
TOWARDS SCALABLE SEARCHING OF DISTRIBUTED FILE SYSTEMS
Itua Ijagbone,	Shivakumar	Vinayagam,	David	Pisanski,	Kevin	Brandstatter,	Dongfang	Zhao,	Ioan	Raicu

iijagbon@hawk.iit.edu,	 svinayag@hawk.iit.edu,	dpisan2@uic.edu,	kbrandst@hawk.iit.edu,	dzhau8@hawk.iit.edu,	iraicu@cs.iit.edu

Lucene
• Lucene [10]	is	 a	high	 performance,	 scalable	 Information	 Retrieval	 (IR)	library	
developed	 by	Apache.	

• Lucene provides	 search	capabilities	 to	an	application.	 It’s	a	mature,	 free,	open-
source	 project	 implemented	 in	 Java.	

• Lucene provides	 a	powerful	 core	API	 that	 requires	 minimal	 understanding	 of	 full-text	
indexing	 and	searching.	

• In	Lucene,	 Documents	are	atomic	unit	 of	indexing	 and	searching.	 It	can	 index	and	
make	searchable	 any	data	 that	 in	which	 text	can	be	extracted	 from.

Raw Co n ten t

Acq u ire Co n ten t th ro u g h  Fu sio nFS: Create, 
Up d ate, Delete In d ex

Bu ild  Qu eryRu n  Qu ery

Search  In terface
Bu ild  Do cu men t

An aly ze Do cu men t
In d ex  Do cu men t

Ren d er Resu lts

u ser

CN

Co mp u te No d e

Fu sio n FS (Lo cal 
S to rag e)

In d ex

Files

Search  
Serv er

Search  
clien t

In d ex in g  th ro u gh p ut in 1 0GB Clu ster. Search  Laten cy  in  a 1 0 GB Clu ster

Writin g  Th ro u g hp u t o f Fu sio nFS an d Clo ud era HDFS in  a 10 GB Clu ster

Figure	1.	Fus ionFS deployment	in	a	typical	HPC	system

Figure	5.	Index	and	Search	interface	deployment	on	FusionFSin	a	typical	

Typical	Components 	of	a	Search	Application	as 	seen	through	
Fus ionFS

Search	 Latency
• We	compared	HadoopGrep,	FusionFS Search	and	Cloudera Search	on	a	4,	16	and	64	10GB	
Cluster.	

• Figure	14,	 shows	HadoopGrepperforms	the	worse	of	all	 the	implementations	because	
HadoopGrep counts	how	many	times	a	matching	string	occurs	and	then	sorts	 the	matching	
strings.	

• Our	search	latency	when	not	cached	and	when	cached	does	better	than	Cloudera Search	
when	not	cached	and	when	cached	respectively.	One	reason	could	be	because	we	are	
running	vanilla	Lucene.	

• Cloudera Search	runs	Apache	Solr,	a	child	of	Lucene,	which	we	believe	has	extra	syntactic	
sugar	added	on	 top	of	Lucene.	We	also	evaluated	the	search	latency	on	FusionFS Search	on	a	
single	node	as	we	exponentially	increased	the	data	size.	We	see	 from	Figure	15	that	as	the	
data	size	 increases	exponentially,	the	search	latency	grows	linearly.	

• We	see	 that	as	we	increase	the	number	of	nodes,	FusionFS does	much	better	than	Cloudera
Search	by	at	least	2.5x.	This	is	because	as	we	scale	the	number	of	nodes,	 the	workload	on	
each	node	is	 reduced.	This	however	doesn’t	appear	to	be	the	case	with	Cloudera Search,	
increasing	the	number	of	nodes	has	little	 impact	on	the	 indexing	throughput.

Write	 Throughput
• Finally,	 we	wanted	 to	know	 if	adding	 indexing	 to	FusionFS caused	a	drop	 in	
performance	 and	 if	 it	did	by	how	much.

