
ZHT+: A Graph Database On ZHT
TongLin Li, Chaoqi Ma, Jiabao Li, Ioan Raicu

tli13@hawk.iit.edu, cma17@hawk.it.edu, jli146@hawk.iit.edu, iraicu@cs.iit.edu
Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA

Abstract— Although the traditional relational database has
been used and dominated for many year, the limitation of it has
appeared with the huge number of connected data which is
generated by today’s Internet, Web2.0 and social networks. The
query operation will be tremendously slow to query by the
traditional relational database. The state-of-the-art graph
database is usually Master/Slave architecture thus these systems
cannot achieve high scalability and they will become harder and
harder to handle the huge number of connected data.
 In this paper we have design and implement a graph database
using ZHT as a block. This graph database is also following the
principle of Bulk Synchronous Parallel(BSP) model. We
have overcome several problems of using ZHT as basic
component in BSP model. We will give the information of our
design and implementation in the following part. At last we will
also give a comprehensive performance evaluation.

Keywords—ZHT; Graph Database; Graph Processing System;

I. INTRODUCTION
 A graph database is a database that uses graph structures
with nodes, edges, and properties to represent and store data.
An example of a graph database is Neo4j. By definition, a
graph database is any storage system that provides index-free
adjacency. This means that every element contains a direct
pointer to its adjacent element and no index lookups are
necessary. General graph databases that can store any graph
are distinct from specialized graph databases such as
triplestores and network databases.

 The traditional relational database has been used and
dominated for many years,and it also works well for a long
time. However, the Internet, Web2.0 and social networks will
produce a huge number of data, especially the highly
connected data which was tremendously slow to query by the
traditional relational database. This is one problem that
traditional relational database can not solve. A solution of this
problem is to replace the traditional SQL semantic with a
graph-centric model, thus it will be much easier for
programmer to navigate these highly connected data. Graph
databases are almost the best way to structure and query
connected data.

 Today’s graph databases such as Neo4j are usually Master/
Slave architecture, the master server is easy to be the
bottleneck of the whole system. Some paper also shows the
other graph database such as Graphlab, the scalability of them
is very poor.

 ZHT is a zero-hop distributed hash table, which has been
used for the high-end computing systems. It can be a building
block for many de-central systems, such as graph database.
We aim to design and implement a graph database using ZHT
as a block and by using ZHT as a block, we can achieve high
scalability, low latency and high performance.

The contributions of this paper are as follows:

• Design and implementation of ZHT+, a BSP model graph
database on ZHT.

• Overcome several problem such as: Reduce both the
communication times and message sizes between each nodes.
Data-Locality despite ZHT-server is a separate system and
doesn’t provide any information about each vertexes’ physical
location.The bottleneck of using master-slave architecture to
control supersteps.

• Benchmarks up to 16-core scales and compares with a state-
of-the-art graph database system: graphlab.

II. ZHT+ DESIGN AND IMPLEMENTATION
There are so many models about Graph processing system.

As we want to achieve high scalability and make ZHT+ as a
de-central distributed system, so we choose to follow the
principle of Bulk Synchronous Parallel(BSP) model. The
process of our Graph processing system will be divided into
many supersteps, and each supersteps will be divided into two
sub-processes: sending messages and handle messages. And
the sending messages part will also be into three sub-processes:
generating messages, pre-handle messages, combining and
sending messages to each nodes. We will talk about all of these
processes in the following of this section.

ZHT is a zero-hop distributed hash table that can achieve
high scalability, load balance and very good fault tolerance.
Thus we will use ZHT as the basic components of our Graph
processing system. We use ZHT to support random access,
remove, update and create vertices and edges. We also use the
key-value entry in ZHT to handle the communication messages
between each nodes. We will also talk about more detail about
this in the following of this section.

A. The BSP Model
In this part we will talk about a little information about the

BSP Model in order to help reader understand the design and
implementation of our Graph processing system.

The BSP model is a vertex-central model, the most
important part is vertex. Each vertexes will have a statue to
indicate whether it is active or inactive. In the beginning of the

process, every vertex is in the active state; all active vertices
participate in the computation. A vertex will be inactive by
voting to halt itself. This means that the vertex has no further
work to do unless it receive an external message. If reactivated
by a message, a vertex must explicitly deactivate itself again.
This simple state machine is illustrated in Figure 1[14].

