
Efficient High-Performance Computing

with Infiniband Hardware Virtualization

Tiago Pais Pitta de Lacerda Ruivo*†, Gerard Bernabeu Altayo*, Gabriele Garzoglio*, Steven Timm*,

Hyun Woo Kim*, Seo-Young Noh#, Ioan Raicu†+

*Scientific Computing Division, Fermi National Accelerator Laboratory

†Department of Computer Science, Illinois Institute of Technology
#Global, Science Experimental Data Hub Center, Korea Institute of Science and Technology Information

+Math and Computer Science Division, Argonne National Laboratory

tpaispit@hawk.iit.edu, {gerard1,garzogli,timm,hyunwoo}@fnal.gov, rsyoung@kisti.re.kr, iraicu@cs.iit.edu

Abstract— It has been widely accepted that software

virtualization has a big negative impact on high-performance

computing (HPC) applications performance. This work explores

the potential use of Infiniband hardware virtualization in an

OpenNebula cloud towards the efficient support of MPI-based

workloads. We have implemented, deployed, and tested an

Infiniband network on the FermiCloud private IaaS cloud. To

avoid software virtualization towards minimizing the

virtualization overhead, we employed a technique called Single

Root Input/Output Virtualization (SR-IOV). Our solution

spanned modifications to the Linux’s Hypervisor as well as the

OpenNebula manager. We evaluated the performance of the

hardware virtualization on up to 56 virtual machines connected

by up to 8 DDR Infiniband network links, with micro-

benchmarks (latency and bandwidth) as well as with a MPI-

intensive application (the HPL Linpack benchmark).

Keywords: Infiniband; virtualization; Cloud Computing;

OpenNebula; SR-IOV; Linpack; HPC.

I. INTRODUCTION

FermiCloud is a private cloud providing Infrastructure-as-a-
Service services to Fermilab employees and users and it
manages dynamically allocated services for both interactive
and batch processing. As part of the computing infrastructure
of the Laboratory, this distributed computing system
complements the bigger FermiGrid project, a distributed
campus infrastructure that manages conversely statically
allocated compute and storage resources for batch processing.
In particular FermiGrid is used to run compute-intensive jobs
related to experiments conducted here at Fermilab as well as in
other locations that collaborate with it like the LHC.
FermiCloud provides additional resources to the Grid by
providing Virtual Machines that run on the Cloud Infrastructure
and increase the computing capacity. These virtual machines
(VM) imitate a physical computer in all its features and
functionalities and it is possible to run several of them on a
physical machine, sharing its resources and so optimizing its
resource utilization. Nevertheless, the usage of VMs implies
managing the virtualization and sharing of the physical
hardware (HW) and resources. This virtualization introduces
overheads in performance.

As part of a national laboratory, the FermiCloud team is
especially interested on expanding its functionality to provide a
useful platform to the scientific investigation performed on
Fermilab. A big part of it comes from being able to run
scientific applications and models. However, scientific
computing relies on compute-intensive and data-intensive jobs
that have to be coordinated among several nodes. Although
cloud computing provides a better utilization of the resources,
the overhead introduced by the virtualization can make the
application too inefficient and as of today, most scientific
computing is still done on High Performance Computing
(HPC) clusters and supercomputers which do not support
virtualization. These applications are also distributed among
several nodes, usually using the Message Passing Interface
Protocol (MPI) that is very sensitive to changes in latency, such
as the virtualization overhead. [12, 26]

A fast and reliable network in and among virtual machines
is a key element for a cloud system to be capable of running
scientific applications, facilitating the transfer of data and
communication between VMs [12]. Infiniband is an especially
interesting technology since it is one of the interconnect links
offering one of the highest throughputs and lowest latency,
guaranteeing QoS and scalability. It is often used in
supercomputers and high performance computing [19].

The main challenge to overcome in the deployment of the

network is the already discussed overhead introduced when

virtualizing the hardware of a machine to be used (and shared)

by the VMs. This overhead slows drastically the data rate

reducing the efficiency of using a fastest technology like

Infiniband. To overcome the virtualization overhead we used a

technology called SRIOV that achieves device virtualization

without using device emulation by enabling a device to be

shared by multiple virtual machines. With SR-IOV, a PCIe

device can export multiple virtual functions besides physical

functions. These virtual functions that reside in the device

itself actually share the resources that are provided by the

device. This model allows the hypervisor to simply map

virtual functions to virtual machines, which can achieve the

native device performance even without using pass through

[6].

Using SR-IOV with Mellanox InfiniBand cards means
installing new firmware in the devices [17] and changes in
Cloud system, OpenNebula [25] in our case. [14]. This work
focuses on how this Infiniband network was implemented and
deployed on the VMs adapting it to the existent FermiCloud
infrastructure by deploying it in the host machines, configuring
the SR-IOV and migrating this work to OpenNebula, the cloud
manager, focusing on simplicity and compatibility with the rest
of functionalities. After the deployment, a battery of tests was
performed to test the efficiency of this virtualization (SR-IOV).

