Optimizing Data Locality between the Swift Parallel
Programming System and the FusionFS Distributed File
System

Mermer Dupree

University of lllinois at Chicago

mdupre2@uic.edu
Mike Wilde

University of Chicago
wilde@mcs.anl.gov

ABSTRACT

Many of the high-performance computing (HPC) systems
use a centralized storage system that is separate from the
compute system. This approach is not going to be scal-
able as we seek to achieve exa-scale performance[6]. Dis-
tributed file systems can provide the scalability needed for
exa-scale computing. FusionF'S is a file system designed for
HPC systems that achieves scalability in part by removing
bottlenecks found in metadata management. Swift/T is a
high level, implicitly parallel scripting language for HPC
systems. Swift/T provides automated parallelism and load
balancing on a massive scale. Additional optimizations can
be achieved by utilizing the features FusionFS and Swift/T
to take advantage of locality. In this paper, we will look
at using Swift/T’s language features to optimize locality in
FusionF'S.

Categories and Subject Descriptors
D.4.3 [Operating Systems]: File Systems Management—
Distributed file systems

Keywords
Distributed File System, Swift/T,FusionF'S, Locality

1. INTRODUCTION

As scientific instruments advance, it becomes increasingly
important to be able to process extremely large data sets.
At the Advanced Photon Source (APS) at Argonne National
Laboratory, X-ray scattering science experiments can pro-
duce around 15 TB a week and processing can produce dou-
ble that data [5]. The increasing demands of processing such
massive amounts of data has sparked interest in Big Data
research.

Justin Wozniak
University of Chicago
wozniak@mcs.anl.gov

loan Raicu
lllinois Institute of Technology

iraicu@cs.iit.edu

Start
1| int X = 1000, ¥ = 1000; guer
2 | int A[][]; Loops
3 | int B[]; Inner
4 | foreach x in [0:X-1] { Loops
5 | foreach y in [0:Y-1] { check()
6 if (check(x, y)) { then / else
7 Alxllyl = g(f(x), £(¥)); ¢)

O Task

8 } else { ; O Data
9 Alx]ly] = 0; 9 .
10] -~ Spawn
11 | Blx] = sum(A[x]); sui() ﬂ;:f;
12|} wait/write

Figure 1: An example of Swift’s dataflow[4]

Swift/T is a distributed workflow system that has a high-
level scripting language, called Swift, that is simple and intu-
itive to the user, yet capable of automating the complexities
involved in processing massive amounts of data in parallel.

Optimizing Swift/T for large data processing on a distributed
file system will involve Swift /T interacting with a distributed
file system. In this paper, we will explore the option of using
FusionF'S and investigate how its unique capabilities make
it ideal for optimizing locality and eliminate storage bottle-
necks found in other distributed file systems.

2. DESCRIPTION
2.1 Swift/T

Swift/T is a programming model and runtime engine, fo-
cused on many-task computing, developed at Argonne Na-
tional Laboratory. Swift/T’s innovations include an easy-to-
use high-level dataflow language and a distributed dataflow
engine capable of balancing tasks over a large number of
nodes[4]. Tests have shown that Swift/T can efficiently scale
to 120K compute nodes[4].

Swift/T’s massive parallelism is achieved with the Swift
scripting language, the STC compiler and the Turbine run-
time engine.

The Swift scripting language provides a simple syntax for
users. The applications the user runs with Swift/T are

4 N\ 4 —
Swift sTC Turbine ETurbl?e
Script Code Xegudon
mpiexec
Data Semantic Task / Data
Definitions Analysis Dependency Interpreter
Data Flow Flattening & Memory Turbine
Expressions Optimization Management libraries
External Code Library AL
Functions Generation Access User
‘ Libraries
\/_ \ / \/_

Application

1. fopen()

9. File Handler

libfuse
L

8. open()

D ata Transfer s

Node-i

DHT
Server |

R —

| 5 DHT_lookup()——>' DHT | | 3-Loopuprequest [3

}-75 File Location

e

File Transfer
Server

Client |

74 Value retum

Node-j
Application

libfuse

DHT
Client

I

Request Queue

DHT Server

File Transfer
Client

File Transfer

. Request

Client

7. File T

Thread Pool)

File Transfer
Server

Figure 2: Swift/T’s flow chart[1]

mapped as "leaf tasks” which can be called in a Swift script
like a function. This provides a natural way for users to
write their scripts.

