

Ke Wang

Department of Computer Science

Illinois Institute of Technology

kwang22@hawk.iit.edu

Ioan Raicu

Department of Computer Science, Illinois Institute of Technology

Mathematics and Computer Science Division, Argonne National Laboratory

iraicu@cs.iit.edu

Load balancing techniques (e.g. work stealing) are important to obtain

the best performance for distributed task scheduling system. In work

stealing, tasks are randomly migrated from heavy-loaded schedulers

to idle ones. However, for data-intensive applications where tasks are dependent and task execu-

tion involves processing large amount of data, migrating tasks blindly would compromise the data

-locality incurring significant data-transferring overhead. In this work, we propose a data-aware

work stealing technique that combines key-value stores and distributed queues enabling it to

achieve good load balancing, all while maximizing data-locality. We leverage a distributed key-

value store, ZHT, as a meta-data service that stores task dependency and data-locality infor-

mation. We implement the proposed technique in MATRIX, a distributed task execution fabric.

We evaluate the work with all-pairs application structured as direct acyclic graph from biometrics,

and compare with Falkon data-diffusion technique.

Applications for extreme-scales

are becoming more data-intensive

and fine-grained in both task size

and duration. Task schedulers for

data-intensive applications at ex-

treme-scales need to be scalable

to deliver the highest system utili-

zation, which poses urgent de-

mands for both load balancing and

data-aware scheduling. This work

combined distributed load balanc-

ing with data-aware scheduling

through a data-aware work steal-

ing technique. We implement the

technique in MATRIX, and apply a

DKVS, as a transparent meta-data

service. We evaluated our tech-

nique under four different schedul-

ing policies with different work-

loads, and compared our tech-

nique with the Falkon data diffu-

sion approach. Results showed

that our technique is scalable to

achieve both good load balancing

and high location-hit rate. We have

planned much work in the future,

such as larger scales, HPC sup-

port, workflow integration, and

MapReduce framework support.

[1] K. Wang, A. Kulkarni, M. Lang, D. Arnold, I. Raicu. “Using Simulation to Explore Distributed Key-Value Stores for Ex-

treme-Scale Systems Services,” IEEE/ACM Supercomputing/SC 2013.

[2] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajendran, Z. Zhang, I. Raicu. “ZHT: A Light-weight Reliable Persis-

tent Dynamic Scalable Zero-hop Distributed Hash Table”, IEEE International Parallel & Distributed Processing Symposi-

um (IPDPS) 2013.

[3] K. Wang, A. Rajendran, I. Raicu. “MATRIX: MAny-Task computing execution fabRIc at eXascale,” tech report, IIT, 2013.

[4] I. Raicu, Y. Zhao, I. Foster, A. Szalay. “Accelerating Large-scale Data Exploration through Data Diffusion”, International

Workshop on Data-Aware Distributed Computing 2008, co-locate with ACM/IEEE HPDC 2008.

[5] I. Raicu, I. Foster, Y. Zhao, P. Little, C. Moretti, A. Chaudhary, D. Thain. “The Quest for Scalable Support of Data Inten-

sive Workloads in Distributed Systems”, ACM HPDC 2009.

1. Propose a data-aware work stealing technique that combines distributed queues and key-

value stores

2. Apply a distributed key-value store as a meta-data service to store important data dependency

and locality information.

3. Evaluate the proposed technique up to hundreds of nodes showing good performance using

different applications under different scheduling policies.