 Figure 2[14] uses a simple example to explain the graph
computing process of BSP model: given a strongly connected
graph where each vertex contains a value, it propagates the
largest value to every vertex. In each superstep, any vertex that
has learned a larger value from its messages sends it to all its
neighbors. Superstep 0 : every vertex is in the active state,
Superstep 1 : all the vertices send their values to their
neighbors, then the second and third one will be inactive.

Superstep 2 : only first one and forth one send message to their
neighbors, then the first and forth one will be inactive and third
one become active again. Superstep 3 : only third one send
message to its neighbors. When no further vertices change in a
superstep, the algorithm terminates.

B. The Overview of ZHT+
 This part is mainly about the architecture of ZHT+ and how
ZHT+ applies the BSP model.

 ZHT+ is consisted of three components, master node,
worker node and storage server.

 Since we may have billions of vertexes, we cannot simply
store all the vertexes in one node. We need a storage server to
storage manage and distribute all the vertexes into several
nodes. The worker can only communicate with this storage
server instead of handle vertexes directly. We use ZHT as the
storage server of our system. ZHT will handle the load-balance
fault tolerance and persistence of all the vertexes. We don’t
need to do any extra work about storage server part, it’s all
ZHT’s job. In order to achieve data-locality, we will deploy
ZHT and worker node in the same machine.

 The worker node is the calculation unit of our system. It
first load all the information of vertexes from ZHT server, then
it will do some calculation depended on specific algorithm. As
the BSP model shows, each vertex need to communicate with
each other. If two vertexes are not in the same node, we need to

handle the communication of work node. We use some special
key-value entries in ZHT as message transfer station, so each
worker node don’t need to communicate with each directly,
they only need to communicate with ZHT.

 Just as we talked before, the processes of BSP model is
consisted of several supersteps, since we cannot achieve a
perfect load-balance, some worker nodes may still calculate its
own vertexes while some other worker nodes have already
finish their current job. The main job of master node is
controlling the superstep, only when all worker nodes have
already completed their current superstep master node will
notify them to do the next superstep.

B.1 The Basic Data Structure
 We follow the principle of the vertex-central BSP model, so
we only have Vertex type in our system. The information of
edges are stored in vertexes. Figure 3 shows the basic structure
of vertex, however, the actual code and implementation of class
Vertex is generated by Google protobuf because all the data of
vertexes can be serialized by Google protobuf, thus we can
store Vertexes directly in the ZHT server. Then We can simply
use ZHT to support random access, remove, update and create
the vertices and edges and don’t need to do any extra work to
handle the distribution of vertexes. It all totally depends on
ZHT-server. We can simplify our design and implementation. It
may be still a little hard for user to use our Graph processing
system directly, so we provide a lot of APIs for user, thus they
don’t need to handle this complex structure directly.

 Problem: This data structure works well when the graph is
very balance (the edges of each vertexes are in a small range).
However, in some situation, like facebook, a famous people

Figure 4: The Vertex Structure

Master Node

ZHT Server

… …Worker Node Worker NodeWorker NodeWorker Node

Figure 3: The ZHT+ Architecture

may have millions of fans, and on the other hand an ordinary
people may only have a little fans. If we treated these two
vertexes the same way, the load-balance of worker node may
be very poor.

 Proposed Solution: We can treated these vertexes which
contains a huge number of edges as a sub-graph. The
neighbor_id_list it contains will be the virtual vertexes that
contain a subset of its real neighhor_id_list. This mechanism is
a little like the inode of file system.
B.2 The Main Problems Of The Graph Computing Process in
Our System

There are mainly three problems we need to solve in the
graph computing process part.

The general steps of our graph computing process are
followed the principle of BSP model, however, because of the
huge number of vertexes data, we can not store them all in one
node, otherwise the process will become very slow, so we
distribute them into many nodes. Obviously, when one vertex
send a message to another vertex which is not in the same
node, we cannot just simply send a message from one node to
another, or there will be a large amount of communications
between each nodes.Thus, the first problem we need to solve is
how to reduce both the communication times and message
sizes between each nodes.