Swift/T uses advanced dataflow algorithms to protect data
integrity while achieving massive parallelism and efficiency.
First the STC compiler translates Swift scripts into Turbine
code. STC performs optimizations and divides work into
tasks. Turbine runtime engine controls dataflow and dis-
tributes tasks to workers. Figure 1 shows the translation
of swift scripts into tasks with data dependencies. Tasks
subscribe to the variables that make up the taskaAZs input.
Once a variable is given a value, it is frozen and cannot be
changed. When all the variables a task has subscribed to
have been frozen, the task is free to be evaluated and is put
in a queue. Turbine engines use ADLB to assign tasks to
worker nodes and to achieve load balancing. Figure 2 shows
a flow chart of what we described.

2.2 FusionFS

FusionF'S is a distributed, user-level file system designed
for HPC systems. FusionFs is optimized for applications
that are write and metadata intensive. We will show that
these attributes make it ideal for optimizing locality using
Swift/T.

All writes are local in FusionF'S. When a file is created by a
node in the Fusion directory, the file stays on that node until
it is opened by another node. When a file is then opened
by another node, the file transferred to that node and the
metadata is then updated to reflect the files new location.
This allows FusionF'S to quickly create and write files.

In FusionFS, both files and metadata are distributed across
the nodes. FusionF'S decouples the data from the metadata
such that the metadata that is stored on a node is not nec-
essarily the metadata associated with the files stored on the
node [6]. Metadata is distributed among the nodes using
a distributed hash table. A file path is used as a key and
is hashed to a node, which contains the metadata for that
file. FusionF'S uses ZHT (Zero-Hop Hash Table) as its dis-
tributed hash table. ZHT provides many features that are
important to HPC systems such as being light-weight and
fault tolerant, and providing consistent hashing, scalability,
and an ability to utilize an append operation [3].

Figure 3 shows a diagram of the file opening process in Fu-

Figure 3: The file open in FusionFS[6]

sionF'S. When a file is opened, FusionF'S uses the file path as
the key to retrieve the metadata from the distributed hash
table. This metadata includes the IP address of the node
that stores the file. If the file happens to be on the current
node, then the file is simply opened, otherwise the file is
retrieved using the file transfer service. FusionFS uses its
own file transfer service called Fusion Data Transfer (FDT)
on top of UDP-based Data Transfer (UDT). Note that the
diagram has been simplified and Node-j does not necessarily
contain both the metadata and the file.

FusionF'S’s unique approach to metadata allows it to elimi-
nate the bottlenecks created by metadata servers and allows
FusionF'S to scale much better than many other distributed
file systems. Benchmarks have shown that FusionF'S pro-
vides metadata rates and I/O throughput that is almost two
orders of magnitude greater than that of GPFS and nearly
linear scaling at 1024 nodes[6].

2.3 Optimizing Locality

Our goal is to optimize locality using Swift/T with FusionFS
and analyze the performance benefits that are gained. Writes
in FusionFS are already local and therefore already opti-
mized. To optimize read performance, our objective is to
have tasks scheduled on nodes that contain the data used
by those tasks thereby eliminating the cost of transferring
files.

Using the language features of Swift/T, we can optimize
locality in FusionFS. By informing Swift/T which node to
assign to a leaf task, we can reduce the number of data
transfers that FusionF's has to perform. The Swift language
has an annotation, @location, for achieving this kind of
control. The location annotation allows the user to specify
which node a leaf task should run on. The location annota-
tion can further be customized with soft and hard locations.
Soft location tells Swift/T that we prefer this leaf task to
run on a particular node, but if that node is busy, perform
the task on another node. The hard location specifies that
the leaf task must be performed on a particular node.

Optimization in FusionFS was achieved by first creating
an application that would connect to the ZHT server and
lookup the IP address of a file in the Fusion file system.
Then, we used the application to create an app function
in Swift called ’lookup’. After converting the IP address
to a message passing interface (MPI) rank, we can use the

foreach f in fileArray {
string filename = filename(f);
string host = lookup(filename) ;
location L = ip2rank(host);
@location=L application(f);

}

Figure 4: Pseudo code using location annotation in
Swift/T

location annotation to specify the location to perform an
application. Figure 4 shows an example of the pseudo code
implementing this feature.

