

1

Abstract — Task scheduling and execution over large
scale, distributed systems plays an important role on

achieving good performance and high system utilization.

Job management systems need to support applications

(e.g. Many-Task Computing – MTC, MapReduce) with a
growing number of tasks with finer granularity due to

the explosion of parallelism found in today’s hardware

which requires techniques such as over-decomposition

to deliver good performance. Our goal in this work is to

provide a compact, light-weight, scalable, and

distributed task execution framework (CloudKon) that

builds upon cloud computing building blocks (Amazon

EC2, SQS, and DynamoDB). Most of Today’s

state-of-the-art job execution systems have

predominantly Master/Slaves architectures, which have

inherent limitations, such as scalability issues at extreme
scales and single point of failures. On the other hand

distributed job management systems are complex, and

employ non-trivial load balancing algorithms to

maintain good utilization. CloudKon is a distributed job

management system that can support millions of tasks

from multiple users delivering over 2X the performance

compared to other state-of-the-art systems in terms of

throughput – all with a code-base of less than 5%.

Although this work was motivated by the support of MTC

applications, we will outline the possible support of

HPC applications as well.

Index Terms— Cloud Computing, Many-Task
Computing, distributed scheduling, task execution

framework

1 INTRODUCTION

The goal of a job scheduling system is to
efficiently manage the distributed computing

power of workstations, servers, and

supercomputers in order to maximize job

throughput and system utilization. With the
dramatically increase of the scales of today’s

distributed systems, it is urgent to develop efficient

job schedulers. Predictions are that by the end of
this decade, we will have exascale system with

millions of nodes and billions of threads of

execution [1].

Unfortunately, today’s schedulers have

centralized Master/Slaves architecture (e.g. Slurm

[2], Condor [3][4], PBS [5], SGE [6]), where a
centralized server is in charge of the resource

provisioning and job execution. This architecture

has worked well in grid computing scales and

coarse granular workloads [7], but it has poor
scalability at the extreme scales of petascale

systems with fine-granular workloads [8][9]. The

solution to this problem is to move to the
decentralized architectures that avoid using a single

component as a manager. Distributed schedulers

are normally implemented in either hierarchical
[36] or fully distributed architectures [30] to

address the scalability issue. Using new

architectures can address the potential single point

of failure and improve the overall performance of
the system up to a certain level, but issues can arise

in distributing the tasks and load balancing among

the nodes [25].

The idea of using cloud services for high

performance computing has been around for
several years, but it has not gained traction

primarily due to many issues. Having extensive

resources, public clouds could be exploited for

executing tasks in extreme scales in a distributed
fashion. Our goal in this project is to provide a

compact and lightweight distributed task execution

framework that runs on the Amazon Elastic
Compute Cloud (EC2) [16], by leveraging complex

distributed building blocks such as the Amazon

Simple Queuing Service (SQS) [18] and the
Amazon distributed NoSQL key/value store

(DynamoDB) [32].

There have been many research works about
utilizing public cloud environment on scientific

computing and High Performance Computing

(HPC). Most of these works show that cloud was
not able to perform well running scientific

applications [10][11][12][13]. The problem with

these works is they are all trying to exploit the
cloud using the same approach as traditional

clusters and super computers. Using shared

resources and virtualization technology makes

CloudKon: a Cloud enabled Distributed tasK executiON framework

Iman Sadooghi, Ioan Raicu

isadoogh@iit.edu, iraicu@cs.iit.edu

Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA

2

public clouds totally different than the traditional

HPC systems. Instead of running the same
traditional applications on a different

infrastructure, we are proposing to use the public

cloud service based applications that are highly

optimized on cloud environment. Using public
clouds like Amazon as a job execution resource

could be complex for end-users if it only provided

raw Infrastructure as a Service (IaaS) [33]. It would
be very useful if users could only login to their node

and submit jobs without worrying about the

resource management.

Another benefit of the cloud services is that

using those services, users can implement relatively

complicated systems that are able to serve in larger
scales with a very short code base in a short period

of time. Our goal is to show evidence that using

these services we are able to provide a system that
provides high quality service that is on par with the

state of the art systems in with a significantly

smaller code base.

In this project, we implement a scalable task

execution framework on Amazon cloud using

different AWS cloud services. The most important
component of our system is Amazon Simple

Queuing Service (SQS) which acts as a content

delivery service for the tasks. Other cloud services
are also used in this project. Amazon DynamoDB is

another cloud service that is used in this project to

provide the exactly once delivery of tasks in the
system. We also leverage the Amazon Elastic

Compute Cloud (EC2) to manage virtual resources.

Today’s data analytics are moving towards
shorter jobs with higher throughput and shorter

latency. More applications are moving towards

running higher number of jobs in order to improve
the application throughput and performance. A

good example for this type of applications is Many

Task Computing (MTC) [14]. MTC applications
often demand a short time to solution and may be

communication intensive or data intensive [15].

Tasks may be small or large, uniprocessor or

multiprocessor, compute-intensive or
data-intensive.

