Scheduling Direct Acyclic Graphs on
Massively Parallel 1K-core Processors

Ke Yue!, Ioan Raicul»?

L Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
2Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA

SUMMARY

The era of manycore computing will bring new fundamental challenges that the techniques designed for
single core processors will have to be dramatically changed to support the coming wave of extreme-scale
computing with thousands of cores on a single processor. Today’s programming languages (e.g. C/C++,
Java) are unlikely to scale to manycore levels. One approach to address such concurrency problem is to look
at many-task computing (MTC). Many MTC applications are structured as graphs of discrete tasks, with
explicit input and output dependencies forming the directed edges. We designed both static and dynamic
schedulers for such MTC applications, scalable to 1K-cores. The simulation study by using a cycle accurate
NoC simulator shows that the proposed strategy result in 85% shorter makespan and 90% higher utilization
in comparison to random mapping. In addition, our heuristic can tolerate variance of the tasks’ execution
times at runtime and deliver improved makespan and utilization.
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1. INTRODUCTION AND MOTIVATION

In recent years, chip multiprocessors(CMPs), also known as multicore or manycore processors,
have been increasingly prevalent and undergo an continuous evolution. Large-scale CMPs, such as
Tilear 64-core TILE64 processor [1] and Intel 80-core teraflop processor [30], have been emerging
in the industry. Furthermore, Intel has tried to squeeze over a thousand processor cores onto a single
chip[2], and it was predicted that thousand-core processors will be commercialized over the next
decade.

In terms of communication infrastructure, the Network on Chip (NoC) [5, 9]is generally regarded
as the most promising interconnect solution for gigascale Integrated Circuits(ICs) [5] such as
manycore processors. Different communication traffic of the on-chip network will contribute to
different performance for the sake of the traffic flow latency. In reality, different applications
have different traffic flows. Even with the same application, depending on the deployment of
computation units of the application on the cores, the traffic pattern can be entirely different. For
homogeneous manycore systems, since the processor speeds are identical, on-chip communication
latencies become a dominant factor in determining temporal behavior for an application running on
the manycore system.

Connecting cores on the chip through an on-chip network has several advantages over dedicated
wiring, potentially delivering high-bandwidth, low-latency, low-power communication over a
flexible, modular medium. The pattern that the nodes are connected to each other varies depending
on different chip interconnection fabric. Typically, the NoC network architecture on an multi-core
includes several cores with routers attached to them.
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1.1. Scheduling Technique

To realize the maximum performance potential for executing an application on an NoC based
manycore platform, twofold promising methods are proposed for customizing the application-
specific NoC design. The first category of methodologies is to automatically design the NoC
topology [4, 20] which is tailor-made for a specific application and satisfies the communication
constraints of the design. An irregular NoC topology is generated by partitioning and mapping
the task graph to the cores using an automatical synthesis process which satisfies the design
objectives and constraints of the targeted application. These NoCs are developed specifically for
one application or as a platform for a small class applications.

Another proposed category of methodologies is to utilize scheduling algorithms [12, 32, 27]
for scheduling application-specific communication and computation tasks onto standard NoC
topologies, such as mesh, torus, etc. The scheduler is mostly implemented at the operating system
level, which is responsible for assigning the tasks to cores aiming to maximize performance,
decreasing energy cost, or reducing the thermal envelope. The scheduler has a good understanding
of the traffic characteristics for the task graph and the target NoC architecture. By using this
information, an application specific assignment strategy is employed automatically for maximizing
the optimization goal.

This paper focuses on developing the second category scheduler which automatically decides the
execution order of the computations and communication traffic flow of the task graph on general
purpose manycore platforms.

1.2. MTC Applications Represented by DAG

Many-Task Computing (MTC) applications originally introduced by Raicu [25] [26] are usually
linked into workflow graphs, including a number of discrete tasks with explicit input and output
dependencies between the tasks. MTC applications are typically communication intensive or data
intensive, impose a requirement for a larger number of computing resources over short periods of
time.

The MTC applications usually involve many tasks, ranging from tens of thousands to billions
of tasks, and have large variance of task execution times ranging from hundreds of milliseconds to
hours. MTC have covered a wide range of domains, from astronomy, physics, neuroscience, medical
imaging, chemistry, climate modeling, economics, and data analytic. Given a predefined DAG for
the MTC applications with known execution time of the task node and traffic flow, and a target
manycore architecture, the problem is to find the execution order of the computational tasks and the
communication transactions on limited computation and communication resources, which yield the
minimum execution time and utilization rate, on the target manycore architecture.

The work presented in this paper could benefit MTC systems that are dataflow driven (e.g. Swift
[317 [23], Cham++ [16], Fortress [3], Chapel [6], X11 [22]); these dataflow parallel programming
systems often use DAGs to represent the dataflow, making them great candidates for our proposed
scheduling heuristic to schedule large scale DAGs.

1.3. Contributions

This work’s contributions can be summarized as follows:

1. The design and implementation of a heuristic based static and dynamic scheduler for large
DAG:s.

2. The proposed scheduling heuristic could maximize the optimization goal, such as makespan
and utilization, especially for data intensive applications.

3. Proposed heuristic can tolerate the variance of the task’s execution time at runtime and deliver
improved makespan and utilization.

(2013)
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1.4. Organization

The remainder part of this paper is organized as follows. We first formulate the network latency
for wormhole routing in Section 2 which is necessary in the scheduling algorithm. Then , the
static and dynamic schedulers proposed are illustrated in Section 3. In Section 4, we evaluate the
proposed static scheduler and dynamic scheduler. Section 4 also shows our experimental results
from the NIRGAM, a cycle accurate simulator, and the random task graph generator benchmark
TGFF. In Section 5, related work regarding various scheduling strategies and NoC network latency
for wormhole routing method is discussed. Finally, in Section 6 we make an conclusion via
summarizing our main contributions and the future work.