ZHT server

SchedulerExecutor

ZHT server

Scheduler Executorwork stealing

Client

Compute Node Compute Node

Scheduler Scheduler

request load (4)

send load (5)

request task (6)

send task (7)

……

Fully-Connected

client interaction

w
o

rk
 s

te
a

lin
g

Client

Scheduler

submit tasks (1)

lookup task status (2)

return task status (3)

c
lie

n
t in

te
ra

c
tio

n

typedef TaskMetaData

{
 /* number of waiting parents */
 int num_wait_parent;

 /* schedulers that run each parent task */
 vector<string> parent_list;

 /* data object name produced by each parent */
 vector<string> data_object;

 /* data object size (byte) produced by each parent */
 vector<long> data_size;

 /* all data object size (byte) produced by all parents */
 long all_data_size;

 /* children of this tasks */
 vector<string> children;

} TMD;

Data dependency and locality information of each task is

represented as(Key, Value)pair: key is the task id, value is

the TaskMetaData

Input: a ready task (task), TMD (tm), a threshold (t), current scheduler id (id),
LReadyQ, SReadyQ, estimated length of the task in second (est_task_length)
Output: void.
1 if (tm.all_data_size / est_task_length <= t) then
2 SReadyQ.push(task);
3 else
4 long max_data_size = tm.data_size.at(0);
5 int max_data_scheduler_idx = 0;
6 for each i in 1 to tm.data_size.size(); do
7 if tm.data_size.at(i) > max_data_size; then
8 max_data_size = tm.data_size.at(i);
9 max_data_scheduler_idx = i;
10 end
11 end
12 if (max_data_size / est_task_length <= t); then
13 SReadyQ.push(task);
14 else if tm.parent_list.at(max_data_scheduler_idx) == id; then
15 LReadyQ.push(task);
16 else
17 send task to: tm.parent_list.at(max_data_scheduler_idx)
18 end
19 end

ALGORITHM 1. Decision Making to Put a Task in the Right Ready Queue

20 return;

(1) MLB (Maximize Load Balancing): considers only the load balancing, and

all the ready tasks are put in the SReadyQ that are allowed to be migrated,

no matter how big the data is.

(2) MDL (Maximize Data-Locality): considers only data-locality, and all the

ready tasks that require input data would be put in LReadyQ, no matter how

big the data is.

(3) RLDS (Rigid Load balancing and Data-locality Segregation): ready

tasks are put in either queue according to Algorithm 1. Once a task is put in

the LReadyQ of a scheduler, it is confined to be executed locally.

(4) FLDS (Flexible Load balancing and Data-locality Segregation): ready

tasks are put in either queue according to Algorithm 1. A task in the LReadyQ

of a scheduler may be moved to SReadyQ to avoid hotspot problem.

f0 f1 f2 f3 fm

t0 t1 t2 t3 t4 tn

tend

Image Stacking in Astronomy: conducts the “stacking” of im-

age cutouts from different parts of the sky. The stacking proce-

dure involves re-projecting each image to a common set of

pixel planes, then co-adding many images to obtain a detecta-

ble signal that can measure their average brightness/shape.

f0,0 f0,1 f1,1

t0 t1 t2 t3

f1,0

All-Pairs in Biometrics: All-Pairs is a common benchmark for

data-intensive applications that describes the behavior of a

new function on sets A and sets B. For example, in Biometrics,

it is very important to find out the covariance of two sequences

of gene codes. In this workload, all the tasks are independent,

and each task execute for 100 ms to compare two 12MB files

with one from each set

Wait Queue

Local

Ready Queue

Task 1

Task 2

Task 6

Work-Stealing

Ready Queue

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 3

Task 4

Task 5

Complete

Queue

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Wait Queue (WaitQ): holds tasks that

are waiting for parents to complete

Dedicated Local Ready Queue

(LReadyQ): holds ready tasks that can

only be executed on local node

Shared Work-Stealing Ready Queue

(SReadyQ): holds ready tasks that can

be shared through work stealing

Complete Queue (CompleteQ): holds

tasks that are completed

P1: a program that checks if a task is

ready to run, and moves ready tasks to

either ready queue according to the

decision making algorithm

P2: a program that updates the task

metadata for each child of a completed

task

T1 to T4: executor has 4 (configurable)

executing threads that executes tasks in

the ready queues and move a task to

complete queue when it is done

P1 P2

T1 T2 T3 T4

