Analyzing Spark Scheduling And Comparing Evaluations
On Sort And Logistic Regression With Albatross

Henrique Pizzol Grando
University Of Sao Paulo

henrique.grando@usp.br

Iman Sadooghi
lllinois Institute of Technology

iman.sadooghi@gmail.com

ABSTRACT

Large amounts of data that needs to be processed nowa-
days, have led to the Big Data paradigm and the devel-
opment of distributed systems. In order to facilitate the
programming effort in these systems, frameworks like Spark
[10] were created. Spark abstracts the notion of parallelism
from the user and ensures that tasks are computed in paral-
lel within the system, handling resources and providing fault
tolerance. The scheduler in Spark is a centralized element
that distributes the tasks across the worker nodes using a
push mechanism and it dynamically scales the set of clus-
ter resources according to workload and locality constraints.
However, in bigger scales or with fine-grained workloads, a
centralized scheduler can schedule tasks in a rate lower than
the necessary, causing response time delays and increasing
the latency.

Various frameworks have been designed with a distributed
scheduling approach, one of which is Albatross [7], a task
level scheduling framework that uses a pull based mecha-
nism instead of traditional push based of Spark, that uses
a Distributed Message Queue (DMQ) for task distribution
among its workers.

In this paper, we discuss the problems of centralized schedul-

ing in Spark, show different distributed scheduling approaches
that could be a fundamental idea for a new distributed

scheduler on Spark and we perform empirical evaluations

on Sort and Logistic Regression in Spark to compare it with

Albatross.

1. INTRODUCTION

Spark is one of the Data Analytics framework proposed
to particularly solve the problem of faseter data process-
ing at larger scales by storing data in memory in order to
analyze large volumes of data in seconds. It was developed
aiming to facilitate the programming for distributed system.
The major abstraction in Spark is the Resiliant Distributed
Dataset (RDD), a dataset that spams many nodes and is di-
vided in partitions, each of them possibly stored in different
worker nodes. It recomputes the data automatically based
on the Directed Acyclic Graph (DAG) information from the
scheduling systems, thus helps in managing data-loss during
the execution of the jobs.

Although Spark presents a better performance than MapRe-

duce for iterative and CPU-bound tasks, as the number of
worker nodes and cores for each machine increases, the num-
ber of tasks/second that are processed become much higher
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Figure 1: The centralized scheduler in Spark([11].

than the number of tasks that can be scheduled by the Spark
centralized scheduler. This means that when sub second
tasks are running, scheduling decisions must be made at a
very high throughput. This causes scheduling delays with a
centralized scheduler. (Figure 1).

The usual scheduling rate for current centralized sched-
ulers is around 2,500tasks/second. This rate can easily be
surpassed by current distributed systems. ”"Amazon EC2 in-
stances (m4.10xlarge) have 40 cores: a single job running on
8 workers (320 cores) can execute 2,000 tasks/second, close
to the limit of a modern controller” [5].

Distributed approaches for the Spark scheduler were made
[3, 6], but only at Application level, which also may become
a problem when you have a fine-grained enough workload
for a given application. Since in these systems each appli-
cation is only scheduled by a single centralized scheduler,
this scenario might lead to a scheduling rate lower than the
execution rate (tasks processed by the worker nodes per sec-
ond), which will cause queueing delays and a bigger latency.

2. BACKGROUND

A large variety of frameworks and engines used nowadays
in distributed systems rely on previous work as building
blocks. Onme of the systems to be explored in this paper
is Albatross [7]. Albatross depends on two other projects in
this area. For the sake of completeness a quick overview on
these projects is provided.

2.1 ZHT

ZHT is a zero-hop distributed hash table. ZHT was de-
veloped aiming to be a building block for distributed job
management systems at extreme scales. In order to attend



that demand, it’s a light-weight, fault tolerant through repli-
cation, persistent (through its own non-volatile hash table:
NoVoHT) and scalable system. With these properties ZHT
is able to deliver high availability, good fault tolerance, high
throughput, and low latencies. It’s API provides four major
methods: insert, a remove, lookup and append [2].

2.2 Fabriq

Fabriq is a distributed message queue built on top of ZHT.
As such, it provides all the services available on ZHT includ-
ing persistence, consistency, and reliability. The messages
on Fabriq can be distributed across all the supercomputer
nodes, allowing for parallel access to the queue. One im-
portant feature present in Fabriq is the guarantee that each
message will only be delivered once [8].

