
Enabling Distributed Data Indexing and Search

in the FusionFS Distributed File System
David Pisanski

University of Illinois at Chicago

dpisan2@uic.edu

Kevin Brandstatter, Dongfang Zhao, Calin
Segarceanu, Ioan Raicu
Illinois Institute of Technology

{kbrandst, dzhau8, csegarce}@hawk.iit.edu,
iraicu@cs.iit.edu

1. INTRODUCTION
Scientific applications and other High Performance applications

tend to focus on the generation of large amounts of data for analytic

purposes. This is the nature of data science. The big challenge in

this field of science is being able to efficiently process results and

to locate the items of interest in the results. Since much of the

output data of some applications is primarily text based, being able

to search the text for certain strings or patterns in order to locate the

information relevant to the interest of the analyzer, it is necessary

to build an index of the output. As data becomes large, the index

also becomes large. Much the same as we must distribute the data

across multiple systems because of space requirements, the index

must also be able to be distributed and still efficiently maintained

and queryable. Thus we present this project to enable transparent

built in indexing capabilities to FusionFS[1]. This will allow

FusionFS to maintain an up to date distributed index that can be

queried through a standard API by user applications.

2. RELATED WORK
Indexing text based files for searching is a very common practice,

and there are many utilities for the function of building and creating

and index of singular files on a single machine. However, there are

very few distributed indexing implementations. One common

example of distributed indexing systems is search engines such as

Google[2]. However, these search engines are primarily web based

which means their index is build using link crawling and

aggregation, and requires enormous processing power to build and

keep up to date. With this project, we have more modest goals of

simply indexing the files that are stored in FusionFS. Thus we

looked for projects that implemented text and file based distributed

indexing mechanisms. This lead us to the Apache Solr project[6].

Solr operates as a standalone distributed index, in which clients

send it documents to index, and then allows queries to the system

for text strings and returns a resulting list of documents. Being a

standalone system, it is better deployable for enterprise operations,

but not for big data operations that often accompany data science,

and the other use cases of FusionFS. Finally, being written in Java,

it would not be supported by most supercomputer and cluster

environments, and thus would need to be external. As an external

platform, it introduces significant overhead of additional storage

and resources, as well as failing to take advantage of the low latency

networks that the applications are running on.

3. DESIGN & IMPLEMENTATION

3.1 File Indexing
Since text based indexing and search is not a new concept, there is

no need to create our own indexing library. Rather, we would like

to make use of the Apache Lucene[4] project, which is the basis for

Solr. Since the Lucene core is written in java, it isn't feasible to use

it directly. Through some searching, we located a C++

implementation of the Lucene library called Clucene[5]. Being

written in C++ has two main advantages. First, it can be easily

integrated into FusionFS, since FusionFS is written in C++ as well,

so the library routines can be used directly. Secondly, this makes it

faster than a java implementation as it does not have the overhead

of the JVM. The Clucene API provides all the necessary function

for creating indexes of documents. The main functions we will be

using are the functions to add and remove documents to the index,

and the functions to search for keys in the index. One difficulty will

be understanding the library, as the amount of documentation is

lacking. We hope that we will be able to compliment it with the

documentation of Apache's Lucene, as Clucene claims to be an

implementation.

3.2 Library Abstraction
In order to make integration into the filesystem pieces very simple,

we built a core library set of functions such as index_document and

delete_document. This also keeps the method of indexing separate

from the filesystem. The benefits of this are that if at any point we

want to change how to index documents, we only need to modify

the library routines, and the filesystem needs not be aware of the

changes. This is necessary because the Clucene library is very

flexible and require the program to determine what and how to

index and organize data. Currently the index operation only indexes

the raw contents of the file, but it could be modified in the future to

also index metadata about file size, creation time, or any other data

that may be useful to users for querying files.

3.3 FFSNET Extension
At first we attempted to build the indexing functionality directly

into the fuse module. This worked well for local file operations, as

all the data is local and it only required additional function calls.

However, this proved difficult to scale to multiple node

deployments as the module had no easy way to operate on remote

files. This wasn't a problem for indexing, since all indexing happens

locally, but removing a file from a remote node's index proved

unfeasible. Thus to address this issue, we decided to extend the file

transfer service, ffsnet, to also handle requests for index and de-

index operations. We were able to use much of the same logic as

file operations, since the interface is very similar. Since index

operations can take a long time to complete if the input file is large,

we don't want the index operations to prevent a file operation from

occurring. Therefore, the index operations are received by a

separate server process than the file operations. Thus file operations

can still be processed while an index is occurring. Furthermore,

since all indexing happens on a single process, it alleviates the issue

of contention over the index and maintains the order of operations.

3.4 Local File Indexing
Since the files are distributed among the nodes that comprise

FusionFS, we decided it would be easiest for each node to maintain

the index of the files that reside on it. This is possible because

FusionFS is designed to give applications local read and writes.

Therefore, each node has a scratch locations of all files that are

stored on it. To build the index, we use FusionFS to translate the

absolute path of each file in this directory to the FusionFS relative

path as the index key. Then using the Clucene library, we add each

file to the local index. We can do this because each file resides in

whole on a particular node, and is not segmented into blocks or

chunks as it is on some other distributed storage systems.

