
Exploring Distributed Resource Allocation Techniques in

the SLURM Job Management System

Xiaobing Zhou

*
, Hao Chen

*
, Ke Wang

*
, Michael Lang

†
, Ioan Raicu

*

‡

*
Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA

†
Ultra-Scale Research Center, Los Alamos National Laboratory, Los Alamos NM, USA

‡
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne IL, USA

xzhou40@hawk.iit.edu, hchen71@hawk.iit.edu, kwang22@hawk.iit.edu, mlang@lanl.gov, iraicu@cs.iit.edu

Abstract— With the exponentially growth of

distributed computing systems in both flops and

cores, scientific applications are growing more

diverse with a variety of workloads. These

workloads include traditional large-scale High

Performance Computing MPI jobs, and ensemble

workloads, such as Many-Task Computing

workloads comprised of extremely large number of

tasks of finer granularity, where tasks are defined

on a per-core or per-node level, and often execute in

milliseconds to seconds. Delivering high throughput

and low latency for these heterogeneous workloads

requires developing distributed job management

system that is magnitudes more scalable and

available than today’s centralized batch-scheduled

job management systems. In this paper, we present a

distributed job launch prototype SLURM++, which

extends the SLURM resource manager by

integrating the ZHT zero-hop distributed key-value

store for distributed state management. SLURM++

is comprised of multiple controllers with each one

managing several SLURM daemons, while ZHT is

used to store all the job metadata and the SLURM

daemons’ state. We compared SLURM with our

SLURM++ prototype with a variety of micro-

benchmarks of different job sizes (small, medium,

and large) at modest scales (500-nodes) with

excellent results (10X higher job throughput).

Scalability trends shows expected performance to be

many orders of magnitude higher at tomorrow’s

extreme scale systems.

Keywords-job management systems; job launch;

distributed scheduling; key-value stores

I. INTRODUCTION

A. Background

Exascale supercomputers (10^18 ops/sec) will have

millions of nodes and billions of concurrent threads of

execution [1]. With this extreme magnitude of

component count and concurrency, ensemble

computing is one way to efficiently use the exascale

machines without requiring full- scale jobs. Given the

significant decrease of Mean-Time-To-Failure (MTTF)

[2] at exascale levels, these ensemble workloads should

be more resilient by definition given that failures will

affect a smaller part of the machines. Ensemble

computing would combine the traditional High

Performance Computing (HPC) workloads that are

large-scale applications with message-passing interface

(MPI) [3] as the method for communication, with the

ensemble workloads that would support the

investigation of parameter sweeps using many more but

smaller-scale coordinated jobs [4].

One example of ensemble workloads comes from

the Many-Task Computing (MTC) [5] paradigm, which

has several orders of magnitude larger number of jobs

(e.g. billions) of finer granular tasks in both size (e.g.

per-core, per-node) and duration (from sub-second to

hours) that do not require strict coordination of

processes at job launch as the traditional HPC

workloads do. David Keyes identified reasons why

today’s computational scientists want performance:

resolution, fidelity, dimension, artificial boundaries,

parameter inversion, optimal control, uncertainty

quantification, and the statistics of ensembles [6]; the

last four can be addressed by MTC. A decade ago or

earlier, it was recognized that applications composed of

large numbers of tasks may be used as an driver for

numerical experiments that may be combined into an

aggregate method [7]. In particular, the algorithm

paradigms well suited for MTC are Optimization, Data

Analysis, Monte Carlo and Uncertainty Quantification.

Various applications that demonstrate characteristics of

MTC cover a wide range of domains, from astronomy,

physics, astrophysics, pharmaceuticals, bioinformatics,

biometrics, neuroscience, medical imaging, chemistry,

climate modeling, and economics [8].

The job scheduling/management systems (JMS) for

exascale ensemble computing will need to be versatile,

scalable and available enough, in order to deliver

extremely high throughput for both traditional HPC and

ensemble workloads. However, today’s batch

schedulers (e.g. SLURM [9], Condor [10], PBS [11],

SGE [12]) have centralized master/slaves architecture

where a server/controller is handling all the activities,

such as metadata management, resource provisioning,

and job execution. This centralized architecture is not

well suited for the demands of exascale computing, due

to both poor scalability and single-point-of-failure.

One of the more popular and light-weight JMS,

SLURM, reported maximum throughput of 500 jobs/sec

[13]; however, we will need many orders of magnitude

higher job submission and execution rates (e.g. millions

jobs/sec) for next-generation JMS, considering the

significant increase of scheduling size (10X higher node

counts, 100X higher core counts, and significantly

higher job counts), along with the much finer

granularity of job durations (milliseconds/minutes, as

compared to hours/days).

B. Motivation

The given distributed job launch prototype has poor

performance in allocating resources when there are

many launching threads that require resource

concurrently. In this work, we aim to improve the

distributed job launch prototype that is built on top of

SLURM and ZHT [14, 28] systems. Resource

contention will be much more severe if the workloads

are big HPC jobs (e.g. 100-node job).

This paper proposes a distributed architecture for

job management systems, and identifies the challenges

and solutions towards supporting job management

system at extreme-scales. We developed a distributed

job launch prototype (SLURM++) with multiple servers

(controllers) participating in allocating resources and

launching jobs – an extension to the open source batch

scheduler SLURM [9]. In order to hide the

communication/coordination messages involved in

maintaining distributed service architectures, such as

those related to failure/recovery, replication and

consistency protocols, we utilized distributed key-value

stores (DKVS) to simplify the design and

implementation. The general use of DKVS in building

distributed system services was proposed, and evaluated

through simulation in our previous work [15]. This

work validates some of our prior simulation results that

DKVS are a viable building block towards the

development of more complex distributed services. We

replaced the centralized controller (slurmctld) with

many distributed controllers with each one managing a

partition of compute resources. ZHT [14, 28] is the

DKVS used in our prototype to store all the information

related to the resources and jobs in a scalable,

distributed, and fault tolerant way.

