DataS V'S

Uata-Intensive Distetbuted
Sy'nt(‘mw Laboratory

Kiran Ramamurthy
Dept. of Computer Science
lllinois Institute of Technology

Dr. loan Raicu

Dept. of Computer Science
lllinois Institute of Technology

Exploring Distributed HPC Scheduling with Randomized Resource Stealing

ILLINCIS IHSTITUTEﬁE}-
OF TECHNOLOGY

. Efficiently scheduling large number of jobs over large scale . Scheduler chooses multiple nodes in random.
distributed systems is very critical. . Requests for resource information on the nodes.
. Today's state-of-the-art job schedulers mostly follow a centralized . Validates if sufficient resources are available to complete the tasks.
architecture that is master/slave architecture. . If Yes, Breaks the task into sub-tasks and migrates it to the nodes
. Aims at providing HPC support on top of MATRIX MTC framework. selected.
. In-corporates resource stealing with work stealing. . Source receive the results after execution

Architecture

L me———— =

<

S=u=

o WWOE Queus - MO ks Dt e
s HiNg 10 Other Wasas 10 COMpiete

o Koy Quous - HoOX! s Dot o
002y 30 eascte Sut wning Sor CHU

« Compiste Quove -~ Mold tasks that
Ve COmpDind exscuton

o 1174 « Four executon Preads

|

 FZ « Sends nmotAcabons or every
COMEseied 1ass

¢ 1 « Reooves nOATcabon and moves
1BShA 2Om vl Queue 10 reddy Gueue

70

50 -

I
L

Throughput
L
o

=== Throughput

10 -

- a8 15 22
Number of Nodes

50

Conclusion

. HPC support for MATRIX currently out performs
SLURM++ for small task size

. With medium task size, HPC support for MATRIX
performs better at 50 nodes.

. With large task size, where each task needs 20
needs HPC support for MATRIX performs better
at 50 nodes scale in comparison to SLURM++ at
100 nodes,

. The SLURM++ needs to be run at lesser scales to
make a better comparison.

MATRIX-HPC reliminry Results

Throughput (tasksfsecond)

% Exeutin Uit

30 Throughput
B PMatrin-HPC
—_— 2.5 -
B SLURM+4+
3 -
oy ¥ == Throughput
25
15 1 E
= .,
=
10 1 EI'S |
-
]| .
s }
0.5
= 16 EY. 50 17 b4
Number of Nodes Number of Nodes

Future Work
Comparison to be made with SLURM++ at higher
scales of 100 nodes and above

Random neighbor selection will be replaced with
history based neighbor selection.

Resource information can be efficiently
maintained by incorporating a key-value pair.
This keeps the resource information of each
node up to date with less operations.

References

[1] A. Rajendran, I. Raicu. “MATRIX: Many-
Task Computing Execution Fabric for
Extreme Scales”, Department of Computer

Science, lllinois Institute of Technology, MS
Thesis, 2013

[2] l. Raicu. "Many-Task Computing:
Bridging the Gap between High Throughput
Computing and High Performance
Computing”, Computer Science Department,
University of Chicago, Doctorate Dissertation,
March 2009



