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Abstract— Load balancing techniques (e.g. work stealing) are 

important to obtain the best performance for distributed task 

scheduling system. In work stealing, tasks are randomly 

migrated from heavy-loaded schedulers to idle ones. However, 

for data-intensive applications where tasks are dependent and 

task execution involves processing large amount of data, 

migrating tasks blindly would compromise the data-locality 

incurring significant data-transferring overhead. In this work, 

we propose a data-aware work stealing technique that combines 

key-value stores and distributed queues enabling it to achieve 

good load balancing, all while maximizing data-locality. We 

leverage a distributed key-value store, ZHT, as a meta-data 

service that stores task dependency and data-locality 

information. We implement the proposed technique in MATRIX, 

a distributed task execution fabric. We evaluate the work with 

all-pairs application structured as direct acyclic graph from 

biometrics, and compare with Falkon data-diffusion technique. 

I. INTRODUCTION 

As systems are growing exponentially in parallelism [1], 
more data-intensive applications [2] are becoming loosely-
coupled containing many small jobs/tasks (e.g. per-core [16]) 
with shorter durations (e.g. sub-second). Future programming 
models will likely employ over-decomposition [3] generating 
even many more fined-grained tasks than available parallelism. 
This poses significant challenges on task scheduling system to 
make extremely fast scheduling decisions (e.g. millions/sec). 
The Many-task computing (MTC) [4] [7][11] paradigm aims to 
define and address the challenges of scheduling fine grained 
data-intensive workloads [5]. MTC applications are structured 
as direct acyclic graphs (DAG) of discrete tasks, with data 
dependencies forming the graph edges. 

The task scheduling system for MTC will need to be fully-
distributed [12][15][17]. Each compute node runs one 
scheduler and one or more executors. The schedulers are fully-
connected, and receive workloads to schedule tasks locally. 
Load balancing [6] is challenging for fully-distributed 
architecture. This work adopts the work stealing technique 
[20][10], in which, the idle schedulers communicate with 
neighbors to balance their loads. However, as more 
applications are experiencing data explosion [8] such that tasks 
are dependent and task execution involves processing large 
amount of data, data-aware scheduling and load balancing are 
two indispensable yet orthogonal needs. In this work, We 
propose a data-aware work stealing technique that combines 
distributed key-value stores (DKVS) [12][19][15] and 
distributed queues enabling it to satisfy both needs. We 
leverage ZHT [9] as a meta-data service that stores task 

dependency and data-locality information. We apply four 
distributed task queues to keep tasks in different states. We 
implement our technique in MATRIX [10][18]. 

II. DATA-AWARE WORK STEALING 

A. DKVS Used as a Meta-Data Service  

We apply a DKVS, i.e. ZHT, to store the data dependency 
and locality information of all the tasks. The “key” is task id, 
and the “value” is the important meta-data that is defined (see 
Figure 1) as the following data structure conceptually:  

 
Figure 1: Data structure of task metadata 

Upon task submission, the client takes an application 
workload (represented as a DAG), sends the task meta-data to 
ZHT, and submits the tasks to MATRIX. 

B. Distributed Queues in MATRIX 

Each scheduler would maintain four local task queues: task 
wait queue (WaitQ), dedicated local task ready queue 
(LReadyQ), shared work stealing task ready queue (SReadyQ), 
and task complete queue (CompleteQ). These queues hold 
tasks in different states stored as meta-data in ZHT. 

a) WaitQ 

Initially, the scheduler would put all the incoming tasks to 
the WaitQ. A thread keeps checking every task in the WaitQ to 
see whether the dependency conditions for that task are 
satisfied. Only if the value of the field of “num_wait_parent” in 
the meta-data is equal to 0 would the task be ready to run. 

b) LReadyQ and SReadyQ 

When a task is ready to run, the scheduler makes decision 
to put it in either the LReadyQ, or the SReadyQ, according to 
the size and location of the data required by the task. The 
LReadyQ stores the tasks that require large volume of data, and 
the majority of the required data is located locally; these tasks 
could only be executed locally. The SReadyQ stores the tasks 
that could be migrated to any scheduler for load balancing’s 
purpose; these tasks either don’t need any input data, or the 

typedef    TaskMetaData 

{ 
int    num_wait_parent;    // number of waiting parents 

vector<string> parent_list;    // schedulers that run each parent task  

vector<string> data_object;    // data object name produced by each parent 

vector<long> data_size;    // data object size (byte) produced by each parent     

long all_data_size;    // all data object size (byte) produced by all parents 

vector<string> children;    // children of this tasks 

} TMD; 

 



demanded data volume is so small that the transferring 
overhead is negligible. The executor keeps pulling ready tasks 
to execute. It first pops tasks from LReadyQ, and then pops 
tasks from SReadyQ if the LReadyQ is empty. When executing 
a task, the executor first gets the data either from local or 
remote nodes. If both queues are empty, the scheduler would 
start doing work stealing.  

c) CompleteQ 

When a task is done, it is moved to the CompleteQ. A 
thread is responsible for updating the meta-data for all the 
children of each completed task. The thread first queries the 
meta-data of the completed task to find out the children, and 
then updates each child’s meta-data. 

III. EVALUATION 

We evaluate our technique on the Kodiak cluster from the 
PROBE [21] of Los Alamos National Laboratory with all-pairs 
application, and compare with Falkon [22] data-diffusion 
technique [13][14] up to 200 cores. All-Pairs is a common 
benchmark in Biometrics that describes the covariance of two 
sequences of gene codes. In this workload, each task execute 
for 100-ms to compare two 12MB files with one from each set. 
We run strong-scaling experiments with a 500*500 workload 
size (250K tasks). This is the same workload referenced in [14].  

 

Figure 2: Comparison between Data Diffusion and DAWS 

 

Figure 3: Utilization graph at 200 cores 

We compare our data-aware work stealing (DAWS) 
technique with Data-Diffusion [14] in Figure 2. We see that for 
100-ms tasks, our technique improved Data Diffusion by 
14.21% (85.9% vs 75%), and it is quite close to the best case 
using active storage (85.9% vs 91%). Data diffusion applies a 
centralized index-server for data-aware scheduling, while our 

technique utilizes DKVS that is much more scalable. In 
addition, we show the utilization graph running the all-pairs 
workload in Figure 3. The utilization (read area / green area) is 
high. At beginning, it takes very little time for balancing the 
load (the short ramp-up period), and our technique does not 
exhibit long-tail problem at the final stage. 
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