As we mentioned above, running jobs in extreme
scales is starting to be a challenge for current state

of the art job management systems that have

centralized architecture. On the other hand, the
distributed job management systems have the

problem of low utilization because of their poor

load balancing strategies.

We propose CloudKon as a job management

system that achieves good load balancing and high
system utilization. Instead of using trivial

techniques such as random sampling or hierarchical

system design, CloudKon uses distributed queues

to deliver the tasks fairly to the workers without
any need to for the system to choose between the

nodes. The distributed queue serves as a big pool of

tasks that is highly available. As soon as a worker is
done with running its tasks, it can choose new tasks

from the queue and start running them. The benefit

of this approach is that is very simple as well as

being highly efficient and scalable. Another benefit
of this solution is that different system components

loosely coupled to each other. That makes the

system highly scalable, robust, and easy to upgrade.

The main contributions of this work are:

1. Design and architect a simple light-weight

task execution framework using Amazon

Cloud services (EC2, SQS, and
DynamoDB)

2. Deliver 2X performance improvement

with <5% codebase

3. Performance evaluation up to 64-VMs

comparing CloudKon with other
state-of-the-art systems

The remaining sections of this paper are as
follows. Section 2 provides more background about

the systems and the concepts that are related to this

project and are necessary to know about. Section 3

studies the related work in the area of task
execution systems. Section 4 discusses about the

design and implementation details of CloudKon.

Section 5 evaluates the performance of the
CloudKon in different aspects using different

metrics. Finally section 6 discusses about the

limitations of the current work, and covers the
future directions of this work.

2 BACKGROUND & RELATED WORK

This section covers the necessary background
information on Amazon EC2, SQS, DynamoDB,

and Many-Task Computing (MTC). It also covers

related work to job management systems and
light-weight task execution frameworks.

3

2.1 Amazon Elastic Compute Cloud (EC2)

Cloud computing services are categorized in

three layers of Infrastructure-as-a-Service (IaaS),

Platform-as-a-Service (PaaS) and
Software-as-a-Service (SaaS). The focus of this

paper is on IaaS since the scientific computing

community mostly focuses on IaaS because of the
need for compatibility with legacy applications and

systems.

Amazon Elastic Compute Cloud (EC2) [16] is an
IaaS Cloud that provides a raw infrastructure and

the associated middleware. Amazon uses XEN

hypervisor [17] as a middleware to run multiple
Virtual Machines on their physical infrastructure.

EC2 provides a web service that allows anyone to

run their own applications on Amazon’s computing
infrastructure, by letting customers “rent”

computing resources by the hour.

Clients are given access to an “unlimited” source
of compute capacity, which is delivered through

what is known as EC2 instance. Basically, an

instance is a running virtual machine on Amazon’s
cloud platform. Each of these instances is deployed

with an Amazon Machine Image (AMI), which is

just a pre-configured operating system and some
bundled application software. There exist several

types of instances, each of them with different

compute capacities, memory size, I/O performance

and storage. Users launch one or more instances by
specifying the instance type. Then the instances

will be deployed on the server and user can connect

to them via SSH using their public IP address.
Amazon guarantees the availability rate of 99.95%

in its Service Level Agreement. That means the

instances are guaranteed to be available 99.95% of
the time.

Considering the ways we can have access to

these instances, we can categorize them in three
different types:

Reserved instances: Amazon allows us to pay
upfront per each instance that we want to use

during a given period of time, and in exchange,

they give us a lower hourly cost for each of them.
Along with the savings, with these instances we

make sure that we will have availability through all

the period that we paid for.

On demand instances: these are the most

common type of instances. You only pay for what

you use, allowing easy allocation and deallocation

of resources, depending on your capacity

requirements. Customers are billed at the end of
each month.

Spot instances: this is a very interesting
concept. In order to achieve a better utilization of

their infrastructure, Amazon allows us to bid on

unused EC2 capacity and run instances until the

current spot instance price exceeds our bid. The
spot price is set by Amazon based on the available

capacity and load of their systems and it is updated

in a 5 minute period. The prices of these instances
are much lower than what you pay for On-demand

instances. As a drawback, the availability of you

instances is only assured while the spot price is

under bid. As previously stated, Amazon
automatically terminates those instances whose bid

is exceeded by the spot price. Besides, one cannot

stop a spot instance and use it later as it happens
with on-demand or reserved instances. Spot

instances can only be terminated or rebooted.

Among these types, the spot instances seem to be

the most appropriate for running short-term

applications under certain conditions, since they

provide the same capacity and features as the other
instances at a lower rate. These include scientific

applications, which usually run for a predictable

amount of time, lowering the costs per experiment.

2.2 Amazon SQS

Amazon SQS is a fast distributed message
delivery fabric that is highly scalable. It is normally

used to decouple different components of a cloud

application. It can queue unlimited number of short
messages. The maximum size for a message is 256

KB [18].

Messages can be sent and read simultaneously on

SQS. When a user receives a message, before

removing that message, SQS locks the message in

the queue without letting other users access it. This
keeps other computers from processing the

message simultaneously. If the message processing

fails, the lock will expire and the message will be
available again. SQS guarantees delivery of each

message at least once, and provides highly

concurrent access to messages. That also means it
does not guarantee the exactly once delivery. That

means there could be multiple copies of the same

message available to read by different users. It also

does not guarantee the order of the messages.

