ILLINOIS INSTITUTE\
OF TECHNOLOGY

Abstract

Scientific applicationsand other High Performance applications generate large amounts
of data. It’ssaid that unstructured data comprises more than 90% of the world’s information
[IDC2011],and it’s growing 60% annually [Grantz2008]. The large amounts of data generated
from computation leadsto data been dispersed over the file system. Problems begin to exist
whenwe need to locate these files for later use. For small amount of files this might not be an
issue but as the number of files begin to growaswell as the increase insize , it becomes
difficult locating these files on the file system using ordinary methods like GNU Grep [8], which
is commonly used in High Performance Computing and Many-Task Computing environments.
We tackle this problem of finding files in a distributed system environment by using our model.
Our work leveragesthe FusionFS [1] distributed file system and the Apache Lucene [10]
centralized indexing engine as a fundamental building block. We designed and implemented a
distributed search interface within the FusionFS file system that makes both indexing and
searching the index acrossa distributed system simple. We have evaluated our system up to 64
nodes, compared it with Grep, Hadoop, and Cloudera, and have shown that FusionFS’sindexing
capabilities have lower overheads and faster response times.

FusionFS
FusionFS [1] is a distributed file system that co-exist with current parallel file systemsin
High-End Computing, optimized for both a subset of HPCand Many-Task Computing
workloads.
Distributed metadata management isimplemented using ZHT [2],a zero-hop distributed
hash table.
ZHT hasbeen tuned for the specific requirements of high-end computing (e.g.
trustworthy/reliable hardware, fast networks, non-existent "churn”, low latencies, and
scientific computing data-access patterns).
The data is partitioned and spread out over many nodesbased on the data access patterns.
Data isindexed, by including descriptive, provenance,and system metadata on each file.
FusionFS supports a variety of data-access semantics, from POSI X-like interfaces for
generality, to relaxed semantics for increased scalability.

ot10)
Lomin S o100
~ ore

Figure 5. Index and Searth interfacedeployment on FusionFSin atygid

Lucene
Lucene [10]is a high performance, scalable Information Retrieval (IR) library
developed by Apache.
Lucene provides search capabilities to anapplication. It's a mature, free, open-
source project implemented in Java.
Lucene provides a powerful core API that requires minimal understanding of full-text
indexing and searching.
InLucene, Documents are atomic unit of indexing and searching. Itcan index and
make searchable any data that in which textcan be extracted from.

TOWARDS SCALABLE SEARCHING OF DISTRIBUTED FILE SYSTEMS

Itua ljagbone, Shivakumar Vinayagam, David Pisanski, Kevin Brandstatter, Dongfang Zhao, | oan Raicu

iijagbon@hawk.iit. edu, svinayag @hawk.iit. edu, dpisan2 @uic . edu, kbrandst @hawk. iit. edu, dzhau8 @hawk. iit. edu, iraicu@cs. iit. edu

Sarch Interfae

Build Document
Andyz Document
Index Document

Typical Components of a archApplication asseenthrough
FusionFS

Testbed

Our index and search interface waswrittenin the C/C++ programming language. CLucene isin

C/C++ aswell asFusionFS. We had two different machine environments for testing and

evaluation:

* LocalVirtual Machine: We have explained why we did this in Section 4.2. Our testbed for
this environment wasa 64-bit Virtual Machine with 2 vCPU and 1.5GB of RAM.
Amazon Elastic Compute: For deploymenttoa cluster and comparing it to other similar
implementationsas explained in Section 4.3, we used Amazon'’s Elastic Compute Units. We
deployed our FusionFS implementation, Grep and Hadoop Grep on a High Frequency Intel
Xeon E5-2670v2 (lvy Bridge) Processors with 2 vCPU, 7.5GB of RAM and 32GB SSD storage
forthe 10GB data cluster. For validation against Cloudera Search, Cloudera Searchran on the
same IntelXeon with 8 vCPU,30GB of RAM and 160GB SSD storage.
Metrics and Workloads. Our testing metrics covered the following: Writing Throughput,
Index Throughput, Search Throughput and Search Latency. We explain each of these metrics
in Section 4.2. Our workloads were divided into two sections.
Local Workloads: This is workload we ran on the local virtualmachine. Our testing data was
generated from an English Dictionary. The total size of the data was 1GB but wassplit into
100MBfiles (10files in total). In other words, our workload for this experiment was based
on weak scaling, keeping the node constant and increasing file sizes from 100MB to 1000MB
(1GB). Experimentsforthe search latency and search throughput were repeated at least
three times. The reported numbersare the average of allruns.
Cluster Workloads: This workload wasrun onthe Amazon Cluster. Our testing data is a 10GB
Wikipedia dataset [25]. The 10GB dataset are in chunks of 64MB, this chunks are distributed
evenly among our 10GB cluster. This workload wasapplied to our implementation, Grep,
Hadoop Grep and Cloudera Search. For search latency and throughput, we ran a 1000
queries where we found the average.