3. RESULTS

For all of our tests, we used m3.xlarge EC2 instances. These
nodes have 4 cores, 15 GB of RAM and a 40 GB SSD in-
stance store. We first compared the FusionFS write to a
write on the local disk. Figure 5 shows the throughput re-
sults of 64 by 1GB file writes with one worker per node.
FusionF'S scaled well in this test with only a 50% decrease
in write performance at 60 nodes. Next, we compared read
performance of FusionFs with locality to FusionFS with-
out locality. Figure 6 shows the results of 64 by 1GB file
reads with one worker per node. After using the locality
feature, our results showed a noticeable increase in perfor-
mance. Performance was steadily increased by six times
with little sign of slowing down. These results suggest that
FusionF'S with locality would scale to a much larger number
of nodes.

Next we tested scaling the number of workers per node. Fig-
ure 7 shows the throughput results of 64 by 1GB file writes
on 8 nodes when scaling the number of workers per node.
FusionFS’s performance is mostly maintained during this
scaling. Figure 8 shows the throughput results of 64 by
1GB file reads on 8 nodes when scaling the number of work-
ers per node. This results suggests that performance gains
are maintained when increasing the number of workers per
node.

4. RELATED WORK

Similar work has been done using the Hercules file system.
Hercules is an in-memory distributed file system based on
Memcache. Using Swift’s location annotation with the Her-
cules file system, researchers were able to obtain substantial
improvements in I/O throughput. Using locality with writes
in Hercules, write throughput nearly doubled. While locality
did not improve read performance in Hercules for tests with
one worker per node, read throughput more than doubled
with eight workers per node. [2]

5. CONCLUSION

Our results shows integrating Swift-T with distributed file
systems is a promising field of research. Future work in-
cludes performing tests on larger clusters, comparisons with
other file systems like GPFS.

Write Performance | 64 by 1GB Files
~®- Local —@— FusionFS

200

150

7
4
=
3w
=
2
2
£ — s .
- 50 —~— —
1]
8 16 32 64

Nodes

Figure 5: Comparing write performance in FusionF'S
to Local disk when scaling then number of nodes

Read Performance | 64 by 1GB Files
—8— FusionFS(without locality) —8— FusionFS{with lacality)

.\.\'\o

400

300

200

Throughput (M&/s)

100

Nodes

Figure 6: Comparing read performance of FusionF'S
with locality to FusionF'S without locality when scal-
ing the number of nodes.

Write Performance on 8 Nodes | 64 by 1GB Files
~®- Local —@— FusionFS

200
150

100

’ \\'\‘

1 2 3 4

Throughput (MB/s)

Warkers per Node

Figure 7: Comparing write performance in FusionFS
to Local disk when scaling the number of workers
per node.

Read Performance on 8 hodes | 64 by 1GB Files
—&— FusionFS(without locality) ~ —@— FusionFS(with locality)

400

300

200

Throughput (ME‘s)

100

1 2 3 4

Workers per Node

Figure 8: Comparing read performance of FusionF'S
with locality to FusionF'S without locality when scal-
ing then number of workers per node.

6. REFERENCES
[1] T. Armstrong. A dissertation submitted to the faculty

of the division of the physical sciences in candidacy for
the degree of doctor of philosophy. June 2015.
[2] F. R. Duro, J. G. Blas, F. Isaila, and J. Carretero.
Exploiting data locality in swift/t workflows using
hercules. In Proceedings of the Network for Sustainable
Ultrascale Computing Workshop, 2014.
T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang,
A. Rajendran, Z. Zhang, and I. Raicu. Zht: A
light-weight reliable persistent dynamic scalable
zero-hop distributed hash table. In Parallel Distributed
Processing (IPDPS), 2013 IEEE 27th International
Symposium on, pages 7T75—787, May 2013.
[4] J. Wozniak, T. Armstrong, M. Wilde, D. Katz,
E. Lusk, and I. Foster. Swift/t: Large-scale application
composition via distributed-memory dataflow
processing. In Cluster, Cloud and Grid Computing
(CCGrid), 2013 13th IEEE/ACM International
Symposium on, pages 95-102, May 2013.
[5] J. M. Wozniak, H. Sharma, T. G. Armstrong,
M. Wilde, J. D. Almer, and I. Foster. Big data staging
with mpi-io for interactive x-ray science. In Proceedings
of the 2014 IEEE/ACM International Symposium on
Big Data Computing, BDC ’14, pages 26—34,
Washington, DC, USA, 2014. IEEE Computer Society.
[6] D. Zhao, Z. Zhang, X. Zhou, T. Li, D. Kimpe, P. H.
Carns, R. B. Ross, and 1. Raicu. Fusionfs: Towards
supporting data-intensive scientific applications on
extreme-scale high-performance computing systems. In
2014 IEEE international Conference on Big Data, 2014.

(3