2. ANALYSIS OF COMMUNICATION LATENCY FOR NOC

In order to design an efficient scheduling algorithm, it is crucial to first define the temporal behavior,
which is affected by computation and communication factors, on an manycore system. Since the
processor speed is identical to each other on an homogeneous manycore system, the computation
factor is easier to evaluate than communication. Generally, the communication between cores on
the NoC is based on wormhole switching technique and XY routing method [5]. For evaluating
the communication latency between a pair of cores, an accurate communication latency formula is
necessary for quantity the manycore system’s temporal behavior.

2.1. Communication Latency Between Cores for Traffic Flow

Now, we illustrate the latency formula we used to estimate the latency of transmitting a flit between
the cores. Network latency is highly dependent on the switching technique used and wormhole
routing method is employed on the manycore system. For wormhole routing, the packet sent via
the link is divided into a number of flits(flow control digits) for transmission, whose size usually
depends on the channel width. The flit is categorized as head flit, data flit, and tail flit. The head
flit including the destination core number is end first and examined upon arrival at an intermediate
core. If the next core is busy, then the whole flit is stored at buffer of this node and the rest flits will
go on to transfer to the core where the head flit is waiting.

Based on the communication characteristic of wormhole routing, the communication latency
between a pair of cores is determined by (1) the distance (the number of physical hops on the path
of a flow) between the pair, and (2) the congestions that occur on each hop caused by interferences
from other traffic flows contending for the link.

Therefore, in order to estimate the effect of congestions on the communication latency, we
introduce the concept of the usage count of a physical link. Intuitively, the usage count U, , of
a physical link e, ,, under a specific routing algorithm is the number of traffic flows that use the link
(assuming unidirectional).

Example 1 (Usage Count)

Consider the following 4 x 4 mesh with 16 x (16 — 1) = 240 pairwise traffic flows as shown in
Figure 1. In X-Y routing, link e; 5 will be used only for flows from source cores {cg, c1, c2, c3}
to destination cores {cs,cg,c13}, and link es; will be used only for flows from source cores
{c4, ..., c15} to destination core {c; }, respectively.

oEnEoED

Figure 1. Usage counts of physical links e1 5 and e5 1

(2013)
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The usage count U, 5 and Us ; for physical links e; 5 and e5 ; are respectively calculated as

U1,5 = |{CU,C1,C27C3}| X |{C5,Cg,013}| = 12 (1)

and
U5,1 = |{C4,. . .,015}| X |{Cl}| =12 (2)

In other words, if the X-Y routing algorithm is applied, 12 communication flows use link e; 5 and
es,1, respectively.

In particular, according to [10], if a physical link e, ,, has a constant processing speed, or capacity,
C, i.e., then the time for a packet of M bits is deterministic with value 6 = M/C'. Assume there is
N + 1 periodic incoming package streams (i.e., the usage count is U, , = N + 1) with period T
and packet size no larger than M, let W, ,, be the random waiting time experienced by an arbitrary
packet at physical link e, , (the delay of the packet is thus W, ,, + J), we have the following [10]:

P{W,, >t} =TV Px(T,t) 3)

where

2

Py(T,t) =Y qnu(t)(T — N6 +t) 4)
l

I
<

and the coefficients gy ;(t) is recursively computed as

qoi(t) =0 (5)

qno(t) = [max{0,nd — ¢}]" (6)
n—2 l

ni(t) = % > (k N 1>6l—k+1qn_1,z(t) @)
=k—1

fori<k<n-1.

Figure 2 depicts P{W, , > t}, the random waiting time of a packet at a physical link e, , under
various usage counts, where the common period of every flow is 7' = 6, and the processing time for
a packet is § = 1. Note that the probability for zero waiting time is P{W, , =0} =1 — P{W,, >

0}.

. h
0 05 1 15 2 25 3 35
t (Waiting Time)

Figure 2. P{W3 4 > t} under various usage count Uy 4
Equation (3) defines the waiting time of a packet at link e, ,. As a traffic flow 7; ; experience a
random delay at each link along its path, the total latency D; ; experienced by 7; ; is the sum of

random variables W, , + 6, (z,y) € 7; ;, i.e., the random delay that occurs on each hop along the
path of 7; ;, plus an additional delay 4 of sending the packet to the router at the source core:

Dij=0d0+ Y (Wey+3d) (8)

(z,9)€Ti,j

(2013)
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where (z,y) € 7; ; is a shorthand notation for link e, , being in the path of 7 ;.

Note that (8) captures both the distance and the congestion factors mentioned at the beginning
of this section: the distribution of each waiting time W, , at link e, , is determined by the usage
count and thus the congestions of the link, and the summation of processing times § along a path
of a flow 7; ; captures the distance. Therefore, in theory, we can obtain the probabilistic behavior of
the communication latency between any pair of cores in the system based on equation (8).

However, since obtaining the distribution of the summation of random delays in (8) requires
taking the convolution product of the probability measures of each random delay in (3), finding the
distribution of the total latency of a flow is computationally difficult. Thus, we resort to finding the
expectation of a flow 7; ;’s total delay E{D; ;} in Section 2.2.

2.2. Expectations of Pairwise Communication Latencies

Given the problem settings defined in Section 2.1, the expectation of the total latency D, ;
experienced by 7; ; is calculated as

E{Dij}=ESd+ Y. (Wey+0) )
(z,y)ETij
= Y E{Wau}+(ml+1)0 (10)
(z,y)€Ti,;
.. / P{W,y > t}dt + (5] + 1) (11
(z,y)E€Ti,; 0

where (10) follows from the linearity of the expectation and (11) follows from the fact that for any
positive random variable X, we have

E{X}:/Oooxf(x)dx:/ooo/owf(x)dydx

:/Ooo /yoo f(x)da:dyz/o P(X > y)dy

Note that in (11), P{W,, >t} is given in (3). Although analytically calculating the integration
fooo P{W,, > t}dt in (11) is hard, the result can be obtained by numerical integration.