4

2.3 Amazon DynamoDB

DynamoDB is a fast, NoSQL database service

that provides users to store and retrieve any amount

of data, and serve any level of request traffic. It is
fully distributed and highly scalable. It is able to

handle large amounts of simultaneous write and

read. Like other NoSQL databases, DynamoDB
does not provide complex data access queries. It

lets users save and access the data using its

coordinating key. DynamoDB provides some key

features such as atomic read and write on the table
which comes really useful for our usage.
2.4 Many Task Computing

Many-Task Computing (MTC) was introduced

by Raicu et al. [14][15] in 2008 to describe a class

of applications that did not fit easily into the
categories of traditional high-performance

computing (HPC) or high-throughput computing

(HTC). Many MTC applications are structured as
graphs of discrete tasks, with explicit input and

output dependencies forming the graph edges. In

many cases, the data dependencies will be files that
are written to and read from a file system shared

between the compute resources; however, MTC

does not exclude applications in which tasks

communicate in other manners.

MTC applications often demand a short time to

solution, may be communication intensive or data
intensive, and may comprise of a large number of

short tasks. Tasks may be small or large,

uniprocessor or multiprocessor, compute-intensive
or data-intensive. The set of tasks may be static or

dynamic, homogeneous or heterogeneous, loosely

coupled or tightly coupled. The aggregate number

of tasks, quantity of computing, and volumes of
data may be extremely large. For many

applications, a graph of distinct tasks is a natural

way to conceptualize the computation. Structuring
an application in this way also gives increased

flexibility. For example, it allows tasks to be run on

multiple different supercomputers simultaneously;

it simplifies failure recovery and allows the
application to continue when nodes fail, if tasks

write their results to persistent storage as they

finish; and it permits the application to be tested
and run on varying numbers of nodes without any

rewriting or modification.

The hardware of current and future large-scale

HPC systems, with their high degree of parallelism

and support for intensive communication, is well

suited for achieving low turnaround times with
large, intensive MTC applications. The MTC

paradigm has been defined and built with the

scalability of tomorrow’s systems as a priority and

can address many of the HPC shortcomings at
extreme scales.

2.5 Related Work

The job schedulers could be centralized, where a

single dispatcher manages the job submission, and

job execution state updates; or hierarchical, where
several dispatchers are organized in a tree-based

topology; or distributed, where each computing

node maintains its own job execution framework.

The University of Wisconsin developed one of

the earliest job schedulers, Condor [3], to harness
the unused CPU cycles on workstations for

long-running batch jobs. Slurm [2] is a resource

manager designed for Linux clusters of all sizes. It

allocates exclusive and/or non-exclusive access to
resources to users for some duration of time so they

can perform work, and provides a framework for

starting, executing, and monitoring work on a set of
allocated nodes. Portable Batch System (PBS) [5]

was originally developed at NASA Ames to

address the needs of HPC, which is a highly
configurable product that manages batch and

inter-active jobs, and adds the ability to signal,

rerun and alter jobs. LSF Batch [19] is the

load-sharing and batch-queuing component of a set
of workload management tools from Platform

Computing of Toronto.

All these systems target as the HPC or HTC

applications, and lack the granularity of scheduling

jobs at node/core level, making them hard to be
applied to the MTC applications. What’s more, the

centralized dispatcher in these systems suffers

scalability and reliability issues. In 2007, a

light-weight task execution framework, called
Falkon [9] was developed. Falkon also has a

centralized architecture, and although it scaled and

performed magnitude orders better than the state of
the art, its centralized architecture will not even

scale to petascale systems [8]. A hierarchical

implementation of Falkon was shown to scale to a

petascale system in [8], the approach taken by
Falkon suffered from poor load balancing under

failures or unpredictable task execution times.

5

Although distributed load balancing at extreme

scales is likely a more scalable and resilient
solution, there are many challenges that must be

addressed (e.g. utilization, partitioning). Fully

distributed strategies have been proposed,

including neighborhood averaging scheme
(ACWN) [20][21][22][23]. In [23], several

distributed and hierarchical load balancing

strategies are studied, such as Sender/Receiver
Initiated Diffusion (SID/RID), Gradient Model

(GM) and a Hierarchical Balancing Method

(HBM). Other hierarchical strategies are explored
in [22]. Charm++ [24] supports centralized,

hierarchical and distributed load balancing. In [24],

the authors present an automatic dynamic

hierarchical load balancing method for Charm++,
which scales up to 16K-cores on a Sun

Constellation supercomputer for a synthetic

benchmark.

Sparrow is another scheduling system that

focuses on scheduling very short jobs that complete
within hundreds of milliseconds [25]. It has a

decentralized architecture that makes it highly

scalable. It also claims to have a good load

balancing strategy with near optimal performance
using a randomized sampling approach. It has been

used as a building block of other systems.

Work stealing is another approach that has been

used at small scales successfully in parallel

languages such as Cilk [26], to load balance threads
on shared memory parallel machines [27][28][29].

