
Performance Analysis of Application Kernels in Multi/Many-
Core Architectures

Karthik Balasubramanian, Dr. Ioan Raicu
Abstract— In recent years, advancement in technology and

computing led to huge amounts of data being generated. Thus, High-
Performance Computing (HPC) plays an ever growing role in
processing these large datasets in a timely fashion. Our analysis
consist of few important throughput computing app kernels which
have high degree of parallelism and makes them excellent
candidates for evaluation on high end multi-core CPUs, and many-
core GPUs. In this work, we performed a performance comparison
of important app kernels like Image Convolution, Histogram and
Bilateral filtering in multi-core CPU, many-core NVIDIA GPUs in
addition to comparing our research framework GPU enabled Many-
Task Computing (GeMTC). GeMTC is an execution model and
runtime system which enables NVIDIA GPUs to be programmed
with many concurrent and independent tasks of potentially short or
variable duration. In this work we provide a thorough performance
analysis between CPU, CUDA, and the GeMTC framework.
Through this we better understand the behavior of different
applications that belong to the Many-Task Computing paradigm.
The results show that the GeMTC framework shows promising
results for Many-Task Computing workloads running on NVIDIA
GPUs.

I. INTRODUCTION
In the past years, there is a huge number of digital content as

more documents are being created in digital form ever before. The
massive amount of data makes storing, cataloging, processing, and
retrieving information challenging. In this work we have identified
certain applications that can process huge amount of data and deliver
appropriate content to the user. This work explores the performance
evaluation of multi-core, many core and a framework built on many
core architecture. Also this work attempts to correlate throughput
computing characteristics with architectural features on today’s CPU
and GPU’s.

Motivation: Prior to this work there is a research paper which
compares the performance of CPUs with GPUs [1]. The work
concludes CPUs and GPUs are much closer in performance (2.5X)
than the previously reported orders of magnitude difference.

II. BACKGROUND
In this work we have selected three applications, Histogram,

Image convolution and Bilateral Filtering. All these applications are
executed in CPU, GPU and GeMTC. These kernels have a large
amount of data-level parallelism, which makes them a natural fit for
modern multi-core architectures. In the following, we will see about
the application kernels.

GeMTC [2, 5] is an execution model and runtime system that
enables NVIDIA GPUs to be programmed with many concurrent and
independent tasks of potentially short or variable duration.

1. Histogram computation is an important image processing
algorithm which hashes and aggregates pixels from the
continuous stream of data into a smaller number of bins.
Here we used 256-bin histogram, which is suitable for
image processing applications that require higher precision
than 64 bins can provide.

2. Image Convolution is a common image filtering operation
used for effects such as blur, emboss and sharpen. Each

pixel is calculated independently, thus providing ample
parallelism at both SIMD and thread level. Simple
calculation of Image Convolution is depicted in Figure 1.[3]

Figure 1: Image Convolution calculation

3. Bilateral Filtering is a common non-linear filter used in
image processing for edge-preserving smoothing
operations. The core computation has a combination of a
spatial and an intensity filter. The neighboring pixel values
and positions are used to compute new pixel values.

III. ARCHITECTURE
This section describes the architecture for building the application

kernels in GPU and GeMTC. Since CPU is a straightforward
approach we will not list down here.

 For GPU, for each application the device code and host code are
placed in the same file. The application allocates memory and
randomly generates the numbers. Then it does cudaMalloc to copy
the data to device memory. The device code is called by taking all
the blocks in the GPU and the number of threads passed as an
argument.

 For GeMTC, we need to use the GeMTC API to allocate memory
and call the kernel application.

IV. EVALUATION
This section evaluates the comparison between CPU, GPU and

GeMTC. The target test bed for this implementation is GTX 670
GPU, a machine at DataSys Laboratory and AMD Phenom(tm) II X6
1100T Processor with 6GB RAM. For each of the application kernel,
the performance of CPU, GPU and GeMTC are done. The
performance is evaluated based on two parameters, throughput and
FLOPS.

