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Abstract—This work presents the analysis of hybrid dataflow
programming over XK7 nodes of Blue Waters using a novel
CUDA framework GeMTC. GeMTC is an execution model and
runtime system that enables accelerators to be programmed with
many concurrent and independent tasks of potentially short
or variable duration. With GeMTC, a broad class of such
“many-task” applications can leverage the increasing number
of accelerated and hybrid high-end computing systems. GeMTC
overcomes the obstacles to using GPUs in a many-task manner
by scheduling and launching independent tasks on hardware
designed for SIMD-style vector processing. We demonstrate the
use of a high-level MTC programming model (the Swift parallel
dataflow language) to run tasks on many accelerators and thus
provide a high-productivity programming model for the growing
number of supercomputers that are accelerator-enabled. While
still in an experimental stage, GeMTC can already support
tasks of fine (subsecond) granularity and execute concurrent
heterogeneous tasks on 86,000 independent GPU warps spanning
2.7M GPU threads on Blue Waters.

I. INTRODUCTION

This work explores methods for, and potential benefits of,
applying the increasingly abundant and economical general-
purpose graphics processing units (GPGPU) to a broader class
of applications. It extends the utility of GPGPU from the class
of heavily vectorizable applications to irregularly-structured
many-task applications. Such applications are increasingly
common, stemming from both problem-solving approaches
(i.e., parameter sweeps, simulated annealing or branch-and-
bound optimizations, uncertainty quantification) and applica-
tion domains (climate modeling, rational materials design,
molecular dynamics, bioinformatics).

In many-task computing (MTC) [1], tasks may be of short
(even subsecond) duration or highly variable (ranging from
milliseconds to minutes). Their dependency and data passing
characteristics may range from many similar tasks to complex,
and possibly dynamically determined, dependency patterns.
Tasks typically run to completion: they follow the simple
input-process-output model of procedures, rather than retain-
ing state as in web services or MPI processes.

II. GEMTC ARCHITECTURE

Fig. 1 shows a high-level diagram of GeMTC [2] driven by
tasks generated by the Swift [3] parallel functional dataflow
language (described in Section IV). GeMTC launches a
daemon on the GPU that enables independent tasks to be
multiplexed onto warp-level GPU workers. A work queue in

Fig. 1. Flow of a task in GeMTC driven by Swift.

Fig. 2. GeMTC and MDLite scaling over 1344 workers on Blue Waters.

GPU memory is populated from calls to a C-based API, and
GPU workers pick up and execute these tasks. After a worker
has completed a computation, the results are placed on an
outgoing result queue and returned to the caller.

III. PERFORMANCE EVALUATION

Fig. 2 is a multinode scaling experiment where the number
of simulations is set equal to the number of workers. At each
data point there are two times as many workers as the previous,
so we run twice as much work. In an ideal system without
any overheads we would expect a flat line demonstrating the
ability to conduct the same amount of work at each step. Even
after 8 nodes we achieve 96% utilization. Future work aims
to evaluate our system at even larger scales on Blue Waters.

Fig. 3 highlights throughput rates for Swift and GeMTC
on a Kepler K20X. In this benchmark the maximum num-
ber of available GeMTC workers is enabled (168). Fig. 4
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Fig. 3. GeMTC + Swift throughput on a XK7 node of Blue Waters.

Fig. 4. GeMTC + Swift Throughput over 10,000 GPU workers.

demonstrates that Swift + GeMTC is capable of driving a
high throughput of fine grain GPU work over many nodes on
Blue Waters. As shown in Fig. 4 we obtain ∼70% of ideal
throughput with 10,000-way concurrency.

Fig. 5 demonstrates an upper bound of GeMTC by launch-
ing efficiency workloads on multiple GPU nodes with only a
single active GeMTC worker per GPU. We next enable 168
GeMTC warp workers per GPU (the maximum) and evaluate
the efficiency of workflows with varied task granularities up
to 86k individually operating GPU workers of Blue Waters.
After adding 167 additional workers per GPU we do require
longer lasting tasks to achieve high efficiency. We attribute
this drop in performance to greater worker contention on the
device queues and the fact that Swift must now drive 168
times the amount of work per node. In Fig. 6 we observe
that tasks exceeding ∼1 second achieve high efficiency up to
scales of 40K workers. Although we have not yet identified
the cause for this drop in performance, we expect that the
performance degradation at extreme levels of concurrency
comes from the loading of shared libraries from the remote
parallel filesystem. In future work we will continue to improve

Fig. 5. GeMTC + Swift efficiency up to 512 nodes, 1 GeMTC worker.

Fig. 6. Efficiency for workloads with varied task granularities up to 86K
independent warps of Blue Waters. 168 active workers/GPU.

systemwide performance by reducing the reliance on dynamic
loadable shared libraries and through larger scale evaluation
on all 4K XK7 nodes of Blue Waters.

While we observe a drop in performance moving from 1
worker to 168 workers, we achieve 168x the amount of work
with only 5x increase in time. In addition, these numbers
improve even more when the time for computing vs. data
transfer increases. In future work we will continue to improve
systemwide performance and evaluation at even larger scale.

IV. CONCLUSIONS AND FUTURE WORK

We have presented GeMTC, a framework for enabling
MTC workloads to run efficiently on the XK7 nodes of Blue
Waters. GeMTC encompasses the entire GPU running as a
single GPU application similar to a daemon that receives
and schedules work from the host through a C-API. GeMTC
simplifies the programming model of the GPU by allowing
GPUs to be treated as a collection of independent SIMD
workers, enabling a MIMD view of the device. Future work
also includes performance evaluation of diverse application
kernels (e.g., data-pipelining, detecting cancer-related genes,
glass modeling, and protein structure simulation); analysis of
the ability of such kernels to effectively utilize concurrent
warps; enabling of virtual warps which can both subdivide
and span physical warps; support for other accelerators such
as the Xeon Phi; and continued performance refinement.
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