However, the scalability of work stealing has not

been well explored on modern large-scale systems.

In particular, concerns exist that the randomized
nature of work stealing can lead to long idle times

and poor scalability on large-scale clusters [29].

The largest studies to date of work stealing have
been at thousands of cores scales, showing good to

excellent efficiency depending on the workloads

[29].

MATRIX is an execution fabric that focuses on

running Many Task Computing (MTC) jobs [30]. It

uses an adaptive job stealing approach that makes it
highly scalable and dynamic. It also supports the

execution of complex large-scale workflows, and

has been shown to scale to 1K-nodes.

Most of these existing light-weight task

execution frameworks have been developed from
scratch, resulting in code-bases of tens of thousands

of lines of code. This leads to systems which are

hard and expensive to maintain, and potentially
much harder to evolve once initial prototypes have

been completed. This work aims to leverage

existing distributed and scalable building blocks to

deliver an extremely compact distributed task
execution framework while maintaining the same

level of performance as the best of breed systems.

3 DESIGN AND IMPLEMENTATION OF

CLOUDKON

The goal of this project is to implement a job
scheduling/management system that satisfies four

major objectives:

1. Scale: Offer increasing throughput with
larger scales through distributed services

2. Load Balance: Offer good load balancing at

large scale with heterogeneous workloads

3. Light-weight: The system should add
minimal overhead even at fine granular

workloads

4. Loosely Coupled: Critical towards making
the system compact and robust

In order the achieve scalability, CloudKon uses
SQS which is distributed and highly scalable. As a

building block of CloudKon, SQS can upload and

download large number of messages

simultaneously. Therefore it enables the framework
to add more clients and workers to the system

without decreasing the per node bandwidth of each

individual node. The independency of the workers
and clients makes the framework perform well on

larger scales. In order to provide other

functionalities such as monitoring or task execution
consistency, CloudKon also uses cloud services

such as DynamoDB that are all fully distributed and

highly scalable. This way we can make sure none of

these component will become a bottleneck for the
system because of poor scalability.

Using SQS as a distributed queue enables us to
use the pulling approach for load balancing and

task distribution. Instead of putting an

administrator component (often times centralized)
to decide how to distribute the jobs between the

worker nodes, the worker nodes decide when to

pull the jobs and run them. The pulling mechanism

has many benefits over the pushing. It distributes
the decision making role from one central node to

all of the workers in the system. It also requires less

communication than the pushing. In the pushing

6

approach the decision maker has to communicate

with the workers periodically to update their status
and make decisions as well as distributing the jobs

to among the workers. On pulling approach the

only communication required is pulling the jobs.

Using this approach can deliver good load
balancing on worker nodes.

Using other third party cloud services, the
CloudKon processing overhead is very low. The

client and worker components do not have a heavy

program to run. Many parts of their program calls
are the calls to the cloud services, so they are being

processed on the third party services. Having

totally independent workers and clients, CloudKon

does not need to keep any information of its nodes
such as the IP address or any other state of its

nodes.

Another advantage of using a distributed queue

is decoupling different components of the system.

Different components can operate independently
with the SQS component in the middle to decouple

different parts of the framework from each other.

That makes our design compact, robust and easily

extendable.

The scheduler can work in a cross-platform

fashion with ability to serve on a heterogeneous
environment that has systems with various types of

nodes with different platforms and configurations.

Using distributed queues also helps reducing the
dependency between clients and the workers. The

clients and workers can modify their

pushing/pulling rate without having any effect on

each other.

All of the advantages mentioned above rely on a

distributed queue that could provide good
performance in any scale. Amazon SQS is a highly

scalable cloud service that can provide all of the

features required to implement a scalable job
scheduling system. Using this service, we can

achieve the goal of having a system that perfectly

fits in the public cloud environment and runs on its

resources optimally.

The system makes it easy for the users to run

their jobs over the cloud resources in a distributed
fashion just using a client front end without having

to worry about setting up any cluster to run their

jobs on.

3.1 Architecture Overview

This section explains about the system design of

CloudKon. We have used a component based

design on this project for two reasons:
- A component based design fits better in the

cloud environment. It also helps designing the

project in a loosely-coupled fashion.
- It will be easier to improve the implementation

in the future.

Figure 1 shows the architecture of CloudKon.
The client node works as a front end to the users to

submit their tasks. The standard message format for

SQS messages is String. SQS has a limit of 256 KB
for the size of the messages. In order to send tasks

via SQS we need to use an efficient serialization

protocol with low processing overhead. We have
considered using JSON and Google Protocol

Buffer. After implementing our message with both

serialization options, we chose Google Protocol

Buffer because the size of the messages that was
made with Google Protocol Buffer was 44% less

than the size of JSON messages.

Figure 1. CloudKon architecture overview

CloudKon has many components that each has a

separate independent responsibility. The

components are:

 Global Request Queue

 Client Response Queues

 Client

 Worker

 Dynamic Provisioner

 Duplicate Task Controller

 Monitoring System

7

We have defined a message to use as a task

container during the communication phase. Each
message has a Task ID which is unique among

tasks in each Client. It also includes different time

stamps. Some of them include: Send time which is

the time that the message will be sent by the client,
and Receive time which is the time that a worker

receives a task from the Global Request Queue.