There is also another problem we need to solve by using
ZHT as basic component to manage vertexes. Since all the
vertexes are stored in the ZHT server directly and the ZHT’s
API is very simple(only look(), insert(), remove() and
append()). It doesn’t provide any information about where the
key-value entry stores physically. When we start a graph
computing process, how can each node know which vertex it
need to handle(ZHT is a separate system, and again it doesn’t
provide any information about the vertexes’ location).
Moreover, we also store the message list that one node need to
handle in the ZHT server directly, of course, it’s not wise that
the message list one node need to handle is stored in the other
nodes.(as we said before ZHT is a separate system, if you
simply use an arbitrary key, this message list will have a very
high probability stores in the other node. It totally depends on
the behavior of ZHT.)

The last problem is that if one superstep is not over, we
cannot begin the next superstep. Thus, we use one node as
master to control the other work nodes. Since the master node
need to communicate with all the other node, it may become
the bottleneck of our system.

The next part of this section, we will talk about the process
of our system step by step and show how we solve these three
main problems:

• Reduce both the communication times and message
sizes between each nodes.

• Data-Locality despite ZHT-server is a separate
system and doesn’t provide any information about
each vertexes’ physical location.

• The bottleneck of using master-slave architecture to
control supersteps.

B.3 The Communication Between Worker Node and ZHT

Our system is totally built on the ZHT-Server, and we will
store all the vertexes in the ZHT-Server directly. ZHT-Server is
also a separate system just like a NoSQL database. ZHT+ will
communicate with ZHT-Server by using its API. ZHT-Server
doesn’t provide any information about where each node are
actually stored, just as showing in Figure 4, for each node(1, 2,
3), they all only know that there are 7 vertexes stored in the
ZHT-server, and they don’t know which node is stored in
themselves,if you only use the ZHT-API to get information. for
example, node 1 doesn’t know vertexes(1, 2,3) are stored in the
same machine.

Although the entry which stores in the ZHT-Server doesn’t
not contain the information about location, We are so lucky that
ZHT is a open source project, thus we can use the same hash
function in the ZHT to transfer each vertex’s ID to the location
information. So in order to get data-locality, when user insert a
vertex, we add an extra step before insert this vertex into ZHT-
Server. We first use the hash function to get the information
where this vertex is stored. Then we will stored these
information in a specific key-value entry of ZHT-Server for
each node. Each node will have one specific key-value entry.
These specific key-value entries’s key is also generated by
using the same hash function with ZHT, so information will be
guaranteed stored in the same machine. So each node will
know its local vertexes list simple do a look() operation with
ZHT-Server.

B.4 The Loading Process of Graph Computing
 Our system use a master node to invoke all the worker
nodes that need to take part in the computing process. After the
worker nodes are invoked, they will load the local vertexes list
from ZHT-Server directly. Then depending on the specific
algorithm, the vertexes will add the vertexes they need to the
active vertex list. Typically, they usually add one vertex or all
the local vertexes in the active vertex list. After all the nodes
have already finish their job, all of them will send a message to
master and said their parts of SuperStep 0 was already
completed. Util master have already received all the message
from worker nodes, it will send another message to tell all the
worker that they can begin the first half part of SuperStep 1.

 Problem: This part is not as simple as it looked, actually it
will cost a lot time to load all the information of vertexes into
memory, sometimes even more than the computing time.

 Proposed Solution: Maybe, we can do some extra work
when we load these information, for example, we can group
some small vertexes into a big virtual vertex in order to reduce
the size of vertexes.

B.5 The first step of one SuperStep: Sending Message
 We have divided one SuperStep into two sub-steps, the first
sub-step is Sending Message. This sub-step is also divided into
three sub-process. We will talk about them one by one in this
section.

 We first traverse the activeVertex list in each node, and then
we can get all the information of the vertexes directly from
ZHT-Server by using lookup() method. Then we traverse the
activeVertex list in each node and generate the messages
(target_id : value) that each vertex will send depending on
specific algorithm. If a graph contains 2 millions edges, we
will have 2 millions messages in PageRank algorithm each
step. Obviously, we can not send them immediately. So we

just store them in the data structure in each node. The example
messages node1 will send are shown in Figure 5.

 Like I talk before, a graph contain 2 millions edges will
generate 2 millions messages. The size of message is very
large, in order to solve this problem, we provide a simple and
novel approach. After all the message is generated in each node
, we will traverse the sendingMessage list in each node and
pre-handle these messages depend on specific algorithm. the
pre-handle process is almost the same with the handle message
process. This approach is shown in Figure 6. We can see that
there are two messages sending to Vertex 4 which is located in
another node. However, after compare the value of these two
message only the last message is useful, thus we simply discard
the first one. By using this approach we can reduce the size of
messages.