3.5 File De-Indexing
File de-indexing occurs in two cases. The first case is the case of a

file being removed from the system. The second case is of a file

being relocated to a local node for writing. In either case the same

process can be taken. Since the file will be removed by a message

to the remote nodes ffsnet daemon, we simply add another message

to be sent prior to that nodes de-index ffsnet daemon. Thus the file

is removed from the remote nodes index, and then removed from

the file system. Finally, in the case of a relocation, the file that now

resides in the local node will be added to the local node's index

upon completion of the write.

3.6 Update on Close
The final piece to effective indexing for searching is to keep the

index up to date. In order to do this, we need only modify the index

when a file changes. Since this is integrated into the file system, we

can issue an index update whenever a file is closed. Clucene does

not provide an update function, so the document must be deleted

and readded. The other case to consider is that a file may be moved

from one node to another. In this case, we can have triggers that

wrap the file send and receive functions that delete the document

from the sending node's index, and add it to the receiving node's

index upon completion of transfer. Finally, since FusionFS keeps

track of whether or not a file is written to (for file transfer purposes),

we utilize the same information to prevent indexing a file that has

not been modified. Thus reading a file will not trigger an index and

will prevent the additional overhead from being incurred.

4. PERFORMANCE EVALUATION

4.1 Test bed
We use Amazon EC2 instances to create our testing cluster[3]. For

this project, we use m3.large instances because they contain a

32GiB solid state disk local to the node. Each m3.large node

mounts FusionFS onto their local SSD.

4.2 Indexing
We want to compare the writing throughput of FusionFS with and

without indexing enabled. Each node in FusionFS stores five

100MiB files of English text. The number of nodes in the system

vary between runs by successive powers of two. We begin the

benchmark by using parallel-ssh to connect to each node. Each

node then copies its dataset into the FusionFS mount point.

We have found that our index extension reduces the throughput of

FusionFS by an average of 6%. Because indexing requests are

asynchronous, writing to FusionFS with indexing enabled is fast.

4.3 Searching
We compare the run times of different grep strategies to the

distributed query tool. We begin by storing five 100MiB files of

randomly generated English text on each node, which is then copied

into FusionFS; we conduct strong scaling experiments up to 16

nodes. The number of nodes in each run ranges from 1 to 16 in

powers of 2. “Index” is the distributed query tool. “Network Grep”

greps FusionFS from a single node. “Local Grep” greps a copy of

FusionFS stored on a single node’s SSD. “HDFS Grep” uses

MapReduce to run a parallel grep on a copy of FusionFS.

Figure 1. Writing Throughput

In the following graph, we plot the natural logarithm of the

runtimes for each search strategy. Note that as the number of nodes

double between runs, so does the total amount of data in FusionFS.

The Network Grep is the slowest search strategy of all. Since it runs

grep over FusionFS from a single node, it reads files from every

other node over the network. Hence that single node bottlenecks the

system. Both Network and Local Greps do not scale with more

nodes.

Figure 2. Average Search Run Times

HDFS Grep and the distributed query scale with more nodes.

However, the distributed query tool is the fastest of all search

strategies. The following graph compares speed of each search

strategy to Network Grep. We treat Network Grep as a baseline

because it is the most common search strategy.

0

100

200

300

400

500

600

700

800

900

1 2 4 8 16

Th
ro

u
gh

p
u

t
(M

iB
/s

)

Number of Nodes

Writing to FusionFS

No Indexing

Indexing

1

4

16

64

1 2 4 8 16

Q
u

er
y

Ti
m

e
(s

ec
)

Number of Nodes

Average Search Run Times

Index Network Grep

Local Grep HDFS Grep

Figure 3. Comparison of Run Times

5. CONCLUSION
This project enables transparent, real time distributed indexing and

searching capabilities while maintaining low overhead costs, all

while providing over 70X query performance improvement at 16

node scales. Since each node in a FusionFS system indexes data

asynchronously, applications are not slowed down and users reap

the benefits of having their data indexed. We have also shown our

indexing extension scales well to multiple nodes by taking

advantage of data locality. Ultimately, with little overhead cost, this

work presents a very fast way for users to search through their data

without consciously structuring it to do so.

6. FUTURE WORK

6.1 Distributed Search
The primary future development is to implement a client server

model for the distributed search tool. The current solution that uses

parallel-ssh will not scale well with more nodes because of the

overhead introduced by each ssh connection. Using a client server

model, we can lower the connection costs. We can also implement

fast techniques to send a query request to each node, and reduce the

results back to the user.

7. REFERENCES
[1] Zhao, Dongfang, et al. "FusionFS: Toward supporting data-

intensive scientific applications on extreme-scale distributed

systems." Proceedings of IEEE International Conference on

Big Data. 2014.

[2] “Crawling and Indexing”

http://www.google.com/insidesearch/howsear

chworks/crawling-indexing.html

[3] "AWS | Amazon EC2 | Instance Types." 2009. 6 Aug. 2015

<https://aws.amazon.com/ec2/instance-types/>

[4] "Parallel SSH - Google Code." 2009. 6 Aug. 2015

<http://code.google.com/p/parallel-ssh/>

[4] Apache Lucene http://lucene.apache.org/core/

[5] Clucene http://clucene.sourceforge.net/

[6] Apache Solr http://lucene.apache.org/solr/

0

10

20

30

40

50

60

70

80

1 2 4 8 16

N
u

m
b

er
 o

f
Ti

m
es

 F
as

te
r

Number of Nodes

Comparing Run Times to
Network Grep

Index

Local Grep

HDFS Grep

