
Towards Distributed Message Queues using Distributed Key/Value
Stores

Dharmit Patel, Iman Sadooghi, Ioan Raicu

Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA

dpatel74@hawk.iit.edu, isadoogh@iit.edu, iraicu@cs.iit.edu

Abstract: In today’s world, distributed message queues are used in

many systems and play different roles (e.g. content delivery,

notification system and message delivery tools). It is important for

the queue services to be able to deliver messages at large scales with

a variety of message sizes with high concurrency. An example of a

commercial state of the art distributed message queue is Amazon

Simple Queuing Service (SQS). SQS is a distributed message

delivery fabric that is highly scalable. It can queue unlimited

number of short messages (maximum size: 256 KB) and deliver

them to multiple users in parallel. In order to be able to provide

such high throughput at large scales, SQS omits some of features

that are provided by traditional queues. SQS does not guarantee

the order of the messages, nor does it guarantee the exactly once

delivery. This report addresses these limitations through the design

and implementation of ZDMQ, a distributed message queue using

distributed key-value store. ZDMQ consist of collection of ZHT

server that can be used to store messages up to 1 MB message size.

ZDMQ provides replication of messages for high reliability. In the

preliminary testing we performed evaluation and compared ZDMQ

to the commonly used commercial distributed queues measuring

throughput and latency. We found ZDMQ to outperform SQS,

HDMQ, Windows Azure Service bus, and IronMQ by up to 1.86-

351x times in throughput and 3.6-177x times in latency.

Keywords-distributed message queues, exactly-once delivery,

distributed key-value store, zero-hop distributed hash table.

I. Introduction

Computing capacity of large-scale system is increasing at an

exponential rate and is expected to be on the order of exascale

computing by 2019; millions of nodes and billions of threads of

execution will be powering these future systems. We argue that

message queues are a fundamental building block for future distributed

services and applications that aim to operate at these levels of

concurrency. One domain that will greatly benefit from message queues

is Many-Task Computing [1, 2], which aims to bridge the gap between

HPC and High-Throughput Computing. Run-time systems to support

parallel programming systems (e.g. Swift [3]) would greatly benefit

from scalable message queue building blocks.

These message queues will likely have to be distributed, be

asynchronous, support a variety of message sizes, guarantee message

delivery, and support a variety of delivery ordering. As these systems

grow in size, the number and size of messages will also grow. There is a

need for an effective message queue service to provide all the features

needed by an application at an effective cost that is architected for

tomorrow’s scales.

There are many effective ways available to manage these messages.
But as we have found out, they all compromise on certain feature of
messaging. The main criteria that we considered while designing our
system were a. Throughput, b. Latency, c. Cost, d. Single Delivery, e.

Reliability and f. Scalability. We found one or more of these features to
be missing from queuing system out there. The most popular message
queue system Amazon SQS does not ensure message order and has a
significant cost associated with it as the size of the system grow larger.
We also looked at HDMQ [4, 6], which is a distributed message
queuing service, which offers single delivery of messages as well as
ordering of message. HDMQ offers a lot of features but on system
design analysis we found that all the messages go through a single
router node that save messages in a region in round robin fashion where
the order is maintained. Also bandwidth of the router nodes could limit
the scalability of the system.

Based on the study of the available systems as discussed above, we

designed ZDMQ (Zero Hop Distributed Message Queue) a highly

scalable and reliable message queue service. The main goals of ZDMQ

are to provide high throughput, low latency, single delivery high

reliability and high scalability. Our inspirations were primarily SQS and

HDMQ. We designed this system that stores messages in distributed

key-value store that are structured in an multiple ZHT [5, 7] server

where each ZHT server is a part of a storage where the queue messages

will be stored in key-value manner. Our goal is to make this system

highly scalable with very low latency and provide all the features

discussed earlier.

II. Design

Data Structure:

a) UUID QUEUE: UUID queue is used to store the uuid of the

messages store in that ZHT server. Every message comes in

to the server brings in the uuid with the message, same time

the uuid is pushed to this queue, so that later we can pop that

queue when a client do a pop operation and get the message.

The max size of this queue can go upto the limit of the

messages the ZHT server can store. It uses Queue collection.

b) META DATA LIST: It is used to store information about the

ZHT server containing the messages of QUEUE. It also store

the first UUID of the message pushed to the ZHT Server. The

ZHT Server also has the same UUID store in a variable called

firstUUID. We use list collection. There is only 1 Meta Data

list per queue. The size of metadata queue can go up to the

number of ZHT servers available.

Operation: There are mainly four operations in ZDMQ

1) Create Queue: Create queue operation in ZHTMQ takes queue

name as an parameter, based on the hash of the queue-name, it will

go on one of the ZHT server, where it will create the meta data list

for that queue. Two queues with the same name are not allowed in

ZHTMQ.

2) Push (Best 1 operation, Worst 2 operations): The Push operation

in ZHTMQ will take message and queue-name as argument. Each

push operation will generate a unique UUID. This UUID will get

hashed and based on the hash value; it will send the message on

one if the ZHT server. Now there are two possibilities possible

mailto:dpatel74@hawk.iit.edu
mailto:isadoogh@iit.edu
mailto:iraicu@cs.iit.edu

 UUID Queue Present: if UUID queue is present for that

particular queue-name then it will push the UUID in to the

UUID-queue and store the key-value pair in ZHT server. This

is atomic operation. Both of this operation is done in one push

call from client.