In this work, we define efficiency as the percentage of a
metric in a virtualized environment compared with the same
metric in the non-virtualized environment with the same
resources. To measure the performance and efficiency of the
virtualization, several tests were performed: micro-benchmarks
to measure latency and bandwidth as well as the HPL Linpack
benchmark to measure the efficiency of a real scientific
oriented application. All these benchmarks were scaled to up to
8 nodes with a maximum of 7 VMs per node, the maximum
permitted by our hardware. The results were excellent, with
VMs reaching the same throughput and the same latency
(depending on the size of the messages transmitted) of the
native machines. Some latency overhead in small messages
lowered the efficiency of the Linpack benchmark to as low as
70%.

The rest of the paper is organized as follows. Section 2
gives a small overview of the technologies used and describes
how the deployment was done. Section 3 focus on the
performance evaluation, describing the battery of tests and its
results. Section 4 describes published work related with this
topic like SR-IOV deployments on other networks or other
Infiniband virtualizations. Finally in section 5, we present the
conclusions based on the performance evaluation as well as
possible future work.

II. PROPOSED WORK

This work explores the potential use of Infiniband hardware

virtualization in an OpenNebula cloud [25] towards the

efficient support of MPI-based workloads. We have

implemented, deployed, and tested an Infiniband network on

the FermiCloud private IaaS cloud. To avoid software

virtualization towards minimizing the virtualization overhead,

we employed a technique called SR-IOV. Our solution

spanned modifications to the Linux’s Hypervisor as well as

the OpenNebula manager. We first cover a high-level

overview of Infiniband followed by a description of the SR-

IOV virtualization. We then continue drilling into the

challenges brought by the network virtualization, requiring

additional new functionality.

A. Infiniband

Infiniband provides point-to-point bidirectional serial links
between processors or with high-speed peripherals (often time
the bottleneck of a system) for a fast Input/Output (I/O) and has
support for multicast operations. It uses a switched fabric
topology (nodes connect using switches for a point-to-point
communication, usually without the need of a hierarchical
structure). Each processor has a Host Channel Adapter (HCA)

and each peripheral has a Target Channel Adapter (TCA) that
exchange data as well as metadata for security or QoS and that
are the interface with the machine. These adapters can handle
the entire Infiniband protocol stack without using CPU (more
efficient) and bypassing the kernel, communicating directly
with the application avoiding the corresponding overhead [19].

The throughput depends on the hardware. At a physical
level there are several configurations with data rates ranging
from 2.5 to 25.78125 Gb/s in each direction. Several links can
links can be aggregated in sets of 4x of 12x, multiplying the
corresponding data rates by these values. However, redundancy
encoding slows this speed. Another attractive characteristic of
Infiniband is offers very low latency that can go down to
100ns, making the end-to-end latency usually in the order of
microseconds [19].

Infiniband specification only includes a list functions that
must be implemented in order to build the protocol stack. The
de-facto standard implementation is called OFED, developed
by OFA, that provides the entire protocol stack, the kernel
modules used to manage the communication with the device, as
well as several monitoring and configuration tools [17]. In our
case, an implementation provided by the Linux distribution
(Scientific Linux), containing most of the tools, had to been
used since the one provided by the card manufacturer was not
compatible with newer kernel versions. Another important
element of an Infiniband deployment is the Subnet Manager
and Administrator, in this case OpenSM, which provides and
maintains routing tables on the IB hosts. The Switch we used is
a dummy switch and does not have the necessary logic to do
the routing. One Subnet Manager must run in one of the
physical nodes in IB network.

An interesting feature of the Infiniband stack is IPoIB (IP
over Infiniband), the protocol that defines how to send IP
packets using Infiniband by creating a normal IP network
interface. This wastes some of the functionalities and efficiency
of the higher layers of the Infiniband protocol stack and drops
performance but the user can now use the much wider set of
applications built for TCP-IP and overpass some of the virtual
functions restrictions.

Because of all the previous features, Infiniband is
commonly used not only in super computing and HPC but also
in clouds and datacenters that require a fast network. Infiniband
is common in the TOP500 supercomputers, in military
applications and in the financial sector [19].

B. SR-IOV Overview

SR-IOV is a standard developed by the PCI Special Interest
Group for Virtualized Servers. It uses the concepts of physical
and virtual functions. A Physical Function (PF) is a full-
featured PCIe function discovered, managed and manipulated
like any other physical PCIe device. PFs can control the PCIe
device and have full configuration capabilities (besides doing
the I/O). A Virtual Function (VF) is a lightweight function that
lacks the configuration resources and is limited to processing
the I/O streams, to move data. VFs cannot be configured since
they don’t have access to the physical device. A VF is
subordinated to a PF and all the VFs that depend on that PF
have the same configuration. If a VF could change its

configuration options, would also change the options of its PF
as well as all the other VFs that depend of it [6,8].