For instance, Figure 3 shows the relationship between the common period 7" and the expectation
of the latency of a traffic flow of four hops in a 3 x 3 mesh with § =1, § = 0.8, and 6 = 0.5,
respectively.

As can be seen from Figure 3, the expectation of the communication latency increases
dramatically as the period of every flow decreases, but approaches the congestion-free latency when
the period increases.

We present the experimental results of the communication latencies in Section 2.3 and compare
the analytical model presented in this section with simulations.

2.3. Experimental Results on the Communication Latency Distributions

In order to evaluate the correctness of the analytical model for pairwise communication latencies
given in Section 2.1 and 2.2, we use NIRGAM simulator to specify a 4 x 4 mesh with 2 virtual
channels per physical link (as in Figure 1) and generate traffic to all the other cores with injection
rate’ p = 0.2 which means each source injects a new flit one of every 5 simulator cycles. Since

TInjection rate is defined as the rate at which flits are injected into NoC. The simulator’s cycle time is a flit cycle, the
time it takes for a single flit to be injected at a source, and the injection rate is specified in flits per flit cycle.

(2013)
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Figure 3. Expectation of Communication Latency

each core is sending flits to all the other n — 1 cores with periods 7', we have that (n — 1)% = p,
and thus 7 = 2=1 = % = 75. The router pipeline has three stages, namely, routing computation,
arbitration, and crossbar traverse, in which each stage takes one clock cycle, i.e., d = 3.

With § and 7', and using the corresponding usage counts U; 5 = 12 and Us g = 16 for physical
links e; 5 and e5 g, respectively, we obtain the cumulative distributions of the delays D; 5 =
W15+ 20 and D5 g = W59 + 26 by (3) and (8). The delay distributions are plotted in Figure 4(a)

and 4(b), respectively.

1 1
0.8 0.8
06F o6l
0.4} 0.4}
0.2 0.2
00 é 10 15 20 25 30 35 4‘0 00 é 10 15 20 25 30 35 4‘0
(a) D1,5 vs actual delays on eg 5 (b) Ds,9 vs actual delays on e5 o

Figure 4. Cumulative distributions of D1 5 and D5 g of the analytical model, versus normalized cumulative
histograms of delays of e1 5 and es5 g in the simulation.

By comparing the theoretical distributions of the delays with the corresponding normalized
cumulative histograms of delays obtained from simulation results, we conclude that the analytical
model gives a good approximation of the probabilities on the lower range of communication
latencies.

(2013)
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3. THE SCHEDULING SOLUTION

In this section, we illustrate the overall techniques for assigning the task to the processors to
maximize the overall execution time and utilization rate. These include how to design an static and
dynamic scheduler, as well as their execution overhead. The task scheduling problem for more than
three processors is well known to be NP-complete. The methods aiming to find the optimal solution
for the given objective are limited by the amount of time and memory needed since they grow
as exponential function of the problem order. Because of the intractable nature of the scheduling
problem, it is desirable to develop heuristic algorithms which could provide suboptimal solution
within reasonable amount of computation time. Therefore, given an task graph with n nodes and
manycore system with m cores, we introduce an heuristic with time complexity O(nm) to get an
approximate optimal scheduling result on a 1K manycore system, which features 2D mesh topology
due to their structural regularity and suitability for VLSI implementation. However, the heuristic
could be easily applied onto other topologies (e.g., butterfly or fat tree).

3.1. The Static Scheduler

To formulate the problem in a more formal way, we need to introduce several concepts first. For
representing the characteristic of each task and traffic flows among them, the Directed Acyclic Graph
DAG is defined as follows:

Definition 1 (Directed Acyclic Graph)

An DAG is a directed acyclic graph G=G(V,E), where each vertex v, € V represents a computational
task of the application and the directed edge e; ; € E, represents the communication from the task
v; to v;. The weight of the edge w; ; represents the data volume sent in bits from the task v; to v;.
Task node v; can only start to send packet after it finish its execution and its predecessor v; can only
start to execute after it receives all the packets sent from its predecessors.

Definition 2 (Task node’s end timestamp)
For a given task graph, we define end timestamp of a task node v; as v. This indicates the timepoint
when the task node ends its execution.

Definition 3 (Communication cost)
For the manycore system with a DAG mapping to it, we define the communication cost between
two task node v; and v; as C;;, which is calculated as:
Wis
C,’j = ]\2] X E{DZJ} (12)

where E{D,; ;} is the total latency D; ; experienced by traffic flow 7; ; sent from the task v; to v;,
M is the number of bits each packet has, and <7 is the total number of packets for traffic flow 7; ;

Earliest start time=250

Figure 5. The earliest start time of the node

(2013)
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Definition 4 (Core’s current time)
For the core on a chip, it may be already allocated several task nodes. The time stamp of executing
all the tasks allocated on it is defined as core’s current time cf.

Definition 5 (Task node’s earliest start time)
For a given DAG, we define task node v;’s earliest start time v as the time when the task node v;
starts to execute.

Before we start the illustration of the heuristic, it is crucial to understand the node’s earliest start
time v and the core’s current time c§. All the core’s current time cf is O initially, and will increase
if task is allocated to the core. When a task is allocated to it, the core’s current time will be the
timepoint that it finish this task.

For the task node’s earliest start time, there are generally three cases:

1. If the task node v; has no predecessors which is usually the source node of the DAG, then the
core’s earliest start time v; will depend on whether the core allocated to it is available. The
two cases are:

o If the core allocated to it is available and have no other task running at this time, the task
could start immediately and the earliest start time v; will be 0 in this case.

e If the core allocated to it is not available, the task must wait until the timepoint, or core’s
current time ¢{, when it finish the execution of the task. Thus, in this case, the task’s
earliest start time v; would be identical to core’s current time ¢§ on which it is going to
run.