3. SPARK STRUCTURE

The Cluster Manager element in the Spark architecture
can be currently chosen among YARN [9], Mesos [1] and
Standalone [12]. For the purposes of this study, the Stan-
dalone mode will be considered, since it simplifies the anal-
ysis with no loss of precision.

3.1 Jobs and Tasks

In order to better understand the functioning of the Spark
Scheduler, some knowledge of how jobs and tasks are devised
within an application is necessary.

A typical Spark application consists of a load operation
from a file (from a regular file system, HDFS or similar) to
an RDD where data is stored and split across different par-
titions. These partitions will each be handled by a different
task. The task is responsible for performing the transforma-
tions, e.g. applying the user function during a Map.

Two different types of transformation can be seen in Spark.
Narrow transformations (map, filter, reduce) are the ones
that can be sequentially performed in a single partition.
Wide transformations (sortByKey) depend on data spammed
across different partitions. Therefore, wide transformations
introduce a barrier on the application execution, where all
partitions need to arrive before the next transformation can
be performed (Figure 2).

These barriers are the delimiters for a stage. A stage in
Spark is the equivalent of a job. This job contains a set of
tasks (each of the partitions’ tasks) that are scheduled in
the worker nodes.

3.2 Scheduler

The main piece of the Spark scheduler is the DAG sched-
uler it contains the DAG that keeps track of the RDDs and
their transformations. The DAG Scheduler is responsible
for submitting stages as jobs to the Task Scheduler, which
will then schedule the tasks across the worker nodes.

The Task Scheduler keeps track of the tasks being exe-
cuted handling failures (resubmitting tasks if necessary) and
mitigating stragglers. In case a whole stage is lost, the Task
Scheduler asks the DAG scheduler for it to be recomputed
and submitted.

Both the DAG and Task Scheduler are available in the
single centralized cluster manager node. So all the schedul-
ing decisions and operations are performed by this one node,
which becomes a bottleneck in fine-grained applications and
bigger scales.
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Figure 2: Narrow dependencies are kept in the same
stage. Wide dependencies transformations require a
barrier.
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Figure 3: Sparrow architecture: each Spark appli-
cation is linked to a single scheduler [3].

4. DISTRIBUTED SCHEDULING

We’ll look into two different types of distributed schedul-
ing techniques: application level (the word job is not used
to avoid confusion with its meaning as a Spark stage) and
task level.

4.1 Application Level
4.1.1 Sparrow

Sparrow is a distributed scheduler on application level
built to work with Spark. Although, the full integration
between the two systems was never made. There’s only one
old forked version of Spark that has an implemented plugin
to accommodate Sparrow [13, 14] which doesn’t support all
the latest software available for big data computing.

The Sparrow architecture consists of schedulers distributed
across different nodes each of them directly connected to a
different Spark driver (Figure 3). That is, for each Spark ap-
plication, only one scheduler is used. This approach sidesteps
the scheduler bottleneck by giving different users, different
scheduling nodes.

Although, if you have a fine-grained enough workload,
even a single application can become a problem, since all
of the tasks would be scheduled through the same node.
Besides that, another disadvantage of this technique is that
schedulers doesn’t share any information, which makes the
data in each application to be available only inside the ap-
plication itself.

The Sparrow schedulers use batch sampling and late bind-
ing (an adaptation of the power of two choices load balancing
technique [4]) in a way to improve the scheduling for a single
node, which brings the performance near to the performance
of an omniscient scheduler (which assumes complete infor-
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Figure 4: Different scheduling techniques compared.
Batch Sampling with Late Binding boost signifi-
cantly the scheduler performance [3].

mation about the load on each worker node) (Figure 4).

Using batch sampling the schedulers probe a number of
machines proportional to the number of tasks contained in
the job received (usually 2 machines/task) and instead of
receiving their workload information or sending tasks it ac-
tually sends a reservation to the worker queue (late binding).

The reservation acts as a placeholder for the task, when
it gets popped out of queue the worker will request a task
to the corresponding scheduler. When a number of worker
nodes equal to the number of tasks that need to be sched-
uled respond to the reservation, the scheduler will cancel the
remaining reservations.

Besides the improvement on scheduling over a single node,
the main problem is not addressed, but rather postponed
by making the scheduling distributed across different users/
application, which still might be a problem for really big or
fine-grained applications.