The virtualization consists on dividing the card on a set of
PFs and VFs that appear in the bare metal machine as a set of
independent PCIe Infiniband devices. In this environment, we
can associate each VF directly to a virtual machine that has the
exclusive use of that function, and therefore sharing a physical
IB resource without using any device emulation in hypervisor
or in user space. [22]

The virtualization is mostly done in hardware (needing
support by the device as well as the BIOS. Each PF and VF
receive a unique PCI Express Requester ID that allows the I/O
Memory Management Unit (IOMMU) to differentiate the
traffic going to the different VFs resulting in non privileged
data flows from the PF to one VF without affecting the others
[17]. Since a VF cannot be treated as a full PCIe device, the OS
or hypervisor must also be aware that it is not to block any
configuration options or tools that can change the other VFs [6,
17]. The specification indicates that each device can have up to
256 VFs. These numbers are theoretical maximums since the
virtualization needs hardware resources, and thus the practical
upper bound is 63 VFs (plus 1 PF) [22].

This solution is much more efficient than device emulations
in hypervisor which when receiving or sending data must
interrupt a CPU core to inspect the packet and determine which
VM should receive it, the data packet to the CPU core that
serves the corresponding VM and interrupt it to process the
I/O. This process introduces a significant latency and CPU
workload. By using SR-IOV, we bypass this virtualization
assigning a physical port directly and exclusively to a VM
maximizing the utilization of the HW virtualized device [6,
22].

C. SR-IOV Implementation

The virtualization configuration in the bare metals is a
simple process but very poorly documented, probably because
it is fairly recent. It requires a change in the different
components involved in the virtualization. To enable it on the
hardware, a Firmware change is required that enables the
functionality and specifies the number of PFs and VFs to be
shown to the machine, each one appearing as an independent
device with its own PCI address. The maximum number of VFs
supported by our card is 7 and it only has 1 PF (is a single port
card).

The process is sensitive since it is very low-level software
that doesn’t have any error check. A wrong configuration may
cause the card not to load when the system boots and can lead
to a crash of the entire system. Recovering the card after a bad
Firmware update requires special manufacturer HW.

Since the virtualization also has to be supported by the OS,
we have to enable it and specify the proper options in the BIOS
as well as in the Infiniband card modules. Besides, the kernel
has to have the IOMMU (I/O Memory Management Unit)
activated to allow the communication of the VFs with memory
and the PFs without using the CPU.

After this, the bare metal appears to have 8 Infiniband cards
and we can pass each one of them directly to a VM. To manage

the virtualization we used the Linux’s Kernel-based Virtual
Machine (KVM), a virtualization solution, and libvirt, the
virtualization API that OpenNebula[25] uses and that lets us
create, personalize, destroy and manage VMs.

To use Infiniband in the virtual machines, it is necessary to
acknowledge that virtual functions have several limitations. As
it was discussed before, virtual functions cannot be configured
since they emulate one physical function. Because of that,
some Infiniband tools do not work on VFs, mainly the
configuration ones and the ones that belong to higher layers of
the protocol stack. To overcome this, Infiniband offers the
possibility of using the already mentioned IP protocol over
Infiniband (IPoIB). Most applications use IPoIB to establish
the connection and then change to the Infiniband protocol
stack. This maintains the original Infiniband performance but
uses the familiar IP directions, much more simple than the
Infiniband’s LID. Besides, the Subnet Manager doesn’t assign
individual directions to the Virtual Functions and so they are
not visible from other hosts [1]. The applications used in our
tests use this technique like OpenMPI, the MPI application
used or Perftest, a ping-pong benchmark. To use IPoIB is
necessary to create an Infiniband network interface with its IP
and load the corresponding modules that recognize that
interface and make the translation of the IP to the
corresponding HCA.

In the bare metals, it is not even necessary to install the
entire set of Infiniband support but only to load the kernel
modules that handle the communication with the card
(including the ones managing IPoIB). In our Linux distribution
that can be done by activating a service called Rdma, also
activated in the VMs. Besides, at least one of the host machines
(can be more than one to avoid having a single point of failure)
must be running the already mentioned subnet manager to
handle the routing. Because of the previous experience with
OFED and its incompatibilities with the driver, we focused
here and throughout the entire project on finding RPMs that
were already tested on this Linux distribution and avoided
compiling applications since that makes the deployment more
complex and fail more often because of the referred
incompatibilities. By using libvirt, a virtualization API, it is
possible to create VMs with the virtualized devices assigned
from each host machine. To automate it and centralize it, the
work must be migrated to OpenNebula[25], FermiCloud’s
cloud manager.

