
Analysis and Optimization of Search in Un-
Sharded Distributed Environments

Jonathan Wu, Suraj Chafle,
 Kyle Chard, Ioan Raicu

Abstract— Distributed file systems and storage networks are used to store large
volumes of unstructured data. While these systems support large-scale storage,
they create new challenges relating to efficiently discovering, accessing,
managing, and analyzing distributed data. At the core of these challenges is the
need to support scalable discovery of unstructured data. Traditional search
methods leverage centralized and globally sharded indexes. We present a
distributed search framework that does not rely on sharding and can be applied
to a range of distributed storage models. Our approach is built on top of Lucene
and utilizes search trees to distribute and parallelize queries. To further
optimize query performance we explore methods to prioritize indexes based on
size. We evaluate our search framework against alternatives, Grep and Solr,
comparing our hierarchical query distribution with a centralized model. Our
implementation proved to be faster and scale better.

I. INTRODUCTION
An estimated 70% of the world’s data

remains unstructured, with the value growing
about 60% each year[4]. The move towards big
data and computationally intensive data
analytics algorithms has motivated widespread
usage of systems capable of handling huge
workloads and storing large amounts of data.
Typically, such systems are distributed, rather
than centralized, because distribution avoids
the exponential increase of cost associated
with single servers. Distributed storage
systems may take the form of computers
connected over the web or racks of servers in
a supercomputer. While these systems
improve performance and decrease costs they
create new challenges with respect to common
data management and analysis operations,
such as data discovery.

Most traditional operating systems support
search via implementation of query primitives
(e.g., find or grep) or using a desktop search.
Distributed implementations, such as Hadoop
Grep can be used on specific distributed
systems; however, they often require
specialized software and are non-trivial to use.
Many desktop search engines use pattern

matching rather than indexing to perform deep
search. However, in a large distributed
environment such an operation is infeasible
due to the expense and overhead required to
perform queries over a large number of nodes.

Distributed systems and specifically
distributed file systems have existed for over
two decades. While there are software
solutions for searching within distributed
systems, to the best of our knowledge there is
no framework for searching in an unsharded
environment. Examples of such environments
include the Fusion File System and Globus
data-management service. Here we present a
general search framework that can be applied
to different distributed search scenarios.

II. PROBLEM STATEMENT
We aim to develop a distributed “desktop-

like” search across unsharded distributed file
and storage systems.

Search Our solution must include the four
main parts of a search engine (indexer, query
processer, searcher, and scorer) and must
support free-text search with an emphasis on
speed and scalability. It should support near-
real-time discovery of documents on any node

from any other node in the cluster. The dark
boxes in Figure 1 show how the search engine
fits into a search workflow.

Environment The unsharded nature of our
environment means that documents are not
split up between nodes, but rather each
document remains intact on a single node and
the index in which the document is registered
is co-located with the document itself.
Furthermore, we do not guarantee that the
information stored in our system is balanced
between all the nodes. The purpose of this
separation is to keep individual nodes
autonomous and minimize network traffic.

III. ARCHETECHTURE AND IMPLEMENTATION
We build our approach on Apache Lucene,

the de facto standard large-scale indexing and
query-processing engine. Lucene is a Java
library on which many popular search engines

like Solr and ElasticSearch are implemented.
Our solution leverages a C++ version of
Lucene to index documents, maintain search
indexes, perform queries, and score results.
We have developed a custom TCP/IP protocol
for sending messages (e.g., queries and
results) between nodes. Due to the unsharded
nature of the environment, each node is
responsible for maintaining an index of only
the documents located on that node.

Lucene Lucene stores data in the form of
documents where each document contains a
number of fields. Fields are populated by
tokenization of the text values of the
document. To support partial and free-text
search, the values stored in fields are matched
against queries, then the results are scored and
ranked, and finally the matching documents
are returned. The number of relevant fields
within a single document influences the
scoring of the document, meaning more
relevant documents are given higher scores.
Lucene provides near-real-time indexing-to-
search capabilities.

Server-Client Model The search engine
consists of a command line client interface and
a server deployed on each node. When a query
is submitted using the client (on any node),
that client communicates to the server on that
node, which begins searching the current node.
The server then propogates the query to other
nodes. After each node’s server has executed
the query, the results are ultimately argregated
on the server of the originating node and sent
back to the client.