A. GPU

GPU version is evaluated by varying the threads with problem
size. The problem size is started from 1 KB to 12 MB. This is because
it needs to be compared to the GeMTC workloads, which will splits
the task into number of warps the GPU consist of. In order minimize
the startup cost for the GPU version, each application is executed for
at least 5 – 10 seconds. For example for the problem size of 1Kb, the
number of test performed is 1000000 times.

B. GeMTC

For GeMTC, the problem size is varied from 100 KB to 1GB. In
GTX 670, there are 84 warps so each warp takes the problem/84
warps MB. So there are 84 tasks pushed to GeMTC and 84 workers
are parallel performing the task.

C. CPU

For CPU, the histogram application is executed 84 times with 6
application running in parallel at a time. Even for CPU, the task size

is reduced 1KB to 12 MB. So that it can be compared to GeMTC
workloads.

I. HISTOGRAM

Figure 2: Histogram Throughput Comparison

Figure 3: Histogram Flops Comparison

 In Figure2 and 3, the comparison between GeMTC, CPU and
GPU are shown. The histogram takes image size and the mask width
as the input and it takes 3 *n operations. CPUs have low start up
compared to CUDA or GeMTC but the cost is ignored by executing
for long time. From the figure it is evident that CPU perform very
poor when compared to GPU or CUDA. GeMTC problem size are
very high when compared to CUDA so the throughput is very high.
GeMTC has a peak of 3GB/s for 1GB problem size which is divided
into 84 tasks.

II. IMAGE CONVOLUTION

Figure 4: Image Convolution Throughput Comparison

Figure 5: Image Convolution Flops Comparison

In Figure 4 and 5, the comparison between GeMTC, GPU and
CPU are depicted. The CPU performs very poor compared to
GeMTC and GPU. The GeMTC workloads starts from 100 KB to 1
GB and it divides the workload to 84 workers. Each worker runs on
32 threads. These applications are executed multiple times in order
to neglect the variations involved.

III. BILATERAL FILTERING

Figure 6: Bilateral Filtering Throughput Comparison

Figure 7: Bilateral Filtering Flops Comparison

 In figure 7 and 8, the comparison for GPU, CPU and GeMTC are
depicted. The CPU performs very slowly when compared to GPU
and GeMTC. The GeMTC workloads ranges from 1 Megapixel to 8
Megapixel. Each pixel holds 12 bytes of R, G and B values. The 32
thread CUDA and whole GPU performs almost same. The algorithm
is referred from [4]. There can be many improvements done to
improve the performance of the application. Since this application is
compute intensive, we see very less variation when the number of
thread increases.

V. CONCLUSION AND FUTURE WORK

Thus in this work, we analyzed the performance analysis of GPU,
GeMTC and CPU. And we see that GPU and GeMTC performs
really well when compared to CPU. And there is more speedup
compared to CPU. We believe many factors contributed to the
reported large gap in performance, such as which CPU and GPU are
used and what optimizations are applied to the code.
 Future Work includes explore additional application for GeMTC,
improving locking mechanism in GeMTC to improve total run time.
Integrating with Swift/T.

REFERENCES

[1]. Lee, Victor W., et al. "Debunking the 100X GPU vs. CPU myth: an
evaluation of throughput computing on CPU and GPU." ACM
SIGARCH Computer Architecture News. Vol. 38. No. 3. ACM, 2010..

[2]. Krieder, Scott, and Ioan Raicu. "GeMTC: GPU enabled many-task
computing." Illinois Institute of Technology, Department of Computer
Science, PhD Oral Qualifier (2013).

[3]. Podlozhnyuk, Victor. "Image convolution with CUDA." NVIDIA
Corporation white paper, June 2097.3 (2007).

[4]. Bilateral Filtering with CUDA,Lasse Klojgaard Staal, University of
Aarhus

[5]. Scott J. Krieder, Justin M. Wozniak, Timothy Armstrong, Michael
 Wilde, Daniel S. Katz, Benjamin Grimmer, Ian T. Foster, Ioan Raicu.
 “Design and Evaluation of the GeMTC Framework for GPU-enabled
 Many-Task Computing”, ACM HPDC 2014