D. SR-IOV and OpenNebula

OpenNebula and its KVM need to be changed because SR-
IOV needs the support of the hypervisor since it has to be
aware that the VFs are not real devices. Besides, it must
support the integration and manage the assignment of different
VFs to each Virtual Machine: The configuration of its network,
how to handle the different actions (migration, live migration,
saving, killing, etc). For that, the South African Center for High
Performance Computing implemented a VMM (Virtual
Machine Monitor) driver for OpenNebula that addressed these
issues. The driver is similar to the KVM used in FermiCloud
but includes the management of SR-IOV Infiniband devices
[14]. However, FermiCloud has some particularities that
required modifying it before replacing it for the old VMM.

The driver required changing some configuration and
permission options (like running the libvirt API as root) that we
wanted to avoid, mainly to handle the assignment of VFs to a
virtual machine. Secondly, OpenNebula deployment in
FermiCloud is using a customized base directory while the new
VMM assumes the OpenNebula standard directory.

Finally, the driver was developed for OpenNebula 4.0 and
currently FermiCloud uses the 3.2 version. Although it is
backwards compatible there are some differences such as the
contextualization scripts that are used to start the machines. To
use the driver we had to change completely the way the
machines are contextualized in FermiCloud and update the old
scripts to new version, while maintaining all the configuration
options and customization of FermiCloud.

The driver required changing the physical machines
configuration to use the new VMM. It also required the
creation of a new virtual network on OpenNebula with the IPs
that are going to be assigned to the Infiniband interfaces. This
network uses a predetermined bridge and so, when a VM is
launched in OpenNebula that includes this network, the driver
is aware that one of the VFs available in the physical machine
has to be assigned to that virtual machine. The IP of that
network is passed from OpenNebula to the VM by creating an
Ethernet dummy interface (turned off and not used) on the VM
that has codifies the IP as part of a fake MAC Address. With
this information, after launching the machine, the
contextualization scripts recognize the dummy interface and
translate this fake MAC into the IP that is used to create and
start the Infiniband’s network interface.

Finally, to be able to create VMs in OpenNebula with this
new functionality, virtual machine images also need changes so
that virtual machines can be launched with proper
configurations to become part of IB cluster. These include
software installation, network configurations, and ssh server
configurations.

During the deployment of the new VMM driver, one
challenge was to simplify the procedure and minimize
necessary changes so that the new system can be integrated
with the rest of the system. A lot of parallel work was done too
related with improving some aspects of FermiCloud and
adapting them. This is very visible in the process that
OpenNebula uses to deploy machines where changes were
made that involved the entire deployment process. Once we
understand the basic technical details of the new VMM driver
and necessary changes and modifications to FermiCloud
deployment, we could optimize and automate the process with
the Puppet environment in FermiCloud.

E. Limitations

SR-IOV has some limitations worth discussing. The VFs
must have the same configuration as the PF and cannot be
customized and so they cannot change the configuration of the
physical device. The specification, however, gives some
freedom to the implementation to manage the communication
in the device. There are some devices, for example, that have
VF switching that allows the VFs that belong to the same
device to talk between themselves without the need of a
physical switch connected to that device, making the

communication between them faster. Another limitation is the
potential interference between VFs under concurrent data
transfers, which might affect the individual data rate due to
sharing significant parts of the device’s hardware. Both
characteristics are observed in the following evaluation.

III. PERFORMANCE EVALUATION

We evaluated the performance of the hardware

virtualization on up to 56 virtual machines connected by up to

8 DDR Infiniband network links, with micro-benchmarks

(latency and bandwidth) as well as with a MPI-intensive

application (the HPL Linpack benchmark).

A. Testbed

The Infiniband card used in this test is the MHRH19B-
XTR ConnectX-2 running with firmware version ConnectX2-
rel-2_9_1000. This model has a single port with QSFP (Quad
Small Form-factor Pluggable) and connects to the machine
using PCI Express 2.0 8x. It uses 4x (4 Infiniband links) with a
DDR data rate for a total theoretical speed of up to 20 Gb/s and
after the 8b/10b codification 16 Gb/s. It has 1 μs latency when
used with MPI. It has Virtual Port Interconnect that gives the
possibility of using it for Infiniband or Ethernet. This model
has 8 virtual lanes that can create 1 physical function and 7
virtual functions via SR-IOV.

The servers are Koi Computers with 2 quad core Intel
E5640 Westmere processors, 48Gb of RAM and 600Gb of
SAS Disk, 12TB of SATA, an 8 port RAID Controller, 2 1Gb
Ethernet networks and Brocade FiberChannel HBA besides the
already mentioned HCA.

Our IB HCA cards are interconnected via a 24 port

Mellanox InfiniScale III DDR switch that can take up to 24

20Gb/s DDR 4x connections with a total capacity of 960Gb/s.

All of the above resources are part of FermiLab’s

computing resources spread among 2 buildings in its facilities

and that also include the much bigger FermiGrid. Together

they process all of the data of the experiments performed on

the Department of Energy’s Lab (as well as its collaborations),

focusing on High-Energy Physics.