2. If the task node v; has predecessors, it can only start to execute after it receive the last packet
from all the predecessors. Assume we know which core these predecessors are on, then based
on equation 9, we can calculate the timepoint that v; receives the last packet sent from all its
predecessors. The two cases are,

o If the core allocated to it is ready to use, then the node v;’s earliest start time v; would
be the timepoint that v; receives the last packet sent from all its predecessors.

o If the core allocated to it is not ready to use and has tasks running on it, the task must
wait until the timepoint, or core’s current time c{, when it finish the execution of the
task. Then earliest start time v] equals the core’s current time c§.

Take an example shown in Figure 5, the task node v; has two predecessors vs and v with the
corresponding end timestamp 50 and 100. The communication cost between v, and v; is 200, so
that the last pack arrive v; at 250. Also the last packet sent from vg arrives at v, at 200 by sum wv3’s
end timestamp and the communication cost from vs to v;. If we assume the task is assigned to core
c1, and it has finished all the execution of the task assigned to it. Thus, the task node v; can start to
execute at time 250 which is its earliest start time.

However, if core c¢; has task running on it now and it can only finish the execution time at
timepoint 300, which is just core ¢;’s current time c§. Therefore, The task v;’s earliest start time v
would be 300. Thus, based on the above example, whether one node can be executed depends on its
predecessor and the core it is mapped to.

Now, based on the above analysis, we give our heuristic algorithm for a DAG with n task nodes
and a manycore system with m cores as follows:

In order to give an concrete impression of our algorithm, we take an simple example illustrated
in Figure 6. Assume there are several nodes in the ready list including v2 and v,. Sort the ready
list based on their execution time and we decide to choose v, as the next scheduling node. v has a
predecessor v; and is already mapped to core cg. The communication cost between v; and vs is 4.
Now we start to try to schedule v in the ready list since it has the smallest execution time. If we
map it to the core c;,the hop count between c; and c¢g is 3. Then communication cost Cg could be
calculated by the definition.

Then we try the second core and iterate through all the cores until the last core ¢,,,, which is 4 hop
count from cg. Choose the one with smallest C;;; and allocate v to that core.

(2013)
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Algorithm 1 Mapping algorithm

1: Add the nodes which do not have any predecessors into a readylist.
2: Initialize the makespan as 0.
3: for every node in the ready list do
4:  Sort the order of the task nodes based on task node’s execution time and choose the one with
smallest execution time.
5:  for every core on the chip do
6: Put the node on the core j and calculate node V;’s earliest start time v;.
7: Compare v; with this core’s current time c5.
8 i
9: Check whether v} is smallest when we map this node to different cores.
10:  end for
11:  After we find the smallest v, we map this node to the core we find.
12:  Update the current time on this core and this node’s endtime.
13:  Compare this node’s end time with makespan, if it is larger, then update it.
14:  Delete this node from the ready list.
15:  Check this node’s successor, if its predecessors are all deleted from the readylist, add it to the
readylist.
16: end for

If ¢§ is larger than v, then this node’s earliest start time is updated with cj.

- >
H0p15:3
W12:4
U ve=10 :
‘ Exec=3 '
Hopme=4

Figure 6. Simple example for the algorithm
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Since v3’s only predecessor vy is allocated, v3’s all the predecessors are scheduled and v3 could
be added to the ready list now. And the algorithm try to start again from the first step. Figure 7 is
our implementation code for the heuristic.

3.2. The Dynamic Scheduler

In this section, we define the dynamic scheduler which is based on the static scheduler introduced in
the previous section. It is based on the strategy used in the static scheduler with the added flexibility
of considering only a certain number of cores in making its scheduling decision. In the previous
section, at each step, the candidate cores considered for scheduling are all the 1K available cores
on the NoC. The time complexity to compare different candidate cores is acceptable for static
scheduling, since it is executed in advance and will likely not affect the total execution time of
the DAG at runtime, provided that the information of the DAG, such as the execution time of the
task node and the communication time of the traffic flow, is known in advance. However, in real
scenario, those information is not available until the DAG is executed on the NoC. Therefore, the
time used for comparing 1K cores on the NoC for each step may affect the total execution time of
the DAG on the manycore system.

To solve this issue, we set an stepsize parameter, which indicates the number of cores evaluated,
at each scheduling step. After scheduling a task node onto one core on the NoC, we need to choose
another core among the candidate cores to run the next task node in the DAG. The hop count between
the candidate core and the core on which we just schedule a task node can not extend the number of
stepsize. When the cores located in one corner of the mesh, the farthest core would be the one on
the opposite corner. Thus for a 32x32 2D mesh with XY routing methodology, the stepsize could
be ranging from 1 to 62 according the number of hops in the 2D mesh topology and XY routing
method. It could be easily seen that when the stepsize equals 62, all the cores on the NoC would
always be the candidate cores. In this case, the scheduling result would be identical to that get by
the static scheduling.

One concern of the dynamic scheduling is the problem of computation cost which should not
be omitted at runtime. In order to decrease the time spent on evaluating the appropriate cores for
each task node, we further apply a storage technique. In section 2.2, it is necessary to calculate the
integration fooo P{W,,, > t}dt in equation (11) by numerical integration for getting the network
latency between cores. To avoid these excessive computation cost, we use a matrix to record the
numerical integration result and retrieve result at runtime. For the fooc P{W,,, > t}dt, the only

earliestT=0;

/I calculate the task node’s earliest start time

for (int i=0; i<readylist[0].predec.size();i++) {
nodeindex=readylist[0].predec[i];
xdiff=nodearr[nodeindex].x-rowindex;
ydiff=nodearr[nodeindex].y-columnindex;
hopcount=abs(xdiff)+abs(ydiff);

/I calculate the earliest start time
if (costT>earliestT){
earliestT=costT;
}
}

/I compare the earliest start time with the core’s current time
if (earliestT<corarr[rowindex][columnindex].currentTime){
earliestT=corarr[rowindex][columnindex].currentTime;

}

/I choose the core which could achieve minimum global time
Update(earliest);

Figure 7. Code piece

(2013)
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variable is T and N which decides the value for this equation. The row and column of the matrix is
represented by T and N and the corresponding item in the matrix is the numerical integration value
for the equation. For example, if both the value for T and N is ranging from 1 to 100K, and each
item in the matrix is represented by an integer with 4 bytes. The resultant space requirement would
be 40M bytes.