Indexing throughpu inl IGB Clusta Sarch Laency in a10GB Cluster

1000000 358520

w0 ~#- Fusionf§.
1228 Index _
-+~ Coudera z
g " sern 3 10000
2 (index) 19
H 1]
e :
H w0
g 5257 E
3 3897,
L)
9§ S 1
» 4 16 6
0 No of Servers
4 1 6 W FusionFS Search W FusionFS Search with Caching
Noof Serers W Hadoop Grep M Cloudera Search

W Cloudera Search with Caching

Index Throughput

The index throughput is the speed (MB/sec) at which we canindex the files in FusionFS as
the serversincreases.
We see that aswe increase the number of nodes, FusionFS does much better than Cloudera

Search by at least 2.5x.

This is because aswe scale the number of nodes, the workload on each node is reduced.
This however doesn’t appear to be the case with Cloudera Search, increasing the number of
nodes haslittle impact on the indexing throughput.

Search Latency
We compared Hadoop Grep, FusionFS Search and Cloudera Search ona 4,16 and 64 10GB
Cluster.
Figure 14, shows Hadoop Grep performsthe worse of all the implementations because
Hadoop Grep counts how many timesa matching string occursand then sorts the matching
strings.
Our search latency when not cached and when cached does better than Cloudera Search
when not cached and when cached respectively.One reason could be because we are
running vanilla Lucene.
Cloudera Search runs Apache Solr,a child of Lucene, which we believe hasextra syntactic
sugar added on top of Lucene. We also evaluated the search latency on FusionFS Searchan a
single node as we exponentially increased the data size. We see from Figure 15 that asthe
data size increases exponentially, the search latency grows linearly.
We see that aswe increase the number of nodes, FusionFS does much better than Cloudera
Search by at least 2.5x. Thisis because as we scale the number of nodes, the workload on
each node is reduced. Thishowever doesn’t appearto be the case with Cloudera Search,
increasing the number of nodes haslittle impact on the indexing throughput.

Write Throughput
Finally, we wanted to know if adding indexing to FusionFS caused adrop in
performance and if it did by how much.
We compared the writing throughput of FusionFS when the indexing feature is
enabled and vanilla FusionFS (without the indexing feature). We also wanted to
know if there was adrop in performance with respect to writing to Cloudera HDFS as
indexing was on going.
This experiment was conducted on 10GB cluster made-up of 4 nodes. Figure 17
shows that our index feature reduces the throughput of FusionFS by an average of
6% while writing to Cloudera HDFS as indexing was happening showed a
performance dropped of 50%.
This drop in write performance in Cloudera canbe attributed to the centralized
metadata management of HDFS.

Writing Througlputof Rusio 'S mdClowlaa HDFS in a 0GB Cluster Sarch Thioughput of hevariow systams on omnod

. 7692 0
3
50 2
@
5
T 0
. s
g a
5 5
S 3
B30 o
3 =
s =
¥ <
» S
5
& 0127
0 01 —
1
. - No. of Clients
RleSsten WFusionFSSearch MGrep M Cloudera Search

Conclusion and Future Work

We introduced a new system that extends the capabilities of FusionFS. Our system
indexesand provides an interface for searching data stored in the cluster in a fast
manner.

We gave an overview of how search engines work especially Apache Lucene and
how we used it in our work. We explained how we index files in FusionFS and how
we make searching the file system possible.

We showed with evaluationsand experimentsthat ourimplementation is scalable,
provides high throughput and has reduced latency. We also compared our
implementation to Hadoop Grep and Cloudera Search,and showed through results
that our system is better.

We are also looking into the possibility of adding SQL API so that researchers who
are familiar with SQL can run SQL like queries on our system.

Another planned work is building a REST API. Since our target are researchersin the
Scientific Community, we want to make our search process more user friendly by
producing a simple touse web browser interface like Google Search