The Client ID is unique among all different Clients.
We use an algorithm that provides unique global

IDs so we don’t have to worry about setting a

policy to assign IDs to each client. Clients can start
working independently without having a repeated

Client ID. Worker ID will be left empty at the send

time and is set by the worker that runs the task. The

response queue address is specified for worker
nodes to send back the results. Each Client has its

own response queue. Finally the Body is the section

that includes the command and its arguments. We
have also left a reserved part for future uses of the

project.

The Client code is multithreaded. That means it

can submit multiple tasks to the SQS in parallel.

After creating the task messages, Client threads

submit multiple those in message batches that wrap
up to 10 messages at each time of communicating

with SQS. This way we can avoid the large

overhead of communication up to 10 times.

Worker nodes on CloudKon have the ability to

be launched and run independently without the
need to register anywhere. This way we can have a

scalable system with extreme number of worker

nodes working independently. Worker code is also

multithreaded and is able to receive multiple tasks
in parallel. Each thread fetches up to 10 tasks

message packages. Again, this feature is enabled to

reduce the large communication overhead. After
receiving a task, the worker thread has to verify that

this is the first time that this task is being executed.

After verifying that the task is being executed for
the first time, the worker thread decomposes the

message into the task. Then it fetches the task

command and runs it. After finishing the execution,

it puts the results into the message and sends it back
to its corresponding client using the client response

queue address field.

Soon after submitting the tasks, the client thread

starts looking for the results in its particular

response queue. The client does not stop until it
gets back all of the results for the tasks.

3.2 Task Consistency on CloudKon

A limitation of SQS is that it does not guarantee

delivering the messages exactly once. It guarantees

delivering message at least once. That means there
might be duplicate messages delivered to the

workers. In order to be able to run many types of

applications our system needs to guarantee the
exactly once execution of the tasks.

In order to be able to verify the duplication we

have used DynamoDB. After receiving a task, the
worker thread has to verify that this is the first time

that this task is being executed. DynamoDB

provides a fast and simple key value store. Each
time that a worker thread accesses this service it

tries to add the unique identifier of a task which is a

combination of the Task ID and the Client ID into
the store. The operation succeeds if the message is

not available in the store and is written for the first

time. Otherwise the operation fails and the worker

finds out that this was a duplicate message. This
operation is an atomic operation. Using this

technique we have minimized the number of

communications between the worker and
DynamoDB.

As we mentioned above, exactly once delivery is
necessary for many type of applications such as

scientific applications. But there are some

applications that have more relaxed consistency

requirements and can still function without this
requirement. Our program has ability to disable this

feature for these applications to reduce the latency

and increase the total performance. We will study
the overhead of this feature on the total

performance of the system in the evaluation

section.

3.3 Dynamic Provisioning

One of the main goals in the public cloud
environment is the cost-effectiveness. The

affordable cost of the resources is one of the main

reasons for the users to approach the cloud
environment. Therefore it is very important for this

project to keep the costs at the lowest possible rate.

In order to achieve the cost-effectiveness we have

implemented the dynamic provisioning system.
Dynamic provisioner is responsible for assigning

and launching new workers to the system in order

to keep up with the incoming workload.

We first considered using Amazon Cloud Watch

for this purpose. Amazon CloudWatch provides

8

monitoring for AWS cloud resources and the

applications customers run on AWS. Users can use
it to collect and track metrics and react

immediately. The problem with using Cloud Watch

in our system is that the shortest period for updating

the state of the SQS is 5 minutes, which is fine for
industrial and Internet applications. But it is

definitely not acceptable for our application.

Therefore we decided to implement our own
dynamic provisioner. The dynamic provisioner

takes care of launching new worker instances in

case of resource shortage. The application checks
the queue length of the global request queue

periodically and compares the queue length with its

previous size. If the difference was more than the

allowed threshold, it launches a new instance. Both
checking interval and the size threshold are set as

program input by the user.

In order to use the resources efficiently, we have

added a feature to the worker nodes. The worker

node can deregister itself from the provisioner and
terminate if two conditions hold. That only happens

if the worker goes to the idle state for a while and

also if the instance is getting close to its lease

renewal. The instances in Amazon EC2 are charged
on hourly basis and will get renewed every hour of

the user don’t shut them down. This mechanism

helps our system scale down automatically without
the need to get any request from a component.

Using these mechanisms, the system is able to

dynamically scale up and down.

3.4 Monitoring

Monitoring is an important feature for a job
management/scheduling system. It can be useful

for many purposes such as utilization monitoring

and debugging. In order to provide monitoring on

CloudKon, we have used DynamoDB. There is a
monitoring thread running on each worker node to

report specific details of the worker to the key value

store periodically. Currently we are using the
monitoring system to report the system utilization

on worker nodes. The key value store in

DynamoDB keeps track of all of the workers. The
monitoring component reads the specific data it

needs from the store in a real time fashion.

