grayscale	 images	
produced	by	the	camera,	and	loading	and	processing	
them	 sequentially.	 The	 code	 goes	 through	 every	
single	 image	and	produces	an	output	 log	 file	of	 the	
image	 frame	 number,	 the	 x	 value	 of	 the	 centroid,	
the	y	value	of	the	centroid,	and	the	total	area	of	the	
bounded	 rectangle	 around	 the	 worm.	 Once	 an	
image	 is	 loaded	and	passed	through	our	function,	a	
box	filter	is	applied	to	blur	out	the	image.	Once	that	
is	 done,	 the	 image	 is	 made	 binary	 to	 isolate	 the	
worm	and	make	it	easier	to	manipulate.	The	worm	is	
then	 bounded	 by	 a	 rectangular	 box,	with	 its	 edges	
on	 the	 worm’s	 furthest	 edge	 from	 each	 side.	 To	
compute	 the	 centroid	and	 return	 it,	 the	 length	and	
width	of	 the	rectangle	are	divided	 in	half,	and	then	

added	to	each	edge	accordingly	[10].	The	centroid	of	
the	worm	is	the	average	of	the	x	and	y	coordinates	
of	all	M	pixels	on	the	worm	body	using	the	following	
formula	[9]:		

Originally,	 the	 segmentation	 code	 was	 written	 in	
Java,	and	then	rewritten	in	Open	CV/C++	to	improve	
the	 time	 performance.	 The	 code	 runs	 on	 an	 AWS	
cloud	 EC2	 instance.	 The	 time	 performance	 at	
640x480	 resolution	 improved	 approximately	 6.67x.	
Open	 CV	 had	 many	 of	 the	 image	 processing	
functions	already	implemented	in	its	library.	The	box	
blur	 filter,	 thresholding,	 and	 the	 contour	 functions	
were	 called	 directly	 from	 the	 Open	 CV	 library	
instead	of	being	manually	implemented.	

In	 C++	 at	 4K	 resolution,	 the	 code	 executes	
approximately	 3.95x	 faster.	 Further	work	was	done	
to	 increase	 the	 speed	by	 running	 the	 segmentation	
on	the	GPU.	Running	a	process	on	the	GPU	increases	
its	 time	 performance	 since	 the	 functions	 can	 be	
parallelized	by	utilizing	thousands	of	cores	instead	of	
using	 the	 cores	 on	 a	 CPU.	 	 In	 order	 for	 the	 Open	
CV/C++	 code	 to	 run	 on	 the	 GPU,	 it	 had	 to	 be	
rewritten	 in	 CUDA.	 CUDA	 is	 a	 language	 compatible	

with	Open	CV,	and	 it	parallelizes	a	code’s	 functions	
by	running	them	on	the	GPU.		

An	issue	that	was	encountered	while	translating	the	
code	 from	 C++	 to	 CUDA	 was	 that	 the	 Open	 CV	
library	 contains	 a	 findContour()	 function	 that	 does	
not	exist	in	CUDA’s	library.	A	new	contour	algorithm	
was	 implemented	 that	 correctly	 returned	 the	
contours	 of	 the	 worm.	 Thresholding	 and	 blurring	
were	 also	 rewritten	 to	 run	 on	 CUDA.	 This	 was	
essential	because	the	code	in	CUDA	cannot	properly	
locate	 the	 centroid	 without	 a	 bounding	 rectangle	
around	 the	 worm,	 and	 the	 bounding	 box	 is	 drawn	
according	to	the	contour,	blurring,	and	thresholding.	
The	 previous	 findContour()	 function	 produced	 a	
vector	 of	 vectors,	 where	 each	 vector	 held	 a	 list	 of	
vector	points	on	 the	 image	where	a	 contour	exists.	
The	code	assumes	that	the	largest	contour	vector	is	
the	worm.	 The	 output	 of	 the	 contour	 vectors	 from	
findContour()	 are	 in	 the	 form	 [x,	 y],	where	 the	 x	 is	
the	 x	 value	 and	 the	 y	 is	 the	 y	 value	 of	 the	 pixel	
location	on	the	image.			

Our	 algorithm	 works	 on	 a	 basic	
principle	 similar	 to	 a	 Moore-	
Neighbor	 Tracing,	 but	 more	
straight-forward	 [5].	 The	 algorithm	
goes	through	every	row	and	column	
of	 the	 image	 and	 analyzes	 each	 pixel	 value	
independently	 of	 all	 the	 others.	 At	 each	 pixel,	 it	
processes	 its	 neighboring	 8	 pixels	 and	 compares	 if	
any	of	the	pixels	are	white.	Our	binary	image	has	the	
worm	filled	 in	black	on	a	white	 image.	 If	any	of	the	
neighboring	 pixels	 our	 white,	 it	 labels	 the	 current	
pixel	 location	 as	 a	 contour.	 All	 of	 the	 contours	 are	
stored	 in	 a	 vector.	 When	 we	 compared	 the	 visual	
output	 of	 findContour()	 with	 our	 function,	 we	 got	
identical	results.	The	only	difference	is	the	empirical	
output	 of	 the	 vector.	 The	 findContour()	 function	
produces	 a	 list	 of	 values	which	are	 then	 connected	
as	vectors;	our	function	outputs	every	single	contour	
value	as	an	individual	point.	

	
3. Future	Work	

Since	our	code	 is	 running	on	 the	GPU	 in	CUDA,	 the	
next	 step	 is	 transferring	 it	 to	 a	 distributive	 system	
such	 as	 Spark.	 Spark	 works	 on	 the	 principal	 of	
parallelizing	real-time	image	processing	and	analysis	
by	 distributing	 data	 among	 thousands	 of	 nodes.	
Spark	 is	 compatible	with	 various	 languages	 such	 as	
Java,	Python,	and	R	which	will	make	is	simpler	for	us	



to	run	segmentation	on	[8].	Other	potential	work	for	
the	future	is	head	and	tail	differentiation,	along	with	
determining	 the	medial	 axis	of	 the	worm.	Once	we	
are	 able	 to	 utilize	 the	 4K	 camera,	 we	 can	 better	
differentiate	 the	 head	 and	 tail	 of	 the	 worm	 to	 be	
able	to	know	whether	the	worm	is	going	forwards	or	
backwards.	 Usually	 the	 head	 is	 slightly	 lighter	 and	
rounder	than	the	tail,	so	the	new	camera	will	make	
our	predictions	more	accurate.	The	medial	axis	is	the	
“skeleton”	 of	 the	 worm,	 and	 is	 the	 line	 running	
through	the	middle	point	of	the	entire	worm.		
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