3.3. Run-time Overhead of the Dynamic Scheduling

For the time complexity between static and dynamic scheduling, our algorithm is based on the
assumption that all the node’s execution time is known a priori and is an offline static scheduling
algorithm. Because we think that the comparison of the cores for each step after we choose a task
node will cost much time, and this time may affect the total execution time.

However, in some cases that those time is very small compared to the node’s execution time, our
algorithm could be used in the dynamic scheduling algorithm. This is decided by the innate attribute
of our algorithm that at every step we do not need any future information. Every information we
needed, such as the predecessor’s execution time, the current node’s execution time, and all the
core’s current state are all known at this point.

Therefore, if the time spend on the scheduling is not significant, our algorithm could be used at
runtime. For example, if one task node’s execution is 1000 ms, while the scheduling only use 1 ms.
Even there are 10* nodes in the task graph, the total time needed to schedule would be 10%. And the
total execution time should be at least 107. The effect on the makespan and the utilization rate could
be acceptable under certain conditions.

Lastly, we examine the run-time of the dynamic scheduling strategy. The DAG’s task node’s
execution time is randomly generated ranging from 1s to 50s. The communication cost on the edge
will fall into the range between 10s to 20s by calculating 7”?”’ . The computation time for the dynamic
scheduling algorithm with various DAG size and stepsize is reported in Table I. The experiments
were implemented on a machine with 4GB main memory and an Intel Duo 2-core CPU running at
2.2GHz. In practice, the 1K processor could allocate several processors, rather than 2 core, to work
on the dynamic scheduling heuristic simultaneously, which could contribute to less computation
cost.

It is worth noting that the computation cost is increasing when the stepsize parameter and the
DAG size is increasing. Due to the time complexity O(nm), it is expected that the computation cost
for the scheduling algorithm increase linearly according to the number of task nodes in the DAG.
Because m indicates the number of cores which is fixed and only the number of task nodes,n, affect
the total computation time. As listed in Table I, the computation cost grows almost three time when
the DAG’s size is doubled.

| stepsize| 1k | 2k | 4k | 8k | 16k |
1 0.875 3.188 10.359 | 43.73 142.297
2 0.86 3.203 10.344 | 45.297 | 141.08
4 0.875 3.219 10.453 | 44.61 143.11
8 0.937 3.313 10.765 | 44.39 146.125
16 1.047 3.61 11.281 | 45.59 148.35
32 1.391 4.297 12.766 | 48.469 | 155.98
62 2.156 5.75 15.438 | 54.437 | 164.922

Table 1. The time spent in seconds of dynamic scheduling with different stepsize for DAG 1k,2k, 4k, 8k,
16k.

(2013)



12 KE YUE, IOAN RAICU

4. EVALUATION

In this section, we try to evaluate the performance result, such as utilization, and makespan,
generated by the algorithm we proposed as well as an ad hoc random algorithm. We use Task Graphs
for Free (TGFF) benchmark [7] to generate DAG with different number of task nodes and an cycle
accurate NoC simulator NIRGAM [15] to evaluate the performance result. We have developed a
plug-in to the NIRGAM simulator for attaching the application to NoC simulator, since the initial
simulator only supports a uniform traffic pattern on the manycore topology. The simulations and
TGFF benchmark are run on a machine with 4GB main memory and with an Intel Duo 2-core CPU
running at 2.2GHz.

The proposed scheduling strategy result in 85% shorter makespan and in 90% higher utilization
in comparison to a random mapping. We also simulate an scenario that when the execution time of a
DAG changed at runtime (e.g. inaccurate DAG information), how the makespan and utilization will
be affected compared with the case when the DAG is not changed. The result shows that, if the total
execution time of all the task nodes in the DAG does not change and only the individual task node’s
execution time changed, the makespan and utilization of the proposed algorithm did not vary.

4.1. Experiment Setup with TGFF and Nirgam

TGFF is used to generate random task graphs (DAGs) whose characteristic is restricted via certain
parameters in the option file. These DAGs are used in scheduling and allocation research in
embedded system, operating system, as well as distributed systems. We use TGFF to generate DAGs
for our experiment with size, 1K, 2K, 4K, 8K, 16K. The parameter for an typical 1K DAG’s option
file is illustrated in Table II.

Parameter | Meaning Value
tg_cnt number of DAG to generate 1
task_cnt number of task nodes 1024

task_degre¢ maximum number of incoming | 56
and outgoing arcs
table_cnt | number of table defining node and | 1
transmission’s execution time
table_attrib| indicate cost as only variable and | 80 20
cost the average value is 80+/— 20
Table II. The parameter used in TGFF

NIRGAM is a modular and cycle accurate simulator developed using SystemC. In NIRGAM,
a 2D NoC mesh of tiles can be simulated by different design options, e.g., virtual channels, clock
frequency, buffer parameters, routing mechanisms and applications patterns, etc. Each NIRGAM tile
consists of various components, such as input channel controller, virtual channel allocator, output
channel controller, and IPcores. Each IPcore is attached to a router by means of a bidirectional core
channel. In NIRGAM, each tile is a traffic generator sending packets for certain time interval based
on a specified task graph. Every packet is sent via wormhole switching and deterministic XY routing
on the NoC.

