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. Efficiently scheduling large number of jobs over large scale . Scheduler chooses multiple nodes in random.
distributed systems is very critical. . Requests for resource information on the nodes.
. Today's state-of-the-art job schedulers mostly follow a centralized . Validates if sufficient resources are available to complete the tasks.
architecture that is master/slave architecture. . If Yes, Breaks the task into sub-tasks and migrates it to the nodes
. Aims at providing HPC support on top of MATRIX MTC framework. selected.
. In-corporates resource stealing with work stealing. . Source receive the results after execution

Architecture
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Conclusion

. HPC support for MATRIX currently out performs
SLURM++ for small task size

. With medium task size, HPC support for MATRIX
performs better at 50 nodes.

. With large task size, where each task needs 20
needs HPC support for MATRIX performs better
at 50 nodes scale in comparison to SLURM++ at
100 nodes,

. The SLURM++ needs to be run at lesser scales to
make a better comparison.

MATRIX-HPC reliminry Results
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Future Work
Comparison to be made with SLURM++ at higher
scales of 100 nodes and above

Random neighbor selection will be replaced with
history based neighbor selection.

Resource information can be efficiently
maintained by incorporating a key-value pair.
This keeps the resource information of each
node up to date with less operations.
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