
Understanding Torus Network Performance through Simulations
Sandeep Palur Dr. Ioan Raicu

Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA

psandeep@hawk.iit.edu iraicu@cs.iit.edu

Abstract -- Technology developments in the storage
and processing of data have spurred the development of
distributed computing with distributed compute-
clusters and supercomputers processing massive data
that typically accompanies scientific experiments in the
sciences. This has led to increasing demands for data
transfers, with a requirement for high speed as well as
requirements for Quality of Service, reliability, and
security. These issues become more important in high-
speed networks. A major consideration in the design of
any parallel systems is the set of pathways over which
the nodes communicate with each other. A Torus
interconnect is a network topology for connecting
processing nodes in a parallel computer system. A
number of supercomputers on the TOP500 list use 3D
Torus networks. In this work we benchmark the Torus
network through appropriate performance metrics
under different workloads using the ROSS(Rensselaer’s
Optimistic Simulation System)simulator. ROSS is a
parallel discrete-event simulator that executes on
shared-memory multiprocessor systems which is geared
for running large-scale simulation models (i.e.,
supporting millions of object models is feasible).
Through synthetic benchmarks, we have studied the
communication imbalance generated by the common
static single path routing in Torus interconnects. The
long term goals are to demonstrate that multi-path
dynamic routing could have significantly positive
impact on both the end-to-end application performance
as well as the aggregate system wide performance.

I. INTRODUCTION
Supercomputers process demanding computational loads

(process and data). It consists of numerous high

performance processors for parallel processing. The

processing power is paramount but the key aspect of

parallel computers is the communication network that

interconnects the computing nodes.

A. Torus Topology

Switch-less interconnection topology for connecting

processing nodes in a parallel computer system. It can be

visualized as a mesh interconnect with nodes arranged in a

rectilinear array of N = 2, 3, or more dimensions, with

processors connected to their nearest neighbors, and

corresponding processors on opposite edges of the array

connected. A Torus interconnect has a rich topology with

many paths between any pair of nodes in the system. This

configuration allows the addition of nodes to a system

without degrading performance. Each new node is joined as

an addition of a grid, linked to it with no extensive cabling

or switches. It scales linearly, with little or no performance

loss is strictly true for those problems that heavily rely on

next neighbor communication. The addition of a node in a

large system happens with much less working and potential

troubles. Being the connections between nodes short and

direct, the latency of the links is very low.

B. ROSS Simulator

ROSS is an acronym for Rensselaer’s Optimistic

Simulation System. It is a parallel discrete-event simulator

that executes on shared-memory multiprocessor systems.

ROSS is geared for running large-scale simulation models

(i.e., 100K to even 1 million object models).The

synchronization mechanism is based on Time Warp [2, 3,

4]. It uses a detection-and-recovery protocol to synchronize

the computation. Any time an LP determines that it has

processed events out of timestamp order, it “rollsback”

those events, and re-executes them. ROSS was modeled

after a Time Warp simulator called GTW or Georgia Tech

Time Warp[5].

C. CODES

CODES is accurate and highly parallel simulation toolkit

for exascale storage and is built on ROSS. CODES is

divided into codes-base and codes-net. Codes-base is the

utility library for construction of storage models and

Codes-net is collection of network interconnect models and

shared abstraction layer. CODES currently provide APIs

for Torus and Dragonfly topology.

II.EXPERIMENTS & RESULTS
We ran experiments on 48 cores 250 GB ram machine with

x86_64 architecture. We used ROSS simulator in parallel

optimistic mode. Each server in the torus network

communicates with its own pair. Server pairs are generated

by Fisher–Yates shuffle algorithm. Each server sends and

receives 100 messages.

In all experiments, we used the following configuration.

Only the dimension length was varied from 2*2*2 to

16*16*16 and the values were extrapolated till 1 million

based on the trend.

Packet Size="512 Bytes"

Modelnet="torus"

Message Size="2048 Bytes"

Dimension="3"

Dimension Length="X,X,X"

Link Bandwidth="2.0 GB"

Buffer Size="16384 Bytes"

Number of Virtual Channels="1"

Chunk Size="32"

The three major experiments we ran are as follows. We

measured network metrics by

1. Varying the size of the network: As you can see

from the below graphs the average throughput

increases and number of hops increases with

increase in the size of the network. It is evident from

the graphs that there are a lot of hot spots in the

network

Figure 1: Average Throughput vs Network Size

Figure 2 : Average Hops vs Network Size

Figure 3 : CDF of Throughput on 4096 nodes(16*16*16)

2. Varying the number of servers sending and

receiving messages: Graph clearly shows that

average throughput decreases and difference

between average and maximum latency increases

with increase in the increase in number of servers

transferring messages.

Figure 4 : Average Throughput vs Number of Servers

Transferring Messages

3. Varying the message size: The average

throughput and latency increases with increase in

message size.

Figure 8 : Average Throughput vs Message Size

III . CONCLUSION AND FUTURE WORK
Through synthetic benchmarks, we have studied the

communication imbalance generated by the common static

single path routing in torus interconnects. In torus network

latency increases and throughput decreases as the size of

the torus network and number of servers participating in

message transfer increase. It is also evident from our

experiments that throughput increases with increase in the

message size. Since torus uses static single path routing,

transferring messages between random server pairs leads to

a lot of congestion at some intermediate nodes via which

most of the messages pass through. These nodes become

hot spots, reduce the throughput and increase latency. This

leads us to believe that multi-path routing could have a

positive impact on the performance of the network

compared to the traditional static single-path routing.

The long term goals are as follows:

1. Design and develop a monitoring framework to monitor

the network state and indicate the hot spots.

2. Demonstrate that multi-path dynamic routing could have

significantly positive impact on both the end-to-end

application performance as well as the aggregate system

wide performance.

IV. REFERENCES
[1] Narasimha R Adiga, Matthias A Blumrich, Dong

Chen, Paul Coteus, Alan Gara, Mark E Giampapa,

Philip Heidelberger, Sarabjeet Singh, Burkhard D

Steinmacher-Burow, Todd Takken, et alBlue Gene/L

torus interconnection network. IBM Journal of

Research and Development.

[2] D. R. Jefferson and H. Sowizral. Fast concurrent

simulation using the Time Warp mechanism,part I:

Local control. Technical Report N-1906-AF, RAND

Corporation, December 1982.

[3] D. R. Jefferson. Virtual time. ACM Transactions on

Programming Languages and Systems, 7(3):404–425,

July 1985.

[4] R. M. Fujimoto. Parallel discrete-event simulation.

Communications of the ACM, 33(10):30–53,October

1990.

[5] S. Das, R. Fujimoto, K. Panesar, D. Allison, and M.

Hybinette. GTW: A Time Warp system for shared

memory multiprocessors. In 1994 Winter Simulation

Conference Proceedings, pages 1332–1339, December

1994.