4.1.2 Hopper

Hopper is a decentralized speculation-aware application
level scheduler built on top of Sparrow. It has the same ba-
sic characteristics that Sparrow has, namely one scheduler
for each Spark application, batch sampling and late bind-
ing. On top of these strategies, Hopper implements some
optimizations and modifications to ensure better scheduling
decisions.

Among the optimizations made by Hopper it’s worth not-
ing that speculation tasks are treated specially and as part
of the scheduling technique applied, which means these will
be included in the normal scheduling decisions and not han-
dled by some special heuristic like best-effort speculation
(schedule them whenever there’s an open slot) or budgeted
speculation (have a fixed number of slots reserved for spec-
ulation tasks).

Best-effort speculation may lead to increased latency on
task completion, since the speculation tasks depend on new
slots to be vacant before they can start executing Figure 5.
On the other hand, with budgeted speculation, one could
reserve sufficient slots to execute speculation tasks as soon
as they’re needed, but when no speculation tasks have to be
processed, those slots would be idle and CPU cycles, wasted
Figure 6. The approach adopted by Hopper of including the
speculation tasks on the scheduling decisions is better than
both of the previous ones and also optimal Figure 7.
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Figure 5: Best-effort approach for speculation tasks
scheduling [6].
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Figure 6: Budgeted approach for speculation tasks
scheduling [6].
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Figure 7: Speculation-aware job scheduling em-
ployed by Hopper [6].
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4.2 Task Level

When considering the task level decentralized schedulers
below it’s worth mentioning that neither of them is directly
related to Spark. Nevertheless, they implement decentral-
ized scheduling techniques that are worth considering for
eventual future implementations of decentralized schedulers
on Spark.

4.2.1 Canary

Canary is a distributed scheduler architecture for cloud
data processing systems. The main idea behind it is that
the workers can generate tasks and execute them according
to the data partitions they have in memory.

There’s a central element in Canary responsible for com-
puting and updating the partition map, specifying how par-
titions are distributed across the workers. The tasks that
are generated and executed by the workers depends on par-
titions assigned to that worker, in this way, the central
controller implicitly schedule tasks. In order to create and
schedule tasks, each worker has a copy of the driver program
Figure 8.

Since the driver program is distributed across all the worker
nodes, there’s no scalar variable (as a counter) in Canary, all
variables are datasets. If this restriction were to be lifted,
there would be a copy of the variable in each of the worker
nodes.

Aside from computing the partition map, the central con-
troller is also responsible for distributing the partition map
to workers, coordinate worker execution so partition mi-
gration is properly performed when the partition map is
changed and decide when workers should store a snapshot
of their partition to non-volatile storage to provide failure
recovery.

Given that, all other operations to be performed, namely
spawn tasks and compute schedule dependencies, enable data
exchange between workers, maintain a consistent view of ex-
ecution and migrate partitions, are done by workers.

Canary assumes that the set of data changes slowly and
there are few migrations of data (which is common for a
CPU-bound application). If these assumptions are not re-
spected the controller could be overloaded and latency in-
creased.In a well-behaved job, the controller would only col-
lect performance information. This idleness tries to avoid
the bottleneck that the controller would become if more re-
sponsibilities were assigned to it.

4.2.2 Albatross

Albatross is a task level distributed scheduling and execu-
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Figure 9: Two major components of Albatross: Fab-
riq serving as pool of tasks and ZHT for storing
metadata [7].

tion framework. In order to achieve scalability the Albatross
system lacks a central controller, differently than Canary the
scheduling effort is performed by the workers and there’s no
central element of coordination.

In order to achieve that, Albatross uses ZHT and Fabriq
that interact with Client and Worker drivers. Fabriq is used
as a pool of tasks to where Clients push tasks and Work-
ers pull tasks when needed. ZHT is used to store metadata
information that is read and written by Workers, this meta-
data could be, e.g., the data location and the workload DAG
Figure 9.

Since all elements in the system are fully distributed, a
node in Albatross could have any of the components or even
a combination of them. Indeed each worker driver will have
access to a local instance of both a ZHT and a Fabriq server.

To start the process, the user provide the job information
and the dataset to the Client driver (or drivers). The Client
splits the data across the Worker driver nodes and based
on the information received generates the tasks and the de-
pendency DAG. It then submits the tasks to Fabriq using a
uniform hashing function to ensure load balance.

In each worker there are two different queues, the main
one is used to pull tasks out of Fabriq and the other one
is the local queue, to which the tasks are transferred if the
data needed for that task is local to the node. Regarding
the remaining tasks in the main queue, they’re preferably
transferred to the node where the data is located, but if
that node is already overloaded, the data is fetch and the
task is executed locally.