 Problem: the efficiency of this message reduce approach is
highly depends on the type of workload. If the size of edges is
far more than the size size of vertexes, this approach works
pretty well, it can reduce the size of messages to one tenth.
However, in some situation, if the size of edges is similar with
the size of vertexes or even less than the size of vertexes. Our
approach works very poor.

Proposed Solution: as I talked before, we can group many
vertexes into a big virtual vertex, thus we can reduce both the
size of vertexes and the size of messages.

 The next step we will combine all of these large number of
messages into one big message. Since we need to send
message to several nodes, we need to know where is the
location of target vertex. This information is also can be
generated by using the same hash function with ZHT. Then we
can send to each node one big message instead of a huge
number of little message. The implementation of sending
message is very simple, we benefit a lot from using ZHT. We
just need to use the append API of ZHT. This process is shown

in Figure 7. After all these part have down, each node will send
a message to master. And then master will rely a message to
them. They can begin the next step.

B.6 The last step of one SuperStep: Handling Message
 After a worker received a message about Handling
Message from master, the worker node will begin to handle
message. Each node will load the message information directly
from ZHT-Server.Then the nodes calculate the information
from the messages. They will update the value of vertexes and
add the active vertexes into its activeVertexes List. The key
point of this section is that all the processes are locally there is
no network communication even include ZHT-Server.
Although the messages are stored in the ZHT Server, by using
the same hash function, we can generate some special key. All
the messages are guaranteed to store in the same node that will
handle them.

B.7 The Control of SuperStep
 Just as previous parts said, if one superstep is not end, we
can not process the next. Ideally, since all the nodes are the
same and we can achieve the perfect load balance, thus the
computation time of each node will almost the same. However,
in fact we cannot achieve the perfect load-balance, some nodes
may handle more vertexes and some may handle less. Thus,
some node may end, but some other may still calculate, so we
need an approach to control superstep. Only all the node finish
current work, we will process the next superstep.

 The simplest approach to solve this problem is using master
-slave architecture. In each SuperStep, master will send a
message to all the workers and when the worker have
completed its current job, it will reply a message to master.
After master have already receive all the messages from all the
workers. It will send another message to tall them to process
the next step.

Figure 8: A Simple Master-Slave Approach

3 : 1(Vertex 1 to 3)
2 : 6(Vertex 3 to 2)
4 : 3(Vertex 2 to 4)
4 : 6(Vertex 3 to 4)

Figure 5: Node1’s Sending Messages

3 : 1(Vertex 1 to 3)
2 : 6(Vertex 3 to 2)
4 : 6(Vertex 3 to 4)

3 : 1(Vertex 1 to 3)
2 : 6(Vertex 3 to 2)
4 : 3(Vertex 2 to 4)
4 : 6(Vertex 3 to 4)

Figure 6: Pre-Handle Message

Pre-Handle

3 : 1(Vertex 1 to 3)
2 : 6(Vertex 3 to 2)
4 : 6(Vertex 3 to 4)

“3 : 1, 2 : 6” (node1)

“4:6” (node2)

“” (node3)

ZHTClient.append(node1’
s message List’ key, “3 :
1, 2 : 6”)
ZHTClient.append(node2’
s message List’ key, “4:6”)

Figure 7: The Process of Combine and Sending Messages

 However, Since the master node need to communicate with
all the other node, if we have thousands of nodes, it may
become the bottleneck of our system. We need another
approach to solve this problem.

 Inspired by the broadcast approach, we provide our own
broadcast method to solve this problem.We divide all the nodes
into 5 cycles(user can define the size of each cycle by
themselves). The message will spread through each cycle, just
like a broadcast. This is also shown in Figure. Thus We don’t
add any more communication, and there is also no bottleneck
anymore. If one node is failed, its upper worker node can not
communicate with it, then its upper worker node will send a
message to notify master node. After master received this
message, it will notify all the worker nodes in this particular
cycle and restart them from the beginning of this superstep
again.