Fig 1. Typical Workflow in a search
application [3]

Local Storage

Index

Node

Node Search
Server

Search
Client Files

Fig. 2 Server-Client Model

Query Distribution After a server receives
a query, its parent and children nodes are
calculated using an ordered membership list of
all other nodes. The membership list allows for
dynamic changes in cluster membership;
however, it also requires that nodes must
update the list when joining or leaving the
cluster. The distribution tree, which originates
at the source node, includes all other nodes to
distribute queries and collect results. This
approach allows quesries to be distributed
faster than a broadcast and reduces traffic at
the client. When assembling results, each non-

leaf node waits for and collects the results
from each of its children. The results are
combined with its own and returned to its
parent. We futher optimized the query
distribution phase by prioritizing nodes with
larger indexes, which are more likely to
require a longer searchtime.

IV. EVALUATION
We evaluated our implementation on

clusters of size 3, 7, 15 and 31 using m3.large
instances on Amazon Web Services. To
simulate large amounts of textual data, we
distributed an average of 90000 Wikipedia

files across each node. We then explored the
performance on a range of queries: common
queries (>100 results), a nonexistant query (0
results), and a rare query (1-10 results). We
compared performance of these queries using
our implementation as well as distributed Grep
and Apache Solr.
 Our implementation outperformed Grep
and Solr. Grep provides a comparison with a
standard method for most “desktop-like”
searches. As expected, the pattern matching
used by Grep is significantly slower than than
index look-ups. Solr is a more comparable
alternative, since it is also built on Lucene and
therefore utilizes indexes. The fact that Solr is
writen in java and our implementation is
writen in C++ may account for some of the
observed overhead difference. On average, our
implementation performed 5x, 12x, 16x and
21x better than Solr on 3, 7, 15 and 31 nodes
respectively. We expect our implementation to
continue to scale better than alternatives
because of the underlying tree structure it is
built on top of, which reduces query
distribution and result collection bottlenecks.

Size

1 8.0GB

2 7.0GB

3 6.0GB

4 5.5GB

5 5.0GB

6 5.0GB

7 4.5GB

8 4.0GB

… 2.0GB

2

4

6

8

1

3 5 7

.

Fig. 3 Query Distribution Example (Node 6 as source node)

V. RELATED WORK
FusionFS[1] The Fusion File System

includes a basic search model implemented
using FusionFS services like caching and
metadata management. The fundamental
distribution pattern relies on a broadcast from
the searching node, which is comparable to
the “star” distribution pattern we evaluated
against.

ElasticSearch [2] ElasticSearch is built on
top of Solr and has been optimized in
completely distributed environments that rely
on sharding of documents and requires a
complicated execution model. A search
request must consult a copy of every shard in
the indices of interest to see if they have
matching documents. This implementation
also uses a broadcast distribution.

VI. SUMMARY AND FUTURE WORK
We have developed a tree-based search

framework for distributing queries in a

distributed storage system. Our approach
outperforms popular alternatives at clusters of
all sizes.

Our future work focuses on integrating our
general search framework with other
environments. Specifically, we intend to
integrate our framework with FusionFS and
Globus. We also aim to improve the fault
tolerance of our implementation and
investigate methods for reducing search and
wait times on each node via new distribution
algorithms.

REFERENCES
[1] Ijagbone, Itua. "Scalable Indexing and Searching on Distributed

File Systems." Thesis. Illinois Institute of Technology, 2016.
Print.

[2] ElasticSearch. Computer software. Elastic Stack and Product
Documentation. Vers. 2.3. Elastic, n.d. Web.

[3] Lucene in Action Edition Second by Michael McCandless, Erik
Hatcher and Otis Gospodneti.

[4] M. Wall, “Big Data: Are you ready for blast-off”, BBC
Business News, March 2014.

Fig. 4 Our implementation (DistSearch) vs Solr vs Grep

0.01	

0.1	

1	

10	

100	

1000	

3	 7	 15	 31	

Ti
m
e	
of
	S
ea
rc
h	
(s
)	

Number	of	Nodes	

Grep:	Common	

DistSearch:	Common	

Solr:	Common	

Grep:	Nonexistant	

DistSearch:	Nonexistant	

Solr:	Nonexistant	

Grep:	Rare	

DistSearch:	Rare	

Solr:	Rare	