However, the NIRGAM simulator was only designed for a maximum of 81 cores, (9x9). In
order to run the simulation for massive number of cores, we have extended the simulator to support
massive number cores, with a 2D 32x32 mesh. To start the experiment, the configuration file is
illustrated in Table III

Since the simulator does not support traffic pattern as in the DAG’s edge, we need to write
program to read the information of the DAG and simulate the traffic pattern while we execute our
scheduling strategy. For each tile on NIRGAM, we implement a program which could send and
receive the packets attaching to each tile. The send thread send the flits to the destination tile for
each certain interval based on the edge’s weight of the DAG. The time interval between flits is fixed
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Parameter | Meaning Value
TOPOLOGY| manycore topology MESH
NUMROWS| number of rows 32

NUMCOLS | number of columns 32
RTALGO the routing algorithm | XY
WARMUP | time used to warmup | 5
the simulator
FLITSIZE | the size of one flit 124 bytes
Table III. The parameters used in NIRGAM

‘Ad hoc uiization 1K

jon(%)

(a) Utilization for 1K with (b) Utilization for 2K with (c) Utilization for 4K with (d) Utilization for 8K with
ad hoc ad hoc ad hoc ad hoc

Uiization for adnoc of 16k

(e) Utilization for 16K (f) Utilization for 1K with (g) Utilization for 2K with (h) Utilization for 4K with
with ad hoc static scheduling static scheduling static scheduling

Utization for satc scheduling of 8k scheduing of 1(8)

(i) Utilization for 8K with (j) Utilization for 16K (k) Utilization for 1K with (1) Utilization for 2K with
static scheduling with static scheduling dynamic scheduling of hop dynamic scheduling of hop
8 8

Utization fordynamic scheduiing of 8K()

Utizationfordynamic scheduiing of 8k(8)

(m) Utilization for 4K with (n) Utilization for 8K (o) Utilization for 16K
dynamic scheduling of hop with dynamic schedul- with dynamic scheduling
8 ing of hop 8 of hop 8

Figure 8. Comparison between ad hoc and scheduling utilization result
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clock cycles which is defined as 1ns in our configuration file. When sending the packet, the sending
timestamp, task node sending the flit, as well as the core number for the source tile is recorded in the
payload of the flits. The receive thread receive these flits, record the receiving timestamp and decide
whether to execute the descendent of the task node running on the source tile. When the destination
tile receives the last flit of the task node executing on the source tile, it triggers its own send thread
to execute the descendent task and send flits to other tile.

In the following section, we use the NoC simulator NIRGAM, as well and our plugin to evaluate
the efficiency of our result generated by scheduling algorithm. After the scheduling algorithm is
run, each core on the chip is allocated task nodes and execute them based on the DAG given. The
DAGs are randomly generated with TGFF for 1K, 2K, 4K, 8K, 16K number of task nodes, which
are mapped to a manycore NoC with 1K number of cores. The DAGs varies significantly in their
size and structures, which could be used to access the quality of our heuristic with diverse abstract
graphs.

4.2. Static Scheduling Evaluation

We first evaluate the quality of static scheduling, in terms of makespan and utilization rate, compared
with an ad hoc scheduling strategy. The DAG’s size varies from 1K to 16K, and we assume that the
DAG information, including the task node’s execution time, the traffic flow’s transmission time,
as well as the dependency relationship among all the task nodes, are known a priori before it is
executed. Thus, based on the DAG, we could use the scheduling algorithm to decide the mapping
strategy in advance.

Based on the scheduling strategy, we use NIRGAM to simulate the traffic flow characterized by
the DAG and measure the makespan for DAG with different size. The result is shown in Figure 9,
in comparison to the makespan get by an ad hoc scheduling strategy. The x axis shows the number
of nodes in the task graph and the y axis shows the makespan obtained by NIRGAM. There are two
lines in the Figure 9 which illustrate the makespan for two scheduling strategy. The top line with
larger makespan for all the possible DAGs are obtained by running the ad hoc heuristic. The bottom
line is the makespan calculated using the heuristic proposed in previous section.

For different DAGs with significantly different sizes, the makespan obtained by our heuristic
always perform better than the ad hoc strategy. As illustrated in the figure, our approach achieves as
high as 85% less makespan than the ad hoc heuristic. Furthermore, with the increasing of the DAG
size from 1K to 16K, we could observed from Figure 9 that the difference between the two heuristic
becomes larger, which means that our heuristic also behaves better on scalability. The increase of
the makespan is less than that of ad hoc strategy.

Then we look at the scalability of our static scheduling methods. As plotted in Figure 9, with
the increase of the DAG size, there is no steep increase in the makespan. Although the size of the
DAG increased 100% at each point, the makespan is increased by 25%. Therefore, for applications
with large scale DAG, performance degradation would not been an issue with the proposed static
heuristic.

Now we make a comparison between two scheduling strategy in respective of the utilization rate.
This is could be observed in Figure 8, where x axis and y axis show the coordination of the core on
the 2D mesh. Each bar represents the corresponding core’s utilization rate. As shown in Figure 8,
the utilization rate calculated using our heuristic is mostly around 40%, while the highest utilization
rate ad hoc strategy is only 4%.

As plotted in Figure 8, our scheduling algorithm performs better on utilization rate in addition to
makespan. While the utilization rate of our figure are as high as 50%, the utilization rate of the ad
hoc methods are only as high as 4%

When we increase the size of the DAG by adding more task nodes from 1K to 16K, the utilization
rate for our heuristic slightly decrease from 45% to 38%. Though utilization rate of ad hoc increase
from 2% to 6%, the average utilization rate of our scheduling strategy should still performs better.
Because the DAG used is the same for both scheduling strategy, then the total execution time of all
the task nodes would be the same, which means the average utilization rate, calculate by dividing the
makespan by the average execution time of each task node, obtained by our heuristic still behaves
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better than the ad hoc strategy. Thus, only a small portion of the cores behaves better on the increased
percentage over the utilization rate. And the work load among the cores for our heuristic is more
even when the DAG increased, which could explain why the utilization rate decrease.

That means if the computation intensive application is mapped to this platform, the algorithm
could get a mapping result with better utilization rates. In order to evaluate this, we generate four
different DAG with 4k task nodes. Initially ,the execution time is randomly generated from 1 to
50 and the communication cost is randomly generated from 100 to 200. Afterwards, we divided
the range for the communication cost by 10 for each step, thus generating the DAG with the
characteristic for the data intensive applications.