C. Load balance
As we talked before, we stored the vertexes directly in the

ZHT-server. When a node begins to work, it will handle the
vertexes that are stored in the same node. Thus the load
balance of our system is highly depended on ZHT-server, we
don’t need to do any extra work. Our system can achieve the
same load balance as ZHT.

D. Fault Tolerance
This part also benefit a lot from using ZHT as basic

component. As we talked before, we store all the message list,
active vertex list and any information we need in Graph
Computing Process in the ZHT server. These information can
also be treated as checkpoints in each superstep. If one node is
failed, we can simply read these informations from ZHT and
restart this superstep again. We don’t need to restart form the
first step. It’s very powerful when the data size is very big, if
you restart all the step, it will waste a lot of time.

E. Persistence
We also don’t need to do any extra work, all the

information and vertexes (edge is an attribute of vertex) are
stored in ZHT-server directly. This is also another big benefit
we can get from ZHT.

F. Graph Algorithms with ZHT+ Framework
We have implemented three important graph algorithms by

using our ZHT+ framework. We want to use them as an

example of how to use our framework. Users can also write
their own graph algorithms with ZHT+ framework. We will
talk about the detail of each algorithm in this section.

Single Source Shortest Path Algorithm:The system will
initialize all the value of vertexes to Infinite, and we let all the
vertexes to be inactive. Then the system will send a message
which the value is 0 to the source vertex. The source vertex
will update its value to 0 and become active. It will send
message (vertex’s value plus edge’s value) to all its neighbors
and awake them; the neighbors will send messages to all their
neighbors. If no update is done, the vertex will become
inactive again. The system will keep doing this util no vertex
is active.

PageRank Algorithm:The system initialize all the
PageRank values of all the vertexes to 1/numberOfVertexes;
Then, all the vertexes will send message (PageRankValue /
numberOfNeighbors) to all their neighbors, then each
vertexes will sum up the values it receives from messages;
after that it will set its PageRank value to 0.15 /
numberOfVertexes + 0.85 * sum. In practice, repeating this
process 30 times, the statues of all the vertexes will be set
inactive, and we will get the PageRank value we want.

Weakly Connected Components Algorithm:All vertices
are initially active. Each vertex starts as its own component by
setting its component ID to its vertex ID. When a vertex
receives a smaller component ID, it updates its vertex value
with the received ID and propagates that ID to its neighbours.

G. Implementation

ZHT+ has been under development for about 2 month. It
is also implemented in C/C++ because we want to reuse some
code in ZHT, and it has the same dependencies with ZHT.
ZHT+ consists of around 3100 lines of code. The
dependencies of ZHT+ are also NoVoHT and Google Protocol
Buffer[22]. NoVoHT itself has no dependencies other than a
modern gcc compiler.
III. EVALUATION
 In this section, we describe the performance of ZHT+,
including the three graph algorithms-PageRank Algorithm,
Single Source Shortest Path Algorithm(SSSP), Weakly
Connected Components Algorithm(WCC). Firstly we’ll
introduce the test beds and the benchmark metrics. Secondly
the performance evaluation will be presented.

A. Testbeds, Metrics, and Workloads

We run experiments on setups of 2, 4, 8, and 16 machines.
All machines are m3.2large Amazon EC2 spot instances,
located in us-west-2c. Each instance has four virtual CPUs,
equivalent to 2.5 GHz Xeon Family processors, and 30GB of
memory.

 The dataset we use in the evaluation are downloaded from
SNAP (Stanford Network Analysis Project). It’s an open
source dataset from the real world. I think it’s a good work-
load to test our system.

Figure 9: The Broadcast Method

 The metrics measured and reported is the insert time,
loading time, computation time, total time, workload
distribution. These are all the most important metrics of a
graph processing system.

Insert Time: the total time we insert all the nodes into ZHT+.
Loading Time: The time each worker node load all the
vertexes into memory.
Computation Time: Total time from the beginning of
superstep 0 to the last superstep
Total Time: Loading Time plus Computation Time, this is the
whole time we run a graph computing process.
Workload Distribution: The vertexes each worker node need
to handle.
 By using the real-world dataset and various number of
machines enable us to investigate the properties of our graph

database.