This kind of approach avoids the bottleneck created by a
centralized element, once everything is distributed. On the
other hand, depending on the nature of the application, the
Workers may need to exchange information or, in the case
of a highly loaded cluster, data too frequently which could
lead to network delays.

The last aspect of implementation that’s worth being men-
tioned is the way the dependencies are handled through Fab-
riq. Each task has two fields that pCount and ChildrenList,
that is, the number of tasks that still need to be executed
before the task in question; and a list with all the tasks that
depend on it. Workers only pull tasks with pCount=0 and
when a task is executed, its list of Children is traversed and
their pCount decremented.



S. IMPLEMENTATION

We implemented Sort and Logistic regression, with same
exact details, on Spark and Albatross to evaluate its per-
formance on varying nodes cluster with varying workloads.
First, we briefly describe the two metrics that we have used
for the comparison. Then, we measure the efficiency, through-
put and latency while varying the granularity of the work-
loads.

5.1 Sort

The Sort benchmark measures the amount of time taken
to sort a specific size of randomly distributed data over a dis-
tributed cluster. In our case we have used varying input sizes
according to number of nodes in both Spark and Albatross
cluster and compared the time taken on both the frame-
works. The input for the Sort is generated using the Gen-
sort[15] application and consists of skewed key-value pairs
i.e. 10 bytes of key and 90 bytes of value in a row. The
sorting is done on the basis of Key.

5.2 Logistic Regression

Logistic Regression[16] is an algorithm in Machine Learn-
ing for Classification. Classification involves looking at data
and assigning a class (or a label) to it. Usually there are
more than one classes, but in our case, we have tackled bi-
nary classification, in which there at two classes: 0 or 1.

Essentially what we do, is draw a ’line’ through our data,
and if a data point (or sample) falls on one side, assign it
a label 0, or if it falls on the other side of the line, give
it a label 1. A Labeled point is a local vector associated
with a label/response. In MLlib, labeled points are used in
supervised learning algorithms and they are stored as dou-
bles. For binary classification, a label should be either 0
(negative) or 1 (positive).Classifying all the points requires
a certain number of iterations for more accurate classifica-
tion of the data points. In our case we have calculated the
total time to classify the data points with 50 iterations.

An explanation of logistic regression is done by means of
standard logistic function or the sigmoid function. The sig-
moid function can take input from any negative to positive
infinity whereas the output always takes values between 0
and 1 and hence can be translated as probability. The sig-
moid function is defined as,

1

99 = T

Here is a plot showing g(z),

Machine Learning ’fits’ this line using a optimization al-
gorithm (usually Gradient Descent or some form of it), such
that the error of prediction is lowered. In our case we have
used Stochastic Gradient Descent (SGD) model for our clas-
sification. SGD is an iterative optimization algorithm that
can be applied for discriminative learning of linear classi-
fiers under convex loss functions such as Support Vector
Machines and Logistic Regression. These types of functions
often arise when the full objective function is a linear com-
bination of objective functions at each data point.

6. EXPERIMENTAL EVALUATION

We evaluate and compare Spark and Albatross by run-
ning Sort and Logistic Regression on both with exact details.
We ran these metrics on varying cluster nodes with varying
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Figure 10: Notice that g(z) tends towards 1 as z —
oo, and ¢(z) tends towards 0 as z — —oo.

workloads. Following table shows the scaling of workload
with number of nodes for both Sort and Logistic Regres-
sion:

Nodes | Workload Size (in GB)
1 5
2 10
4 20
8 40
16 80
32 160
64 320

Table 1: Table to test captions and labels

We measure latency and throughput while running bench-
marks on both Spark and Albatross

6.1 Testbed and Configurations

The experiments were done on m3.large instances for Sort,
which have 7.5 GB of memory, 32 GB local SSD storage and
High Frequency Intel Xeon E5-2670 v2 (Ivy Bridge) Pro-
cessors with 2 vCores and m3.xlarge instances for Logistic
Regression, which have 15 GB of memory, 80 GB local SSD
storage and Intel Xeon E5-2670 v2 (Ivy Bridge) Processors
with 4 vCores. The workload was scaled as 5 GB per node
as shown above in Table 1

6.2 Latency

In order to compare the scheduling cost of Spark with
Albatross, we calculated the total time taken for the Sort
and Logistic Regression benchmarks to run on Spark and
then compare them with Albatross.