• We	compared	 the	writing	 throughput	 of	FusionFS when	 the	 indexing	 feature	 is	
enabled	 and	vanilla	 FusionFS (without	 the	 indexing	 feature). 	We	also	 wanted	 to	
know	 if	 there	 was	a	drop	 in	performance	 with	 respect	 to	writing	 to	Cloudera HDFS	as	
indexing	 was	on	 going.	

• This	 experiment	 was	conducted	 on	10GB	cluster	 made-up	of	4	nodes.	Figure	 17	
shows	 that	our	 index	 feature	 reduces	 the	 throughput	 of	FusionFS by	an	average	of	
6%	while	 writing	 to	Cloudera HDFS	as	 indexing	 was	 happening	 showed	 a	
performance	 dropped	 of	50%.	

• This	 drop	 in	write	 performance	 in	Cloudera can	be	attributed	 to	 the	centralized	
metadata	management	 of	HDFS.	

0

10

20

30

40

50

60

f us ionf s clouder a	 hdf s

P
er
fo
rm
an
ce
	C
o
st
(%
)

Fi le	System

Abstract
Scientific	applications	and	other	High	Performance	applications	generate	large	amounts	

of	data.	It’s	said	that	unstructured	data	comprises	more	than	90%	of	the	world’s	 information	
[IDC2011],	and	it’s	growing	60%	annually	[Grantz2008].		The	large	amounts	of	data	generated	
from	computation	leads	to	data	been	dispersed	over	the	file	 system.	Problems	begin	to	exist	
when	we	need	to	locate	these	files	 for	later	use.	For	small	amount	of	files	 this	might	not	be	an	
issue	but	as	 the	number	of	files	begin	to	grow	as	well	as	 the	increase	in	size	 ,	 it	becomes	
difficult	locating	these	files	 	on	the	file	 system	using	ordinary	methods	like	GNU	Grep [8],	which	
is	 commonly	used	in	High	Performance	Computing	and	Many-Task	Computing	environments.	
We	tackle	this	problem	of	finding	files	 in	a	distributed	system	environment	by	using	our	model. 	
Our	work	leverages	the	FusionFS [1]	distributed	 file	 system	and	the	Apache	Lucene [10]	
centralized	indexing	engine	as	a	fundamental	building	block.	We	designed	and	implemented	a	
distributed	search	interface	within	the	FusionFS file	 system	that	makes	both	indexing	and	
searching	the	index	across	a	distributed	system	simple.	We	have	evaluated	our	system	up	to	64	
nodes,	 compared	it	with	Grep,	Hadoop,	and	Cloudera,	and	have	shown	that	FusionFS’s indexing	
capabilities	have	lower	overheads	and	faster	response	times.

FusionFS
• FusionFS [1]	is	a	distributed	 file	 system	that	co-exist	with	current	parallel	file	systems	in	
High-End	Computing,	optimized	 for	both	a	subset	of	HPC	and	Many-Task	Computing	
workloads.	

• Distributed	metadata	management	is	implemented	using	ZHT	[2],	a	zero-hop	distributed	
hash	table.

• ZHT	has	been	tuned	for	the	specific	requirements	of	high-end	computing	(e.g.	
trustworthy/reliable	hardware,	fast	networks,	non-existent	"churn",	 low	latencies,	and	
scientific	computing	data-access	patterns). 	

• The	data	is	partitioned	and	spread	out	over	many	nodes	based	on	 the	data	access	patterns.	
Data	is	indexed,	by	including	descriptive,	provenance,	and	system	metadata	on	each	file. 	

• FusionFS supports	a	variety	of	data-access	semantics,	from	POSIX-like	interfaces	for	
generality,	to	relaxed	semantics	for	increased	scalability.

Testbed

Our	index	and	search	interface	was	written	in	 the	C/C++	programming	language.	CLucene is	in	
C/C++	as	well	as	FusionFS.	We	had	two	different	machine	environments	for	testing	and	
evaluation:
• Local	Virtual	Machine:	We	have	explained	why	we	did	 this	 in	Section	4.2.	Our	testbed for	
this	environment	was	a	64-bit	Virtual	Machine	with	2	vCPU and	1.5GB	of	RAM.	