B. InfiniBand Network Level Evaluations

The first test is a simple ping-pong benchmark that

allowed us to measure the bandwidth and latency of the

communication between VMs and between native hosts. The

benchmark used was the OFED Perftest package [24] that has

the advantage of allowing a lot of customization like changing

message sizes, type of connection (Infiniband provides 2

different transmission modes, datagram and connected mode

and in the latter is gives the option of reliable or unreliable

transmission), size of buffers or functionalities (send, remote

read and write from memory).

Figure 1 shows a send operation between 2 host machines.

As we can see there is not a significant difference between

measured throughput and theoretical maximum of 16 Gb/s. It

is possible to observe in Figure 1 the linear evolution of both

the latency and bandwidth respect of the size of the sent

message, as one would expect.

Figure 1. Infiniband Performance between 2 Host Machines

In Figures 2 and 3, we represent the results of the same

ping-pong tests in the host machines varying options in the

tool such as the size of the receiving and transmitting buffers,

the transmission mode or the type of transmission:

Figure 2. Infiniband throughput between 2 hosts under different

configurations and modes

Figure 3. Infiniband latency between 2 hosts under different configurations

and modes

It is also interesting to observe that there is very little

difference between reliable and unreliable mode (likely due to

the reliable network connection that resulted in 0 packet loss)

or with different buffer sizes; furthermore, the final measured

throughput is very close to the theoretical maximum, 16Gb/s

certifying the efficiency of the protocol stack and the

deployment. The only observable difference is in the remote

read from memory that has a slightly larger latency since the

read operation has to fetch some user data from the receiver

side main memory before start reading, introducing an

overhead that in small messages represents an important

percentage [23].

Figure 4 represents virtualization efficiency calculated

from the ratio of bandwidth and latency measurements of IB

communication between two VMs in different hosts and

separate measurements of direct IB channel between two

hosts.

Figure 4. Performance efficiency between 2 VMs and 2 hosts

The bandwidth efficiency is always around 100% and the

latency efficiency is also close to that value (sometimes even

slightly above that value, since the tests have some noise) for

messages bigger than that 128B. In fact, there is a jump in

latency between 128B and 256B in the host machines that

does not exist in the VMs as is shown in Table 1.

TABLE I. LATENCY IN HOST MACHINES AND VMS BEFORE AND AFTER

BEFORE THE LATENCY JUMP IN THE FORMER

Size (B) Hosts (us) VMs (us) Efficiency (%)

128 1.69 2.235 75.61%

256 2.475 2.47 100.2%

 This jump in the host machines is explained by how the

card’s Connect X architecture packages messages under 256B

inside the doorbell used to warn the receiver end that the user

wants to send a message (in the Infiniband architecture the

receiver must be warned before receiving data to create the

corresponding receiving queue) [19,23]. In virtual functions,

this optimization does not exist (the so called max inline data

is 0) what results in the higher latency for small messages [4].

Essentially using 256B messages will guarantee that latency

performance is close to the native performance speed.

It is also interesting to see how these results change

completely if the 2 VMs are in the same host like it is shown

on Figure 5:

Figure 5. Performance efficiency between 2 VMs in the same host and 2

hosts.

Again, because we are using VFs, the just mentioned

optimization for small messages not available making the

latency for small messages larger in the VMs, but both

throughput and latency can have up to 150% efficiency and

reduction respectively compared to the hosts. Although it may

seem counterintuitive to have a efficiency higher than 100%,

the performance in the virtualized environment is actually

better than in the host machines because, as was explained

before, provide of a characteristic called VF switching that

optimizes the communication between VFs belonging to the

same device so that the communication does not need to use

the interconnect.

C. MPI Performance on MicroBenchmarks

After these ping-pong tests between 2 hosts or 2 VMs, the

goal is to scale the tests up to see if the performance that we

observe in the ping-pong tests is maintained at larger scales.

For that, we used the Ohio State University Benchmarks [4],

in particular the tests osu_multi_lat and osu_mbw_mr to

measure latency and bandwidth respectively among several

nodes. We show the efficiency (defined as before) depending

on the message size for different cluster configurations (1, 2, 4

and 7 VMs per host) in Figures 6, 7 and 8 for a 2, 4 and 8 host

machine cluster respectively.

These graphs have some interesting characteristics. First of

all, the behavior is similar in 2, 4 and 8 hosts which indicates

that the latency efficiency is scalable with increased number of

hosts.. However, there is a slight drop in performance when

increasing the number of VFs per host (the efficiency having 7

VFs in use simultaneously in one machine is around 80% of

the efficiency if it there is only 1 VF). That drop suddenly

increases in big messages when the message size is over the

MTU and so the message has to be divided in several packets.

If we are working on the host machines or have only 1 VM per

host that means having one more package in the queue,

however if we have 7 VMs per host, it means 7 more packages

to send. The difference between packages in the queue is

worse when we increase the number of packets per message.

Besides, when the message reaches this size, even in host

machines, the latency increase is much faster (Figure 1). That

increase rate is even bigger if we have more than 1 VM per

machine since there are much more packets and the HCA

routing to each VF is more complex. Except for this drop in

performance in intensive communication, the curve is similar

to the tests with the initial performance tests between 2 native

hosts with the efficiency improving significantly after 128B.

