NN 4
Ny
~..'

|

S
ILLINOIS II\ISTITUTE\//
OF TECHNOLOGY

High Parallelism

With the rapid growth of general purpose
computing on GPUs (GPGPU), many applications
are able to leverage the high parallelism of the
GPU. However, since applications can run on
hundreds of cores, it is difficult to visualize and
analyze their performance. Therefore, developers
need tools that allow them to do things such as
collect metrics and capture traces of application
runs.

Proposed Work

This work aims to analyze the features and usability
of GPU-profiling tools. The focus of this work will
be on tools that profile NVIDIA GPUs running
CUDA. This work investigates the NVIDIA Visual
Profiler (NVVP), NVIDIA CUDA Profiling Tools
Interface (CUPTI), and Vampir. Visualization
features that will be sought include application
timelines and traces. Metrics that will be sought
will include number of instructions executed and
kernel efficiency.

Overview of Profilers

NVIDIA Visual Profiler (NVVP) is a profiler with a
graphical user interface. It is included in the CUDA
Toolkit, and it does not require any code
modification.

CUDA Profiling Tools Interface (CUPTI) is a C library
that allows access to hardware counters of the
GPU. It also allows the user to attach user-defined
functions to CUDA API calls for more complicated
profiling functionality.

PAPI CUDA component is a C profiling library built
on top of CUPTI. It provides the low level
functionality of CUPTI with more built in features.

A Survey of State-of-the-Art NVIDIA
GPU Profilers

Dr. loan Raicu
Dept. of Computer Science
lllinois Institute of Technology
iraicu@ecs.lit.edu

Scott J. Krieder
Dept. of Computer Science
lllinois Institute of Technology
skrieder@iit.edu

Benjamin Walters
Dept. of Computer Science
lllinois Institute of Technology
bwalter4@hawk.lit.edu

Visualization

i TareTa 7 - This figure shows a timeline for a Saxpy

. hist_analysis &2

rrrrrrrrr

P —————————————————— of varying sizes. This clearly illustrates the
A S fact that although there are multiple kernel
: launches, data movement still takes the

+ Thread 1448806144 Invocations

7.5 5 O.S s 0‘8.5 5 0‘5‘) 5 0.9.5 s 1‘5 1‘0.5 5 1.1 s 1.1.5 s 1.2 5 1‘2.5 5 1.3 s 1‘3.5 5 1.5 oooooooooooo . -
s application that 1auncnes Saxpy Kerneis
i 1.539 g
44444444444444444

++++++++

e most time. The bottom also shows some
metrics such as number of instructions
executed per kernel.

Cwl Analysis | (o) Details 2 El Console [y Settings

111
ss
sss
ss
sss

222
ss

This figure shows a timeline for a GeMTC - o | =
histogram application generated by NVVP. It
clearly display asynchronous memory

transfers at the top and the kernel execution
In the middle. The bottom of the screen also
shows data such as throughput foreach =eiaae — ESESEEARESEAEAREIRE RS ARIA] T
memory transfer. g e e I N I R e j

[l Analysis | Details 22 Bl Console|Cw Settings

saxpyKernel(float®, fli48.047 ms: 3.264ps: [1,1,11:[1024,1.1]: 10
saxpyKernel(float*, f:48.053 ms: 1.984us: [2,1,11:(1024,1.1]: 10
saxpyKernel(float®, fli48.058 ms: 2.24pus: [4,1,11:[1024,1.1]: 10
saxpykernel(float®, fli48.062 ms: 4.288us: [8,1,11:(1024,1,11: 10

saxpykernel(float*, fi48.068 ms i 7.488 us: [15,1,11:[1024,1.1]; 10 0 0 n/a nai 10752

Metrics

This figure shows throughput calculated

g Vector Add using the duration (collected in NVVP) and
2 the flops (collected in CUPTI). This is an
 u example of the type of metrics that can be
£ 1 collected in CUPTI and NVVP. NVVP can
£ 10 collect most of the same metrics much more
g 2 easily.
S
Z 0
“E 0 2 4 6 8 10 12
‘g Problem Size (array size in hundreds of thousands) Saxpy Kemel Throughput
5
45
This figure shows the instructions executed 4
metric collected using PAPI CUDA for a 5 35
Vector Addition kernel. The data was .
collected for problem sizes from 21° to 220, = 2
This figure Is an example of the data, other S 1‘2‘
than visualization, that can be collected with E 4
NVVP. 05
0 o 10 12 14 16 18 20 22 24 26

Problem size (in powers of 2)

DataSys

Data-Intensive Distrnibuted

Systems Laboratory™as

Profiler Comparison

Profiler Pro Con
NVIDIA Visual . . .
Profiler Ease of Use Limited Functionality
CUPTI Functionality Difficult setup
Functionality -
PAPI (slightly better) Difficult setup

Conclusions

NVIDIA Visual Profiler (NVVP) is very easy to
use and fairly featureful. Only requires a
compiled binary (no code modification)

CUPTI is complicated to use, but it provides
direct to access to all hardware counters.

PAP|I CUDA component is a slightly more
featured version of CUPTI, but is more
complicated to use.

Overall, NVVP seems to be the best choice due
to that fact that it easy to use and has most of
the features that the others profilers have.

Future Work

Future work includes an in-depth study on GeMTC
framework. This future work would leverage the
tools surveyed in this work to evaluate the
efficiency of GeMTC warp workers. Currently, it is
unknown how much time is spent fetching
applications versus actually running them. Other
future work includes doing a similar survey for
tools that visualize and evaluate applications on
the Intel Xeon Phi coprocessor.