Then we apply the static scheduling strategy and generate the average utilization rate and the
maximum utilization rate which is illustrated in Figure 10. The average utilization rate is the
summation of the total utilization rate divided by the total number of cores. The maximum utilization
rate is the highest utilization rate among all the cores on NoC. We can observe from the Figure 10
that, with the increasing ratio of the computation load in the DAG, both the average utilization rate
and the maximum utilization rate start to increase.

4.3. Result for Dynamic Scheduling

In this section we illustrate the performance result for dynamic scheduling with different step size.
Figure 8 shows the makespan obtained by NIRGAM simulation result for DAGs ranging from 1k
to 16K, represented by 5 different lines. The x axis of Figure 8 indicates the step size, that is the
total hop count number, used by the dynamic scheduling. When the stepsize equals 62, the dynamic
scheduling could be deemed equally to static scheduling. The top line in the Figure 11 has the
highest makespan, since it has the largest number of task nodes, which is 16K in the DAG. For all
the DAGs ranging from 1k to 16k, the makespan decreased when the stepsize increase from 1 to 62.

Makespan for the static scheduling and ad hoc random mapping
14000 . . .

—©— Ad Hoc Result
—+H— Static Scheduling Result

12000

10000

8000

6000

Makspan(ns)

4000

2000 7
[

O | | |
1k 2k 4k 8k 16k

DAG size

Figure 9. Comparison of makespan between static scheduling and ad hoc mapping
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The reason is that, with more cores considered at each step, it is capable of getting better optimal
solution from the candidate cores. But that also means spending more time for the algorithm to make
scheduling strategy. In other words, it is better to choose the best stepsize which could maintain best
performance result using least time. As plotted in the Figure 11, we could observe that after stepsize
16, the makespan rarely make large difference. If we choose the start cores in the middle of the
2D mesh with coordination (15,15), stepsize 16 will guarantee to cover all the available cores on
the NoC. If the start core locates in the leftmost or rightmost corner, the stepsize 16 will guarantee
to cover 25% cores on the NoC. Illustrated from the Figure 11, stepsize 8 or 16 could be an good
option when implementing the dynamic scheduling.

So when the stepsize is 1, it is worst case for the dynamic scheduling algorithm and the makespan
should be the highest. But if we compare the makespan in the Figure 9 and the Figure 11, we could
see that the makespan is still less than that for ad hoc strategy. For example, the worst makespan for
16K DAG using the dynamic scheduling is 30% less than that of the ad hoc scheduling. Further, for
1K DAG, the makespan using the dynamic scheduling with stepsize is more than 50% less than the
ad hoc scheduling.

If we fix the stepsize, the utilization rate for the simulation result of dynamic scheduling also
performs better than ad hoc, as static scheduling, as plotted in Figure 8. In Figure 8, we use stepsize
8 and vary the DAG size from 1k to 16k. The resultant average utilization rate behave still better by
our same discussion on the static scheduling algorithm. With the increasing of the DAG size, say
16k, nearly all the cores are used on the NoC.

In addition, another advantage of our algorithm could be claimed from the Figure 8. It is obvious
that the cores we used are always clustered instead scattered on the NoC. This could leave a whole

Utilzation for data intensive applications
50 T T T T

—— average for static scheduling
— maximum for static scheduling
—<— average for ad hoc
20l — " maximum for ad hoc

Utilizaton(%)
N
(61

Il Il
[1 50] [100 200] [150] [10 20] [150][12] [150][0.10.2]
Compuation cost and communiation cost

Figure 10. Average utilization and maximum utilization for communication intensive applications and data
intensive applications
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Figure 11. The makespan of different DAG for dynamic scheduling with different hop ranging from 1 to 62

area, while reducing the fragment, for being allocated to other DAGs, and improve data locality in
running data-intensive DAGs.

For massive number of cores, hopcount becomes an essential characteristic that must be taken into
consideration. Remote nodes tend to have less number of cores on it because the communication cost
added by the hopcount.That explains why remote cores have less number of task nodes allocated on
it. Because if we map the first node onto cores (0, 0) at leftmost corner with the scheduling heuristic,
the following nodes will be mapped to remote cores located in the direction for the rightmost corner
in Figure 8. If it is put on a remote core, the hop count, or the communication cost needs to be taken
into account, so the rightmost corner must not have as more task nodes allocated onto it as the cores
distributed on leftmost corner to reach a smaller makespan. If we still put a lot of computations on
the remote cores, the total cost of the computation and communication altogether would degrade the
performance of the overall system.

4.4. Vary the Execution Time

For static scheduling, the information of the DAG, such as the task node’s execution time is known
a priori. However, in real system, the task node’s execution may vary at runtime, thus make
a possibility on performance degradation. In order to evaluate the negative effect on the static
scheduling on the original DAG, we design an experiment to evaluate such result by varying the
execution time at runtime.

Initially, an error rate error% is defined as the inaccuracy parameter and we implement a function
generating random number according to uniform distribution between (1-error%) and (1+error%),
with the average being 1. The newly generated random number is multiplied to the execution time
of each node. For example, if an error rate 50% is used, the node’s execution time for the new DAG
would be some random number between 10%(0.9) and 10*(1.1), or between 9 and 11. We call the
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Makespan for error rate (50%)
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Figure 12. The makespan for error rate 50%

original DAG as DAGO and the new DAG as DAGS50. If there are large number of nodes in one DAG,
the summation of the overall execution time of the different DAG equals each other because of the
uniform distribution. This avoid the unfair case that the total execution time changed dramatically.