Figure 6. Latency efficiency between 2 hosts and 1,2,4 and 7 VMs/host

Figure 7. Latency efficiency between 4 hosts and 1,2,4 and 7 VMs/host

Figure 8. Latency efficiency between 8 hosts and 1,2,4 and 7 VMs/host

In Figures 9, 10 and 11 we can see the same graphs as

before but for throughput. Regarding the bandwidth

efficiency, the results do not show dependency on the number

of hosts, but we see dependency on the number of VMs per

host. In this case, having more machines means a throughput

speedup, where an increase of 2x in the number of machines

can mean an increase of 2x in speed. As before, here the

efficiency is above 100% for small messages. This is mainly

because, for small messages, the latency is much bigger than

the actual time of transmission and so it is possible to handle

the transmission of several messages at the same time.

Besides, if there is more than one VM per machine, part of the

communication is between VMs in the same machine that, as

it was discussed before, is much faster because of VF

Switching. However, for bigger message sizes, as we saturate

the network, the average bandwidth is the same in the host and

the VMs regardless of the number of VMs per host.

Figure 9. Throughput efficiency between 2 hosts and 1,2,4 and 7 VMs/host

Figure 10. Throughput efficiency between 4 hosts and 1,2,4 and 7 VMs/host

Figure 11. Throughput efficiency between 8 hosts and 1,2,4 and 7 VMs/host

D. Real Application (LINPACK)

After testing the performance of the network, it is

interesting to see how a real application behaves. We used

the HPL implementation of the Linpack benchmark over

OpenMPI. For the tuning, we wanted to test the worst-case

scenario and so we used a small block size (32). This small

block size also made the application more communication-

intensive. This small block size also made the application

more communication-intensive, which allowed us to

understand the network performance better.

Each one of our hosts had 16 hardware threads that were

split between the VMs of that host. If we had 4 VMs, for

example, each one would have 4 dedicated HW threads. In

the case of 7 VMs, 2 of the VMs had 3 hardware threads

and the other 5 had 2. When assigning memory, we

followed the same rule. The total number of processes of

each execution depended of the number of hosts and not of

the number of VMs per host since the VMs split the

resources available in its host. The problem size should

depend on the available memory so the approach is the

same. To assign its value, we searched the optimal value on

2 hosts and multiplied it by √2 every time we doubled the

number of hosts. Since Linpack is a squared matrix

multiplication and the problem size is the dimension of the

matrix, a matrix with √2 more rows has twice more

elements (and so there it uses approximately the double of

memory).

In Figures 12, 13 and 14, we can see the efficiency,

again defined as the percentage of the result of running the

benchmark with VMs (1, 2, 4 and 7 per host) and the result

of running the same test only on the corresponding hosts (2,

4 and 8). However, the metric analyzed is the output of

HPL, which is the metric of how fast a given cluster can

conduct numerical operations per second. Previous sections

present simple metrics, bandwidth and latency.

Figure 12. Linpack efficiency between 2 hosts and 1,2,4 and 7 VMs/host

Figure 13. Linpack efficiency between 4 hosts and 1,2,4 and 7 VMs/host

There is a difference when increasing the number of nodes.

With 8 nodes, the efficiencies are around 70%, far from the

efficiency measurements around 90 % that we observe with

two hosts. Part of the drop in efficiency comes from the CPU

virtualization efficiency. In fact, when doing the test in 1 host,

without communication, the efficiency was about 90% too.

However, we believe that the main drop in efficiency comes

from the latency overhead that VFs introduce in small

messages discussed earlier and that does not scale as we

increase the network traffic.

The CPU usage of all the machines was at 100%

throughout the entire duration of the tests with less than 28

VMs when we believed the network saturated (More VMs

means more communication). In fact, there is a drop in

efficiency in the tests with 28, 32 and 56 VMs. Regarding the

number of VMs in each host, it seems that 2 and 4 VMs give

the best results. The worse configuration is 7 VMs per

machine because it is more communication and also because

in this case not all the VMs have the same memory and CPU.

Figure 14. Linpack efficiency between 8 hosts and 1,2,4 and 7 VMs/host

IV. RELATED WORK

Cloud Computing has increased its popularity in recent

years. This is due to big improvements in the virtualization

techniques [12] as well as a very comfortable model that

maximizes resource usage (by sharing the resources among

several Virtual Machines) and a provisioning scheme based on

an on-demand delivery through the network that is

comfortable, very customizable, elastic, scalable and

immediate with very little interaction with the service provider

[1, 11, 12]. Although there is clearly a shift, its adoption is

slow in the HPC domain that is still sensitive to the overheads

inherently introduced by the virtualization process [11].