B. Insert Time

 We evaluated the insert time by inserting the same
dataset(web-Google which contains 1 million vertexes and 5
million edges) into various scales of nodes size which is from
2 to 16. The result is showed in the figure 10.
 As the result showing, with the increase of scales of
nodes, the insert time is also becoming bigger and bigger.
Although we inserted the same dataset into them, we use ZHT
as our storage server and if we deployed ZHT on more nodes,
the communication times between each nodes will also
increased. However, the increase is not linear, we only add
some extra network communication, so we think these
overhead is affordable.

C. Loading Time

 We evaluated the loading time by starting all the worker
nodes and calculate the average loading time in different
scales(form 2 to 16). The dataset is also the same(web-Google
which contains 1 million vertexes and 5 million edges). The
results is showed in the figure 11.

 The increase of loading time is almost linear because each
worker node only need to load its local vertexes, they don’t
need to communicate with a remote node and the load balance
of ZHT is very good.
 Although the loading time table looks pretty good, there
still something else we should be careful. We cost so much
time on loading process, in some situation(like 4 nodes) the
loading time is even bigger than computing time. According to
Han’s[13] paper, other graph computing systems(for example
Giraph, Graphlab) also has same problem. But the computing
time of Graphlab is incredible, we believe that we can do
some extra operation in loading step that can reduce the
computation time.

D. PageRank Computation Time
 PageRank algorithm will use all the vertexes and edges in
every superstep. Thus this is the best algorithm to test Data-
Locality and load balance.

 We evaluated PageRank Computation Time by compar-
ing GraphLab with ZHT+. We tested them in the same
testbed(Amazon EC2) and the same dataset(web-Google). The
result of this experiment is shown in Figure 12.
 The result of this experiment is very interesting. We will
talk about it one by one. The first one is that we almost can
not see the computation time of GraphLab. I first think there
may be something wrong with my experiment. I checked my
results with Han’s[13] paper, they also get almost the same
result with me. GraphLab’s computation time is really really
incredible. We believe that they may be doing some extra step
in the loading part. And according to that paper our system is
about 5 times slower than the other Graph database
systems(Giraph and GPS) because the testbeds contains 8
CPUS in each nodes, and we only utilized one of them. In the
future, if we can write our computing program concurrently,

In
se

rt
 T

im
e(

Se
co

nd
)

0

80

160

240

320

Number of Nodes

2 4 8 16

Insert Time

Figure 10: The Insert Time

Lo
ad

in
g

Ti
m

e(
Se

co
nd

)

0

40

80

120

160

Number of Nodes

2 4 8 16

Average Loading Time

Figure 11: The Average Loading Time

Figure 12: PageRank Computation Time

we can achieve the same performance with other system
(Giraph and GPS).
 The last thing we want to talk about in this experiment.
Both ZHT+ and GraphLab will be slowest when we use 16
nodes to run this experiment. For GraphLab, the more nodes
the less performance it can achieve. For ZHT+, when we have
8 nodes ,we will achieve the highest performance, and the
increase is not linear. This is mainly because the workloads is
too small. It only contains around 1 million vertexes and 5
million edges. Actually the workloads of graph computing
system is usually very small, we can only use 32 nodes to
satisfy almost every situation. Neo4j is also a good example
of this opinion. It only support one node, but it is the most
widely use graph database. Because in most situation one node
is sufficient, however we believe in the future in some science
computation program we may need to handle 1000 billions
vertexes, so we still need a good distributed graph database.

E. PageRank Total Time
 We add the loading time with the PageRank’s
computation time, then we can get the total running time of
PageRank algorithm. The result is shown in Figure 13.
 This table is a good example to show that the loading
time have a huge effect to the total running time. In some
situation(2 nodes scale), it may occupy half of the total time.
Even in the other situation loading step is also costed a lot of
time.

F. SSSP & WCC Computation Time
 Single source shortest path(SSSP) is the simplest
algorithm that tests how well a system handles dynamically
changing communication.Weakly Connected Components
Algorithm(WCC) unlikes SSSP, all vertices are initially active
and unlikes PageRank,some vertices can halt before others.
 We also evaluated these two algorithms by using the
same dataset and up to 16 nodes. The results of these two
algorithms are shown in Figure 14 and Figure 15.
 The results are also very funny, we use more nodes and
we get slower performance. There are mainly two reasons can
explain these. First the workloads is very small, the largest
sssp is only 16, most of our time is spent on network
communication. Second, we random choose one vertex,
maybe in this specific case, we only need a little step that can
calculate the sssp, but it’s also impractical to calculate all the
vertexes’ shortest path. The WCC algorithm is also the same reason, the workload is too small. It’s really hard to generate a