3.5 Communication Cost on CloudKon

The network latency between the instances in the

public Cloud is relatively high compared to HPC
systems. In order to maintain a service that can

achieve a reasonable throughput and latency we

need to minimize the communication between the
different components of the system. Figure 2 shows

the number of communications required to finish a

complete cycle of running a task. There are 7 steps

of communication to execute a task. At the first
step, the Client sends the tasks to the global request

queue in a single call. The worker then makes a call

to the request queue and fetches the message at a
single operation. After receiving a message, the

worker makes a conditional write call to the

DynamoDB system. After running the task, the
Worker sends a message to the response queue. The

execution cycle is completed by the Client when it

gets the message from its response queue.

Figure 2. Communication Cost

In order to minimize the communication

overhead, we also use message batching. This way

we can send multiple tasks together. Figure 3
shows the number of messages we send on each

communication between different components. The

maximum message batch size in SQS is 256 KB or

10 messages. We have used message bundling on
all of our communication steps except than one

step. The Worker sends back the results to the

response queue as soon as it runs the task. The
reason for that is in order to send a batch of results

to the response queue of a certain Client; the

Worker needs wait until it runs a bunch of tasks
from that certain client which is not desirable.

Figure 3. Message Flow Diagram

9

3.6 Security and Reliability on CloudKon

For the system security of CloudKon, we rely on

the security of the SQS. SQS provides a highly

secure and fast system using authentication
mechanism. Only authorized users can access to the

contents of the Queues. In order to keep the latency

low, we don’t add any encryption to the messages
[18]. SQS provides reliability by storing the

messages redundantly on multiple servers and in

multiple data centers [18].

3.7 Implementation details of CloudKon

We have implemented all of the CloudKon
components in Java. Our implementation is

multithreaded in both Client and Worker

component codes. Many of the features in both of

these systems such as Monitoring, Consistency,
number of threads and message packing size can be

enabled, disabled or modified as input argument of

the program.

We have used some open source libraries in our

implementation. The libraries include:
- AWS Java SDK library, for communicating

with different AWS services [34]

- Apache Commons library for Base 64

Encoding and decoding [35]

Making benefit of AWS service, our system has

a short and simple code base. The code base of
CloudKon is significantly shorter than other

common task execution systems like Falkon or

Sparrow. CloudKon code has about 1000 lines of
code, while Falkon has 33000+ lines and Sparrow

has 24000+ lines of code. This can show the

potential benefits of the public cloud services. We

can create a fairly complicated and scalable system
by making benefit of already available system in

the cloud.

4 PERFORMANCE EVALUATION

In this section we evaluate the performance of

the CloudKon comparing it with other systems

using different metrics. In all of our experiments,
we have used m1.medium instances on Amazon

EC2. We have run all of our experiments on

us.east.1 datacenter of Amazon. We have used up
to 64 nodes and 65 SQS queues in the experiments.

In order to make the experiments efficient, client

and worker nodes both run on each node. All of the

instances had Linux Operating Systems. Our
framework works on any OS that has a JRE 1.6 or

above running on it. We have used bash scripting

language with the help of some other programs like
Parallel-SSH to run the experiments.

4.1 Throughput and latency on CloudKon

In order to measure the throughput and latency of

our system we run sleep 0 tasks on worker nodes.

We have evaluated the performance of CloudKon
on multiple instances, starting from 1 instance and

extending the experiment up to 64 instances. We

have also compared the throughput and latency of

CloudKon with Sparrow and Falkon.

There are 2 client threads and 4 worker threads

running on each instance. Each instance submits
16000 tasks. On the largest scale (64 instances) our

system runs 1024000 tasks on each experiment.

We have evaluated the throughput of CloudKon

from 1 to 64 instances running 16000 to 1024000

tasks. The results show that CloudKon achieves

almost linear speedup starting from 87 tasks per
second on 1 instance to 5735 tasks per second on 64

instances. Therefore we predict that our solution

scales at the same rate on larger scales.

Figure 4 compares the throughput of CloudKon

with Sparrow and Falkon on different scales. We
have used the same configuration on all of the

systems running 2 client threads and 4 worker

threads on each instance running 16000 tasks on

each instance.

Figure 4. Comparing the throughput of different

job execution systems

The results show that CloudKon was able to

outperform the other two systems after the scale of

16 instances. CloudKon was able to achieve an
almost linear speedup after the scale of 16 instances

while the other two systems were not able to scale

10

up perfectly. Falkon performs slower than the other

two systems and cannot scale up linearly due to
having a centralized architecture. One of the main

reasons that CloudKon is outperforming the other

two is being optimized for the public cloud

environment.

Figure 5 compares the latency of CloudKon with

Sparrow and Falkon on different scales. CloudKon
has a lower latency comparing to the other two

systems. The latency starts to increase after 32

instance scale on CloudKon. The reason for that is
increasing the number of tasks on the request

queue.

Figure 5. Comparing the latency of different job

execution systems

4.2 The overhead of consistency on

throughput and latency

As we have mentioned before, some applications

have more relaxed requirements and can tolerate
running the tasks more than once without

generating any error. In this section we are going to

evaluate the performance of the CloudKon when
the duplicate task controller tool is disabled.