Several techniques are helpful in overcoming or minimizing

these overheads (for example, dedicated CPUs) but the big

bottleneck is still the I/O Virtualization [18], especially high-

speed network devices [4]. This is especially concerning on

HPC applications, often distributed and where fast

communication between nodes is fundamental.

Infiniband is an especially attractive interconnect to

virtualize because of its very low latency, high bandwidth,

reliable transmission, remote DMA capabilities, among other

features [19]. It is also widely adopted among the Top500

Supercomputers [4]. However, it presents some problems with

virtualization mainly because of its architecture [19]. There is

part of the connection information stored in the hardware and

the OS or the software only use handles to access the device,

making much more difficult the actions where the device is

changed, like a VM live migration. Besides, the application

can talk directly with the device complicating the task of

updating application information if there is a change. Finally,

Infiniband doesn’t use MAC addresses or IPs. The port

addresses are referred by LIDs controlled by an external

subnet manager that may be in other machine and cannot be

changed [1].

There have been some attempts to perform software

virtualization but with very poor results. Virtio, a Linux

standard to virtualize I/O devices, can be used to paravirtualize

Infiniband, with results under one order of magnitude worst

[21]. There have been attempts to improve this standard like

Virt-IB, described on [1], but they are still in an early phase

and only get a performance efficiency of 50% in ping-pong

throughput and latency tests.

The solution to all the previous problems seems to be SR-

IOV, a low-level virtualization available in a big percentage of

the Infiniband cards nowadays. Because it is handled at a

lower level, mostly by the device, the virtualization problems

discussed before are mostly handled in the device [6]. Besides

it provides very good performance results, not only on

Ethernet cards [6,8] but also on Infiniband networks, both in

Xen [2,10] and in KVM [4] environments (early results)

getting the same bandwidth in a VM of the native Infiniband

connection as well as a small latency overhead.

We perform simple tests called ping-pong tests [4] with

similar results than [4]. Nevertheless, we scaled up to more

than 2 nodes getting the results from the previous section, a

perfect throughput equal or even better than the native one and

a latency efficiency of more than 70% in small messages that

goes up to 100% in mid size messages. We also tried real

scientific benchmarks. In particular we used HPL, a Linpack

implementation available online following recommendations

of clustering testing [7,8,9] and getting efficiencies compared

with a non-virtualized environment of always over 70%.

V. CONLCUSIONS AND FUTURE WORK

In this paper, we analyzed the worse case scenario

choosing a benchmark configuration that sent small messages

that, as was seen earlier, have smaller latency efficiency. An

interesting study would be to analyze in depth how the

network virtualization reacts to applications that send larger

messages as well as other scientific applications and with

other MPI implementations.

The studies here were done on only 8 host machines,

although FermiCloud has 23 servers available, for now only 8

were in the same building and connected in an Infiniband

network. Furthermore, the Infiniband cards only allow 7 VFs

per host. However, the new Mellanox cards allow up to 63

VFs per card so it would be interesting to scale up and repeat

the tests with more hosts and VMs per host, not possible with

the current hardware in Fermilab. However, based on our

results so far with 7 VMs per node, we are not optimistic that

the efficiency results will be great at 63 VMs per node scale.

SR-IOV is still in its infancy, it is poorly documented, and

it has poor support from the manufacturers. For example, even

the drivers that support it are fairly recent. Nevertheless, this

virtualization technology has good results, and can deliver

almost 100% of efficiency in bandwidth and in latency

benchmarks. Small messages are the exception because of

limitations of the VFs, related with the process used to pack

small messages, and not necessarily with the virtualization

itself.

With 8 hosts and 56 VMs, the Linpack efficiency we

measured was around 70%, a value close to the latency

overhead for small messages and so a value that may be a

lower bound. This value, the worst we had, using the worst

case possible (small messages), is still much better than all the

software virtualizations analyzed for this work and more than

one order of magnitude better than virtio, the Linux standard

for virtualizing I/O devices.

Virtualization has many advantages, such as isolation,

protection, adaptation, customization, and flexibility. Virtual

machines deliver management control such as elasticity,

scalability, better utilization of resources and dynamic

provisioning – all essential advantages brought on by Cloud

Computing platforms. These results are definitely promising

and open the door for further research that would improve

them and lead to advances in the technologies used while

adding to the debate of running scientific applications in the

Cloud.

ACKNOWLEDGMENTS

This work is supported by the US Department of Energy
under contract number DE-AC02-07CH11359 and by KISTI
under a joint Cooperative Research and Development
Agreement. CRADA-FRA 2013-0001/ KISTI-C13013.

REFERENCES

[1] Ma, Y. M., Lee, C. R., & Chung, Y. C. (2012, December). InfiniBand
virtualization on KVM. In Cloud Computing Technology and Science
(CloudCom), 2012 IEEE 4th International Conference on (pp. 777-781).
IEEE.

[2] Yang, C. T., & Ou, W. S. Construction of a Virtual Cluster by
Integrating PCI Pass-Through for GPU and InfiniBand Virtualization in
Cloud.