Pa
ge

R
an

k
C

om
pu

ta
tio

n
Ti

m
e(

Se
co

nd
)

0

100

200

300

400

Number of Nodes

2 4 8 16

ZHT+ GraphLab

To
ta

l T
im

e(
Se

co
nd

)

0

125

250

375

500

Number of Nodes

2 4 8 16

PageRank Total Time

Figure 14: SSSP Computation Time

C
om

pu
ta

tio
n

Ti
m

e(
Se

co
nd

)

0

55

110

165

220

Number of Nodes

2 4 8 16

WCC Computaion Time

C
om

pu
ta

tio
n

Ti
m

e(
Se

co
nd

)

0

22.5

45

67.5

90

Number of Nodes

2 4 8 16

SSSP Computation Time

Figure 13: PageRank Total Time

Figure 15: WCC Computation Time

large enough workload in graph computing system.

G. Workload Distribution
 This section we will talk about the workload distribution,
we first calculate the average vertexes size that each node
need to handle. Then we will give the scope of vertexes

size(The purple line in Figure 16). The result is shown in
Figure 16.
 From the result you can see the purple line is very small,
that means the number of vertexes each worker node need to
handle is almost the same. This is because we use ZHT to
handle load balance and the load balance of ZHT is very good.

IV. CONCLUSION
 In this project, we design and implement a Graph database
ZHT+ based ZHT. We have overcome several problems of
using ZHT as the basic components and applying BSP Model.
Even in such a short time the performance of our system is
already very good.

 We have also compare ZHT+ with one state-of-the-art
graph database, graphlab and presented a very detailed
evaluation.

 At last in this project, we have learned a lot about graph
database and distributed hash table(especially ZHT), and we
have also learned a lot of algorithms used in graph area, such
as PageRank, SSSP, BFS and DFS.
V. FUTURE WORK
 We have a lot of ideas to improve the performance of our
ZHT+ system.
 Unbalanced workload: this is an interesting topic because
the open source datasets are usually very balanced, however at
the real world, in some situation like we talked before, the
balance is very poor. We believe that if we can solve this
problem, there will be a huge improvement of the performance
of our system.
 Pre-handle in Loading Process: graphlab shows
eincredible performance of computing, if we can find some

better method to pre-handle in the loading process, our
system’s performance will be much better.
 Divide and Group Vertexes: this is also an interesting
approach, in the future, we want to see whether this approach
will work.

VI. RELATED WORK
 There are so many graph databases in the world, and the
three most important graph databases: Neo4j, Giraph and
GraphLab.

 Neo4j is an open-source graph database, implemented in
Java. It is an embedded, disk-based, full transaction supported
Java persistence engine, and it stores data in graph instead of
table. From version 2.0 which was released in December,
2013, it no longer supports node indexing.

 Apache Giraph is an Apache project which leverages
Apache Hadoop’s MapReduce to handle graphs. It is used to
perform graph processing on big data. The original design of
Apache Giraph is from the paper "Pregel: a system for large-
scale graph processing.” which is published by Google.
Facebook also used Apache Giraph to analyze one trillion
edges. This can be done in only 4 minutes by 200 machines.

 GraphLab is a graph-based, high performance, distributed
computation framework which was written in C++.The
GraphLab project started by Prof. Carlos Guestrin of Carnegie
Mellon University in 2009. It is an open source project using
Apache License. While GraphLab was originally developed
for Machine Learning tasks, it has found great success at a
broad range of other data-mining tasks; out-performing other
abstractions by orders of magnitude.

VII. REFERENCES
[1] Angles, Renzo, and Claudio Gutierrez. "Survey of graph database

models." ACM Computing Surveys (CSUR) 40, no. 1 (2008): 1.

[2] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajendran, Z.
Zhang, and I. Raicu, “ZHT: A light-weight reliable persistent dynamic
scalable zero-hop distributed hash table,” in Proceedings of IEEE
International Symposium on Parallel and Distributed Processing, 2013.