Figure 6 and 7 compare the throughput and

latency of CloudKon when duplicate task controller
is enabled/disabled. The results show that the

throughput of the CloudKon when the duplicate is

disabled is 1.5 times more on average. The
throughput of the framework gets to 7991 tasks per

task on 64 instances.

The latency of CloudKon decreases for 37% on

average when the duplicate controller is off. The

average latency of the framework is 15 ms

comparing to 23.5 ms when the controller is
enabled.

Figure 6. System throughput when duplicate

controller is enabled/disabled

Figure 7. System latency when duplicate controller

is enabled/disabled

4.3 Efficiency of CloudKon

Another important requirement for an execution

system is to be efficient. The system should be able

to run short tasks with less than a second task length
efficiently.

Figure 8 compares the efficiency of CloudKon,
Sparrow and the Falkon. The efficiency of our

system is slightly better than Sparrow. The

efficiency gets to 92% for tasks that take 1 second.

This shows that CloudKon is a very light weight
system that adds minimal overhead to the system.

4.4 The overhead of consistency on efficiency

In this section we evaluate effect of task

consistency on the system efficiency. Figure 9

shows that the efficiency of the system without the

11

controller is very good for shorter tasks with less

than 1 second. The de-duplication effect decreases
with the increase of the task length.

Figure 8. System effiency of CloudKon compared

to other task execution systems

Figure 9. System efficiency when duplicate

controller is enabled/disabled

5 CONCLUSION AND FUTURE WORK

Large scale distributed systems require efficient

job scheduling system to achieve high throughput

and system utilization. It is important for the
scheduling system to provide high throughput and

low latency on the larger scales and add minimal

overhead to the workflow. CloudKon is a Cloud

enabled distributed task execution framework that
runs on Amazon AWS cloud. It uses SQS cloud

service as a building block. SQS is a highly scalable

distributed queue. The evaluation of the CloudKon
shows that it is able to provide a very high

throughput outperforming other scheduling

systems like Sparrow and Falkon. Up to the scale of

64 instances, CloudKon has an almost ideal speed

up that shows us that it can easily scale to larger
number of instances. The latency measurements

show that CloudKon is a very lightweight system

that adds minimal overhead to the workflow. The

efficiency results show that we can expect high
efficiency for the tasks that take hundreds of

milliseconds or more.

This work has many directions on its future

work. One of the future works for CloudKon is to

make the system 100% independent to be able to
run it on different public and private clouds. In

order to provide such system, we are going to

implement a SQS like service with ability to

provide high throughput content delivery at the
larger access scales. With help from other systems

such as ZHT distributed hash table [31] we will

implement this queue in a way that can guarantee
exactly once delivery. Another future direction of

this work is to create a more tightly coupled

implementation of CloudKon for HPC
environments. We are also planning to evaluate the

performance of the CloudKon on larger scales to

find the limitations of the SQS service.

6 REFERENCES

[1] P. Kogge, et. al., “Exascale computing study:

Technology challenges in achieving exascale

systems,” 2008.

[2] M. A. Jette et. al, Slurm: Simple linux utility for

resource management. In In Lecture Notes in

Computer Sicence: Proceedings of Job Scheduling

Strategies for Prarallel Procesing (JSSPP) 2003
(2002), Springer-Verlag, pp. 44-60.

[3] D. Thain, T. Tannenbaum, M. Livny, “Distributed

Computing in Practice: The Condor Experience”

Concurrency and Computation: Practice and

Experience 17 (2-4), pp. 323-356, 2005.

[4] J. Frey, T. Tannenbaum, I. Foster, M. Frey, S.

Tuecke. “Condor-G: A Computation Management

Agent for Multi-Institutional Grids,” Cluster

Computing, 2002.

[5] B. Bode et. al. “The Portable Batch Scheduler and

the Maui Scheduler on Linux Clusters,” Usenix, 4th
Annual Linux Showcase & Conference, 2000.

[6] W. Gentzsch, et. al. “Sun Grid Engine: Towards

Creating a Compute Power Grid,” 1st International

Symposium on Cluster Computing and the Grid,

2001.

12

[7] C. Dumitrescu, I. Raicu, I. Foster. “Experiences in

Running Workloads over Grid3”, The 4th

International Conference on Grid and Cooperative

Computing (GCC 2005)

[8] I. Raicu, et. al. “Toward Loosely Coupled

Programming on Petascale Systems,” IEEE SC
2008.

[9] I. Raicu, et. al. “Falkon: A Fast and Light-weight

tasK executiON Framework,” IEEE/ACM SC 2007.

[10] L. Ramakrishnan, R. S. Canon, K. Muriki, I.

Sakrejda, and N. J. Wright. Evaluating Interconnect

and virtualization performance for high

performance computing, ACM Performance

Evaluation Review, 40(2), 2012.

[11] Piyush Mehrotra, Jahed Djomehri, Steve Heistand,

Robert Hood, Haoqiang Jin, Arthur Lazanoff,

Subhash Saini, and Rupak Biswas. 2012.