• Amazon	Elastic	Compute:	For	deployment	to	a	cluster	and	comparing	it	to	other	similar	
implementations	as	explained	in	Section	4.3,	we	used	Amazon’s	Elastic	Compute	Units. 	We	
deployed	our	FusionFS implementation,	Grepand	HadoopGrepon	a	High	Frequency	Intel	
Xeon	E5-2670	v2	(Ivy	Bridge)	Processors	with	2	vCPU,	7.5GB	of	RAM	and	32GB	SSD	storage	
for	the	10GB	data	cluster.	For	validation	against	Cloudera Search,	Cloudera Search	ran	on	the	
same	Intel	Xeon	with	8	vCPU,	30GB	of	RAM	and	160GB	SSD	storage.

• Metrics	and	Workloads.	Our	testing	metrics	covered	the	following:	Writing	Throughput,	
Index	Throughput,	Search	Throughput	and	Search	Latency.	We	explain	each	of	these	metrics	
in	Section	4.2.	Our	workloads	were	divided	into	 two	sections.	

• Local	Workloads:	This	 is	workload	we	ran	on	the	local	virtual	machine.	Our	testing	data	was	
generated	from	an	English	Dictionary.	The	total	size	of	the	data	was	1GB	but	was	split	 into	
100MB	files	 (10	files	 in	 total). 	In	other	words,	our	workload	for	this	experiment	was	based	
on	weak	scaling,	keeping	the	node	constant	and	increasing	file	 sizes	 from	100MB	to	1000MB	
(1GB).		Experiments	for	the	search	latency	and	search	throughput	were	repeated	at	least	
three	times.	The	reported	numbers	are	the	average	of	all	runs.	

• Cluster	Workloads:	This	workload	was	run	on	the	Amazon	Cluster.	Our	testing	data	is	a	10GB	
Wikipedia	dataset	[25].	The	10GB	dataset	are	in	chunks	of	64MB,	this	chunks	are	distributed	
evenly	among	our	10GB	cluster.	This	workload	was	applied	 to	our	 implementation,	Grep,	
HadoopGrepand	Cloudera Search.	For	search	latency	and	throughput,	we	ran	a	1000	
queries	where	we	found	 the	average.

Index	Throughput	

• The	index	throughput	is	 the	speed	 (MB/sec)	at	which	we	can	index	the	files	 in	FusionFS as	
the	servers	increases.

• We	see	 that	as	we	increase	the	number	of	nodes,	FusionFS does	much	better	than	Cloudera
Search	by	at	least	2.5x.	

• This	 is	because	as	we	scale	the	number	of	nodes,	 the	workload	on	each	node	is	 reduced.
• This	 	however	doesn’t	appear	to	be	the	case	with	Cloudera Search,	increasing	the	number	of	
nodes	has	little	 impact	on	the	indexing	throughput.

Conclusion	and	Future	Work

• We	introduced	a	new	system	that	extends	the	capabilities	of	FusionFS.	Our	system	
indexes	and	provides	an	interface	for	searching	data	stored	in	the	cluster	in	a	fast	
manner.	

• We	gave	an	overview	of	how	search	engines	work	especially	Apache	Lucene and	
how	we	used	it	 in	our	work.	We	explained	how	we	index	files	 in	FusionFS and	how	
we	make	searching	the	file	system	possible.	

• We	showed	with	evaluations	and	experiments	that	our	implementation	is	 scalable,	
provides	high	 throughput	and	has	 reduced	latency.	We	also	compared	our	
implementation	to	HadoopGrepand	Cloudera Search,	and	showed	through	results	
that	our	system	is	better.

• We	are	also	 looking	into	 the	possibility	 of	adding	SQL	API	so	 that	researchers	who	
are	familiar	with	SQL	can	run	SQL	like	queries	on	our	system.

• Another	planned	work	is	building	a	REST	API. 	Since	our	target	are	researchers	in	the	
Scientific	Community,	we	want	to	make	our	search	process	more	user	friendly	by	
producing	a	simple	 to	use	web	browser	 interface	like	Google	Search

Search  Th ro u g h p u t o f th e v ario us sy stems o n  o ne n o de