[3] Dominguez-Sal, David, P. Urbón-Bayes, Aleix Giménez-Vañó, Sergio
Gómez-Villamor, Norbert Martínez-Bazan, and Josep-Lluis Larriba-Pey.
"Survey of graph database performance on the hpc scalable graph
analysis benchmark." In Web-Age Information Management, pp. 37-48.
Springer Berlin Heidelberg, 2010.

[4] Angles, Renzo. "A comparison of current graph database models." In
Data Engineering Workshops (ICDEW), 2012 IEEE 28th International
Conference on, pp. 171-177. IEEE, 2012.

[5] Batra, Shalini, and Charu Tyagi. "Comparative analysis of relational and
graph databases." International Journal of Soft Computing and
Engineering (IJSCE) 2, no. 2 (2012): 509-512.

[6] Ho, Li-Yung, Jan-Jan Wu, and Pangfeng Liu. "Distributed graph
database for large-scale social computing." In Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on, pp. 455-462.
IEEE, 2012.

[7] He, Huahai, and Ambuj K. Singh. "Graphs-at-a-time: query language
and access methods for graph databases." In Proceedings of the 2008
ACM SIGMOD international conference on Management of data, pp.
405-418. ACM, 2008.

[8] Jiang, Haoliang, Haixun Wang, P. S. Yu, and Shuigeng Zhou. "Gstring: A
novel approach for efficient search in graph databases." In Data

Ve
rt

ex
es

/N
od

e

0

125000

250000

375000

500000

Number of Nodes

2 4 8 16

Workload Distribution

Figure 16: Workload Distribution

Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on,
pp. 566-575. IEEE, 2007.

[9] Robinson, Ian, Jim Webber, and Emil Eifrem. Graph databases. "
O'Reilly Media, Inc.", 2013.

[10] Neo4j http://www.neo4j.com/

[11] Giraph http://giraph.apache.org/

[12] GraphLab https://dato.com/products/create/open_source.html

[13] Han, Minyang, Khuzaima Daudjee, Khaled Ammar, M. Tamer Ozsu,
Xingfang Wang, and Tianqi Jin. "An experimental comparison of pregel-
like graph processing systems." Proceedings of the VLDB Endowment
7, no. 12 (2014): 1047-1058.

[14] Malewicz, Grzegorz, Matthew H. Austern, Aart JC Bik, James C.
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. "Pregel: a
system for large-scale graph processing." In Proceedings of the 2010
ACM SIGMOD International Conference on Management of data, pp.
135-146. ACM, 2010.

[15] Bollacker, Kurt, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie
Taylor. "Freebase: a collaboratively created graph database for
structuring human knowledge." In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pp.
1247-1250. ACM, 2008.

[16] Williams, David W., Jun Huan, and Wei Wang. "Graph database
indexing using structured graph decomposition." In Data Engineering,
2007. ICDE 2007. IEEE 23rd International Conference on, pp. 976-985.
IEEE, 2007.

[17] Vicknair, Chad, Michael Macias, Zhendong Zhao, Xiaofei Nan, Yixin
Chen, and Dawn Wilkins. "A comparison of a graph database and a
relational database: a data provenance perspective." In Proceedings of
the 48th annual Southeast regional conference, p. 42. ACM, 2010.

[18] Zou, Lei, Lei Chen, and M. Tamer Özsu. "Distance-join: Pattern match
query in a large graph database." Proceedings of the VLDB Endowment
2, no. 1 (2009): 886-897.

[19] Graves, Mark, Ellen R. Bergeman, and Charles B. Lawrence. "Graph
database systems." Engineering in Medicine and Biology Magazine,
IEEE 14, no. 6 (1995): 737-745.

[20] Dominguez-Sal, David, Norbert Martinez-Bazan, Victor Muntes-Mulero,
Pere Baleta, and Josep Lluis Larriba-Pey. "A discussion on the design of
graph database benchmarks." In Performance Evaluation, Measurement
and Characterization of Complex Systems, pp. 25-40. Springer Berlin
Heidelberg, 2011.

[21] Yan, Xifeng, and Jiawei Han. "gspan: Graph-based substructure pattern
mining." In Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE
International Conference on, pp. 721-724. IEEE, 2002.

[22] Google Protocol Buffers: http://code.google.com/apis/protocolbuffers/
2012

http://www.neo4j.com/
http://giraph.apache.org/
https://dato.com/products/create/open_source.html
http://code.google.com/apis/protocolbuffers/2012