Performance evaluation of Amazon EC2 for NASA
HPC applications. In Proceedings of the 3rd

workshop on Scientific Cloud Computing

(ScienceCloud '12). ACM, New York, NY, USA,

pp. 41-50.

[12] Q. He, S. Zhou, B. Kobler, D. Duffy, and T.

McGlynn. “Case study for running HPC

applications in public clouds,” In Proc. of ACM

Symposium on High Performance Distributed

Computing, 2010.

[13] Guohui Wang and T. S. Eugene Ng. The Impact of
Virtualization on Network Performance of Amazon

EC2 Data Center. In IEEE INFOCOM, 2010.

[14] I. Raicu, Y. Zhao, I. Foster, “Many-Task

Computing for Grids and Supercomputers,” 1st

IEEE Workshop on Many-Task Computing on

Grids and Supercomputers (MTAGS) 2008.

[15] I. Raicu. "Many-Task Computing: Bridging the Gap

between High Throughput Computing and High

Performance Computing", Computer Science Dept.,

University of Chicago, Doctorate Dissertation,

March 2009

[16] Amazon Elastic Compute Cloud (Amazon EC2),
Amazon Web Services, [online] 2013,

http://aws.amazon.com/ec2/

[17] Xen Hypervisor, xen.org, [online] 2013,

http://www.xen.org/products/xenhyp.html

[18] Amazon SQS, [online] 2013,

http://aws.amazon.com/sqs/

[19] LSF:http://platform.com/Products/TheLSFSuite/Ba

tch, 2012.

[20] L. V. Kal´e et. al. “Comparing the performance of

two dynamic load distribution methods,” In

Proceedings of the 1988 International Conference

on Parallel Processing, pages 8–11, August 1988.

[21] W. W. Shu and L. V. Kal´e, “A dynamic load

balancing strategy for the Chare Kernel system,” In
Proceedings of Supercomputing ’89, pages 389–

398, November 1989.

[22] A. Sinha and L.V. Kal´e, “A load balancing

strategy for prioritized execution of tasks,” In

International Parallel Processing Symposium, pages

230–237, April 1993.

[23] M.H. Willebeek-LeMair, A.P. Reeves, “Strategies

for dynamic load balancing on highly parallel

computers,” In IEEE Transactions on Parallel and

Distributed Systems, volume 4, September 1993

[24] G. Zhang, et. al, “Hierarchical Load Balancing for

Charm++ Applications on Large Supercomputers,”
In Proceedings of the 2010 39th International

Conference on Parallel Processing Workshops,

ICPPW 10, pages 436-444, Washington, DC, USA,

2010.

[25] OUSTERHOUT, K., WENDELL, P., ZAHARIA,

M., AND STOICA, I. Sparrow: Scalable scheduling

for sub-second parallel jobs. Tech. Rep.

UCB/EECS-2013-29, EECS Department,

University of California, Berkeley, Apr 2013.M.

[26] Frigo, et. al, “The implementation of the Cilk-5

multithreaded language,” In Proc. Conf. on Prog.
Language Design and Implementation (PLDI),

pages 212–223. ACM SIGPLAN, 1998.

[27] R. D. Blumofe, et. al. “Scheduling multithreaded

computations by work stealing,” In Proc. 35th

FOCS, pages 356–368, Nov. 1994.

[28] V. Kumar, et. al. “Scalable load balancing

techniques for parallel computers,” J. Parallel

Distrib. Comput., 22(1):60–79, 1994.

[29] J. Dinan et. al. “Scalable work stealing,” In

Proceedings of the Conference on High

Performance Computing Networking, Storage and

Analysis (SC '09), 2009.

[30] K.Wang, A. Rajendran, and I. Raicu. "MATRIX:

Many-task computing execution fabric at exascale".

2013. Available from http:

//datasys.cs.iit.edu/projects/MATRIX/index.html

[31] T. Li, et al., “ZHT: A light-weight reliable persistent

dynamic scalable zero-hop distributed hash table,”

in IEEE International Parallel & Distributed

Processing Symposium, IEEE IPDPS ’13, 2013.

http://aws.amazon.com/ec2/
http://www.xen.org/products/xenhyp.html

13

[32] Amazon DynamoDB (beta), Amazon Web

Services, [online] 2013,

http://aws.amazon.com/dynamodb

[33] P. Mell and T. Grance. NIST definition of cloud

computing. National Institute of Standards and

Technology. October 7, 2009.

[34] AWS SDK for Java, Amazon Web Services,

[online] 2013, http://aws.amazon.com/sdkforjava

[35] Apache Commons codec, Apache Software

Foundation, [online] 2013,

http://commons.apache.org/proper/commons-codec

[36] MELNIK, S., GUBAREV, A., LONG, J. J.,

ROMER, G., SHIVAKUMAR, S., TOLTON, M.,

AND VASSILAKIS, T. Dremel: Interactive

Analysis of Web-Scale Datasets. Proc. VLDB

Endow. (2010).

http://commons.apache.org/proper/commons-codec