The first experiment we do is to employ our static scheduling algorithm based on DAGO, then
we assume the real DAG at runtime has an errorate of 50%. In other words, DAG50 is executed
based on the scheduling strategy of DAGO indicates by the bar with notation static DAG0-DAGS50
in Figure 12. The bar with notation dynamic DAG50-DAGS50 means that we employ dynamic
scheduling on DAGS50 and still execute DAGS50. The number in the parenthesis indicates the stepsize
used in the dynamic scheduling. If could be seen from the Figure 12, even the individual node in the
DAG may change its execution time as much as 50%, the makespan is almost identical to the result
when the DAG is correct or we directly dynamic scheduling this DAG. Furthermore, even the DAG
varies at runtime as much as 100%, the makespan is still within almost 5% using static scheduling
strategy on DAGO and dynamic scheduling on DAG100 as shown in Figure 13. Therefore, we could
make a conclusion that our heuristic could tolerant certain degree of task execution time variance
and still believed an improved performance result.

5. RELATED WORK

Before designing scheduling algorithm, it is crucial to understand the network latency encountered
by each traffic flow on the NoC. Kiasari [18, 21, 19]compute the average delay due to path
contention, virtual channel and crossbar switch arbitration using a queuing-based approach, which
could accurately depict the blocking phenomena of wormhole switching. They calculate the delay
latency using M/G/1 queuing model to predict the average message latency of a wormhole switched
2D torus NoC with deterministic routing(XY routing). Traffic model evaluating the routing delay
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in heypercubes and meshes is investigated in Guan [11]. Adaptive routing performance model is
built up in [8] to evaluate average latency delay in wormhole routing encompassing the switching
blocking time. All the above analysis is based on assumption of the uniform traffic. Azad [28]
provides a fully-adaptive wormhole-routed k-ary n-cubes latency analytical model under a non-
uniform traffic pattern. Then they analysis communication delay for the bit-reversal non-uniform
traffic pattern on the manycore system.

Many static scheduling approach fully exploits application-specific information off-line [32, 27,
12] for the manycore platform, which in turn leads to the performance maximization and reduce
the overhead to run mapping algorithm on-line. These approaches assume the knowledge of the
task graph and its characteristics before execution starts. Application-specific custom topology
design has been explored in many works [4, 20, 24, 29]. By parameter tuning (e.g. buffer depth,
clock frequency), instantiation, synthesis, simulation/emulation, an application-specific topology is
generated.

To achieve the desired performance for applications in NoC-based manycore platform, there are
generally two approaches, i.e., synthesis and scheduling. The first approach uses automatic synthesis
process to partitioning and mapping a given application’s task graph to cores so that the design
objectives and constraints of the targeted application are satisfied [4, 20]. From initial specification,
the synthesis process usually takes several hours, or even several weeks [20], to produce an optimal
application-specific NoC layout, which may not necessarily be a regular mesh.

The second approach aims at general purpose NoC platform, such as mesh, torus, and uses
scheduling algorithms [12, 32, 27] to map application computation and communicating tasks onto
such NoC topologies. Depending on the applications’ characteristics and communication cost, it is
possible that not all the cores on a given platform are utilized by the application.

The above two are both up-down approaches, that first analyze applications’ specifications and
generate a specific hardware or a specific allocation. The topology virtualization is different from the
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above, which takes a bottom-up approach. It means that the application scheduling is supposed to be
fixed and developers are unaware of the hardware change. Virtualization provide a unified hardware
interface for applications. The topology virtualization problem for general purpose computing is
discussed thoroughly in [34, 33].

Different from the above scheduling methods, we focus on scheduling the large scale DAGs. The
size of the DAG, on which those previous work mentioned above are working on ,is usually within
several hundred. A large number of DAG should be able to saturate the communication component
or impose a heavy load on the computational component. Furthermore, the DAG considered in the
previous work, has an innate attribute from the DAG we considered. The DAG we studied here
is actually the workflow graph, generally used in MTC, where each node stops execution after it
finishes its data transmission. Previous work, especially in realtime computing literatures, focused
on the DAG which keep sending packets for a certain interval and stops only when the system stops
executing. Further, previous work did not consider a manycore platform with such a massive number
of cores, such as 1K on a single tile. A massive number of cores impose a requirement on taking
into consideration both the communication cost and computation cost at the same time. Thus, the
historical scheduling method may not hold anymore for large scale DAGs mapping to manycore
platform with massive number of cores.

6. CONCLUSION

Through this paper, we have successfully developed an efficient heuristic to schedule the
application onto the manycore platform statically or dynamically. For massive number of cores,
hop count becomes an essential effect and thus require us to consider the network latency on the
manycore system. We first formulate a network latency model for quantity the communication
cost encountered by the traffic flow on the NoC. Then we design and implement a heuristic
based static and dynamic scheduler for large DAGs. Further, we use an cycle accurate simulator
NIRGAM to evaluate the scheduling strategy. With the proposed static and dynamic scheduler, the
performance metric, such as makespan and utilization, are maximally optimized, especially for data
intensive applications. Furthermore, the introduced heuristic could believer improved makespan and
utilization rate, when the DAG’s information is not correct or the task’s execution time in the DAG
varies at runtime.

In future, the heuristic would take into other optimization objectives, such as energy cost, and
thermal effect on the NoC. In addition, we will also strive to explore work stealing, a distributed
load balancing technique that has been used successfully in parallel languages, to load balance
threads on shared memory parallel machines.

We have already developed a discrete event simulator that implements the work stealing algorithm
in the SimMatrix project [17]. Through SimMatrix, we showed that work stealing can be used to
schedule tasks efficiently across 2D-mesh and 3D-Torus interconnects on many-core computing
architectures, as well as large scale distributed systems (up to exascales). We will take the lessons
learned from SimMatrix and extend the proposed scheduling algorithm from this paper to achieve
distributed scheduling that could perform well in an online setting with acceptable overheads. We
have also begun exploring the real implementation of the proposed scheduling algorithms on today’s
many-core processors, namely NVIDIA GPUs and Intel Xeon Phi accelerators, through the GeMTC
project [13, 14]. The GeMTC framework supports the efficient execution of bag-of-tasks many-task
computing workloads on 3K-core GPUs and 240-HT Xeon Phi. In the future, we will explore the
potential of running complex DAGs directly on the GPUs and Xeon Phi accelerators at an extremely
fine granularity compared to what can be achieved through the Swift workflow system.
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