 UUID Queue not present: if UUID queue is not present then,

it will create UUID queue in that ZHT server for that queue-

name, at the same time, it will also update the firstUUID

variable to identify that ZHT server for this specific queue. It

will also push the UUID into the UUID-queue. It will lastly

store the key-value into the ZHT. It will also return with the

return code, which will notify the client to make another call to

the ZHT server, which contains the Meta data list. This call

will update the Meta data list with the first UUID pushed to the

empty ZHT server. By this way we will always have

information about the ZHT server storing the messages for

particular queue.

3) Pop (Best 1 operation, Worst 3 operations): The Pop operation in

ZHTMQ will take queue-name as an argument. Each pop operation

will also create a unique UUID, which will get hashed, and it will

send the pop request to the particular server. Thereby randomizing

the pop operation and load balancing the pop request between the

servers. Once the pop operation reached the server, there are three

possibilities:

 No UUID Queue->No Message found: If no message is found

and if there is no UUID queue, that means there was no

message pushed to this server. So now it will call fetch_node()

operation, which is internal to the pop() operation from client.

 UUID Queue Present and Queue_size==0 => No Message

found: if no message is found and fi the UUID queue is

present but it is empty, at this time, it will remove the UUID

queue, it will reset the firstUUID variable and ZHT server will

return with the firstUUID. Then client will make another call to

the ZHT Server that contains Meta data list and pass firstUUID

as an argument, it will remove the firstUUID entry from that

Meta data list as that server no longer has the messages stored

for that queue. Also in return it will fetch any random UUID

from Meta data server for their next pop() call. After this the

pop() will request this server for the messages until that server

gets empty.

 UUID Queue Present and Queue_size!=0 => Message

found: if UUID queue is present and the size is greater than

zero, which means the messages are present on that ZHT

Server. At this point, it will pop the UUID queue, and then do

the lookup() operation of the message using the UUID, get the

message, and then do the remove() operation and return the

message to the client.

 Fetch Node Operation: This operation is of two types as

follows

 Fetch node from Meta data List: This operation is

called only when the (a) type of possibility occurs in

pop operation on server side.

 Remove node and Fetch node from Meta data List:

This operation is called only when (b) type of

possibility occurs in pop operation on server side,

when you have to remove the node, and fetch new

node from the Meta data list to make further pop

operation until that ZHT server is empty.

Delete Queue: Delete queue operation will remove all the UUID
queues and the meta data list from the ZHT servers as well as it will
remove all the messages using remove() operation inside the ZHT
server.

III. Conclusion

 Light-weighted: cost less than 10MB memory/node
 Low latency: about 2-4ms
 Wide range of use: open source
 Very high Throughput
 Single Delivery
 Decentralized Architecture

IV. Future Work

 Benchmark ZDMQ from 1-1000 node scale on Amazon Cloud by
varying number of threads from 1-96 threads per node with 1
million messages for message size from 1kb – 1mb.

 Integrate ZDMQ in Cloudkon.
 Add monitoring on ZDMQ.
 Compare ZDMQ with HDMQ, Amazon SQS, Windows Azure

Service Bus and IronMQ.

V. References

[1] Ioan Raicu. Many-Task Computing: Bridging the Gap

between High Throughput Computing and High Performance

Computing, University of Chicago, Computer Science

Department, PhD Dissertation, 2009

[2] Ioan Raicu, Ian Foster, Yong Zhao, Alex Szalay, Philip Little,

Christopher M. Moretti, Amitabh Chaudhary, Douglas Thain.

"Towards Data Intensive Many-Task Computing", book

chapter in "Data Intensive Distributed Computing: Challenges

and Solutions for Large-Scale Information Management", IGI

Global Publishers, 2009

[3] Michael Wilde, Ioan Raicu, Allan Espinosa, Zhao Zhang, Ben

Clifford, Mihael Hategan, Kamil Iskra, Pete Beckman, Ian

Foster. "Extreme-scale scripting: Opportunities for large task-

parallel applications on petascale computers", Scientific

Discovery through Advanced Computing Conference

(SciDAC09) 2009

[4] Dharmit Patel, Faraj Khasib, Iman Sadooghi, Ioan Raicu.

"Towards In-Order and Exactly-Once Delivery using

Hierarchical Distributed Message Queues", 1st International

Workshop on Scalable Computing For Real-Time Big Data

Applications (SCRAMBL'14) at IEEE/ACM CCGrid 2014

[5] Tonglin Li, Xiaobing Zhou, Kevin Brandstatter, Dongfang

Zhao, Ke Wang, Anupam Rajendran, Zhao Zhang, Ioan

Raicu. “ZHT: A Light-weight Reliable Persistent Dynamic

Scalable Zero-hop Distributed Hash Table”, IEEE

International Parallel & Distributed Processing Symposium

(IPDPS) 2013

[6] Dharmit Patel, Faraj Khasib, Shiva Srivastava, Iman

Sadooghi, Ioan Raicu. "HDMQ: Towards In-Order and

Exactly-Once Delivery using Hierarchical Distributed

Message Queues", Illinois Institute of Technology,

Department of Computer Science, Technical Report, 2013

[7] Tonglin Li, Raman Verma, Xi Duan, Hui Jin, Ioan Raicu.

“Exploring Distributed Hash Tables in High-End

Computing”, ACM Performance Evaluation Review (PER),

2011