6.2.1 Sort

For sort, we first compared our values of Sort on Spark
with the existing values of another student, Geet Kumar,
from Illinois Institute of Technology and found out that our
code was more optimised than the later and ran quite faster
than his. The following comparison is shown in Figure 11
and Figure 12
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From above figures, it is evident that our version of Sort,
represented in blue bar runs comparatively better for 1,4,8
and 16 nodes and the performance improves noticeably for
32 and 64 nodes. Hence it can be predicted that our version
of Sort may improve latency by a lot with increase in number
of nodes.

6.2.2 Logistic Regression

For Logistic Regression, we have calculated the total time
(in msec) to classify (train) the data points with 50 itera-
tions, using the Stochastic Gradient Descent model in Spark
and Albatross. We have scaled our experiments from 1 to 64
nodes and 5Gb to 320Gb workload sizes respectively. The
latency is calculated for time taken to train per GB of data
for 1 to 64 nodes.

Figure 13 shows the average latency of running iterative
tasks on Spark, scaling from 1 to 64 nodes. Ideally, on a
system that scales perfectly, the average latency should stay
the same. And it can be seen that logistic regression in
Spark runs very close to the ideal case i.e. we observe a
curve that approximately looks like a straight line.

6.3 Throughput

In order to analyse the task submission and scheduling
performance of the frameworks, we measured the total times-
pan for running Sort and Logistic Regression on varying
nodes with varying workload size and then divide the to-
tal workload size (in Mb) with the total time to find the
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Figure 13: Average Latency for Logistic Regression
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Figure 14: Throughput comparison for Sort on
Spark and Albatross

throughput for that specific node. The throughput is de-
fined as the number of tasks processed per second (tasks per
second),

WorkloadSize(inMb)

Th hput(T) =
roughput(T) TotalTimetaken(inseconds)

6.3.1 Sort

The throughput performance for sort on Spark and Alba-
tross is shown in Figure 14

In Figure 14, we can see that Albatross tends to perform
slightly better on larger scales (linearly) i.e. Spark is al-
most an order of magnitude slower than Albatross for 32 and
larger nodes. Spark’s centralized scheduler starts to saturate
after 64 nodes with a throughput of 456.49 Mb per second.
Spark’s throughput performance scales 1.25 times to previ-
ous value, when number of nodes are increased. Whereas it
increases by almost 1.70 times to previous value in Albatross,
which can almost be approximated as double i.e. through-
put increases as 2x with increasing number of nodes. Hence
it can be predicted that Albatross performs much faster on
larger nodes, scaling workloads effectively and efficiently.

From Figure 15, we can see the difference in performance
of the three frameworks, namely Spark, Hadoop and Alba-
tross for sort on different partition sizes on 64 nodes. The
competition between Spark and Albatross is very close and
Hadoop is nowhere close to them. Albatross is at an average
3.13% faster than Spark overall and 5.89% faster for large
scales i.e. 32 and 64 nodes, and 56.63% faster than Hadoop.

6.3.2 Logistic Regression

The throughput performance comparison for Logistic Re-
gression on Spark and Albatross is shown in Figure 16
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Figure 16 shows that Logistic Regression on Spark per-
forms slight better than Albatross. This is due to the highly
optimized RDDs and Scikit-Learn libraries for Logitic Re-
gression in Python.

7. CONCLUSIONS

The Spark centralized scheduler is a bottleneck for very
large distributed systems. Existing distributed implementa-
tions like Sparrow, which is compatible with Spark try to
solve this problem on application level, which is still not
an optimal solution, since a fine-grained enough workload
could surpass the single scheduler capacity. Therefore, a
distributed scheduler on task level, inspired in systems like
Albatross, for Spark is needed in order to provide a high rate
of scheduled tasks/second that can keep up with demanding
workloads.

Albatross seems to perform quite better than Spark, as
seen in Figure 16 for the Sort by an order of magnitude. But
Logistic Regression on Spark came out to be slightly better
than Albatross because of highly optimized MLib libraries
available for Machine Learning on Spark. And since Logistic
Regression for Albatross was written from scratch in C, the
mappers and reducers were not as optimized to RDDs which
caused the delay in convergence.

Since Albatross still gives high competition to Spark for
most of the evaluation. It is quite possible that with more
optimized code and configurations, Albatross would perform
much better than Spark. Hence, by means of this paper I
can state that the Pull based mechanism in Albatross is a
better option for distributed scheduling on task level than a
Push based Spark.
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