[3] Regola, N., & Ducom, J. C. (2010, November). Recommendations for
virtualization technologies in high performance computing. In Cloud
Computing Technology and Science (CloudCom), 2010 IEEE Second
International Conference on (pp. 409-416). IEEE.

[4] Jose, J., Li, M., Lu, X., Kandalla, K. C., Arnold, M. D., & Panda, D. K.
D. SR-IOV Support for Virtualization on InfiniBand Clusters: Early
Experience.

[5] Mitarbeiter, B., & Stoess, I. J. Towards Virtual InfiniBand Clusters with
Network and Performance Isolation.

[6] Dong, Y., Yang, X., Li, J., Liao, G., Tian, K., & Guan, H. (2012). High
performance network virtualization with SR-IOV. Journal of Parallel
and Distributed Computing, 72(11), 1471-1480.

[7] Dongarra, J. J., Luszczek, P., & Petitet, A. (2003). The LINPACK
benchmark: past, present and future. Concurrency and Computation:
practice and experience, 15(9), 803-820.

[8] Liu, J. (2010, April). Evaluating standard-based self-virtualizing
devices: A performance study on 10 GbE NICs with SR-IOV support.
In Parallel & Distributed Processing (IPDPS), 2010 IEEE International
Symposium on (pp. 1-12). IEEE.

[9] Ramakrishnan, L., Canon, R. S., Muriki, K., Sakrejda, I., & Wright, N. J.
(2012). Evaluating Interconnect and Virtualization Performance forHigh
Performance Computing. ACM SIGMETRICS Performance Evaluation
Review,40(2), 55-60.

[10] Goldenberg, D. (2006). Infiniband device virtualization in xen. Xen
summit, January, 19.

[11] Huang, W., Liu, J., Abali, B., & Panda, D. K. (2006, June). A case for
high performance computing with virtual machines. In Proceedings of
the 20th annual international conference on Supercomputing (pp. 125-
134). ACM.

[12] Hwang, Kai, Geoffrey C. Fox, and J. J. Dongarra (2012). Distributed
and Cloud Computing: From Parallel Processing to the Internet of
Things. Amsterdam: Morgan Kaufmann. Print.

[13] Petitet, A. (2004). HPL-a portable implementation of the high-
performance Linpack benchmark for distributed-memory
computers. http://www. netlib-. org/-benchmark/hpl/.

[14] Macleod, D. (2013). OpenNebula KVM SR-IOV driver.

[15] Krause, M., & Recio, R. (2006). I/O Virtualization And
Sharing. Microsoft Corporation, 1-26.

[16] Burke, T., & Hat, R. (2010). Red Hat Enterprise Linux6 Roadmap.

[17] Mellanox Technologies (2013). Mellanox OFED for Linux User Manual
Rev 2.0

[18] Shafer, J. (2010) “I/O Virtualization Bottlenecks in Cloud Computing
Today”. In Proceedings of the 2nd Conference on I/O Virtualization
(WIOV'10).

[19] Grun, P. (2010). Introduction to infiniband for end users. White paper,
InfiniBand Trade Association.

[20] M. T. Jones. Virtio: An I/O virtualization framework for Linux.
http://www.ibm.com/developerworks/linux/library/l-virtio/

[21] Motika, G., & Weiss, S. (2012). Virtio network paravirtualization driver:
Implementation and performance of a de-facto standard. Computer
Standards & Interfaces, 34(1), 36-47.

[22] Intel LAN Access Division (2010). PCI-SIG SR-IOV Primer: An
Introduction to SR-IOV Technology, White paper

[23] Sur, S., Koop, M. J., Chai, L., & Panda, D. K. (2007, August).
Performance analysis and evaluation of Mellanox ConnectX InfiniBand
architecture with multi-core platforms. In High-Performance
Interconnects, 2007. HOTI 2007. 15th Annual IEEE Symposium on (pp.
125-134). IEEE.

[24] Open Fabrics Enterprise Distribution, http://www.openfabrics.org/

[25] IaaS Cloud Architecture: From Virtualized Datacenters to Federated
Cloud Infrastructures, R. Moreno-Vozmediano, R. S. Montero, I. M.
Llorente. IEEE Computer, vol. 45, pp. 65-72, Dec. 2012.

[26] Sadooghi, Iman, and Raicu, Ioan. “Towards Scalable and Efficient
Scientific Cloud Computing”, Doctoral Showcase, IEEE/ACM
Supercomputing/SC 2012

http://www.openfabrics.org/

	I. Introduction
	II. Proposed Work
	A. Infiniband
	B. SR-IOV Overview
	C. SR-IOV Implementation
	D. SR-IOV and OpenNebula
	E. Limitations

	III. Performance Evaluation
	A. Testbed
	B. InﬁniBand Network Level Evaluations
	C. MPI Performance on MicroBenchmarks
	D. Real Application (LINPACK)

	IV. Related Work
	V. Conlcusions and Future Work
	Acknowledgments
	References