The key contributions of this paper are:

1. Proposed a distributed architecture for job

management systems, and identified the challenges

and solutions towards supporting job management

system at extreme-scales

2. Designed and developed a distributed resource

stealing algorithm for efficient HPC job launch

3. Designed and implemented a distributed job launch

prototype SLURM++ for extreme scales by

leveraging SLURM and ZHT

4. Evaluate the centralized batch scheduler SLURM

and our distributed SLRUM++ up to 500-nodes

with various micro-benchmarks of different job

sizes (small, medium, and large) with excellent

results up to 10X higher throughput

5. Analyzed the evaluation results of SLURM++ and

SLURM to point out what parts could be optimized

to improve the overall throughput of the system

The rest of this paper is organized as follows.

Section II proposes the architecture, the problem set and

the solutions, along with the design and implementation

details of our distributed job launch prototype,

SLURM++. Section III presents SLURM++ evaluation

as it is compared to SLURM. Section IV analyzes the

evaluation results of SLURM++ and SLURM. Section

V presents the related work. We discuss future works

and draw conclusions in Section VI and Section VII.

II. PROPOSED SOLUTION

The overall architecture of SLURM++ is envisioned

and shown in Figure 1. Instead of using one centralized

server/controller to manage all the compute daemons

(cd), there will be multiple distributed controllers with

each one managing a partition of cd. The controllers are

fully-connected meaning that each controller is aware

of all others. In addition, a distributed data storage

system is demanded to be deployed on the machine to

manage the entire job and resource metadata, as well as

the state information in a scalable, reliable and fault

tolerant way. The data storage system should also be

fully-connected, and one configuration is to co-locate a

data server with a controller on the same node forming

one to one mapping, such as shown in Figure 1.

Figure 1: Architecture for SLURM++; "cd" refers to

compute daemon

The partition size (the ratio of the number of

controllers to the number of compute daemons) is

configurable, and can vary according to the application

domain. For example, for a large-scale HPC workload

where jobs usually require a large number of nodes to

run, we can have each controller manage thousands of

cd, so that the jobs are likely to be managed and

launched locally (within the controller); for MTC

jobs/tasks where a task usually requires small amount

of nodes, or even a small number of cores within one

node, we can push the controller down to the compute

node to have the one-to-one mapping (millions of

controllers and compute daemons at exascale). We can

even have heterogeneous partition sizes for each

controller to support different ensemble workloads.

The fully-connected topology is scalable under

failure/recovery, replication and consistency protocols

when the numbers of controllers and data servers are

not many, such as in the HPC environment, both of

them can be 1K at exascale with each one managing 1K

cd. Besides, our previous simulation work showed that

when the client messages that relate to process requests

dominate all the messages in the system, the fully-

connected topology has great scalability up to exascale

[15]. When comes to the 1:1 mapping ideal for MTC

workloads, we expect some distributed monitoring

service to manage and maintain the fully-connected

topology.

The distributed storage system could be a

distributed file system, or a light-weight distributed

key-value store (DKVS). For example, if we apply

DKVS as the storage system, each controller would be

initialized as a DKVS client, which then uses the simple

DKVS client API interfaces (e.g. lookup, insert, remove)

to communicate with the DKVS servers to query and

modify the job and resource information, and the

system state information transparently. In this way, the

controllers don’t need to communicate explicitly with

each other to query resources and jobs. Another benefit

of using DKVS is that the DKVS could take over all the

communications among controllers needed for

maintaining distributed features, such as

failure/recovery, replication, and consistency protocols.

A. Resource Contention vs. Compare and Swap

Resource contention happens when different

controllers try to allocate the same resources. By

querying the data storage system, different controllers

may have the same view of the specific resources. For

example, if we use DKVS to store the resource

information of all the controllers, and controller 1 has

1000 nodes available currently. If controller 1 and

controller 2 both need to allocate 100 nodes from

controller 1, after they query DKVS, they would both

get 1000 available nodes. Therefore, they will both

update the number of free nodes of controller 1 to be

900. However, in reality, controller 1 needs to give out

200 nodes, which would lead to 800 free nodes.

One naive way to solve this resource contention

problem is to add a global lock for each queried “key”

in the DKVS. This approach is apparently not scalable

considering the tremendously large volume of data

stored. Another scalable approach is to implement some

atomic operation in the DKVS that can tell the

controllers whether the resource allocation succeeds or

not. Learned from the traditional compare and swap

atomic instruction [16], we come up with a specific

compare and swap atomic algorithm that could address

resource contention problem. The compare and swap

procedure is given in the pseudo-code in ALGORITHM

1.

ALGORITHM 1. Compare and Swap
Input: key (key), value seen before (seen_value), new value
intended to insert (new_value), and the storage hash map (map).
Output: A Boolean value indicates success (TRUE) or failure
(FALSE), and the current actual value (current_value).
current_value = map.get(key);
if (!strcmp(current_value, seen_value)) then
 map.put(key, new_value);
 return TRUE;
else
 return FALSE;
end

Specifically, when a controller allocates and releases

resources, the compare and swap operation will be used.

Before a controller calls compare and swap, it queries

the seen_value of the supplied key. Then, the controller

updates the seen_value to get a new_value, and calls the

compare and swap. After the DKVS server receives the

compare and swap request, it executes the compare and

swap operation, and returns the status to the controller.

If the status is TRUE, then the request has been served

successfully; otherwise, the client would use the

returned the slurmctld first looks up the global resource

data structure to allocate resources for the job. Once a

job gets its allocation, it can be launched via a tree-

based network rooted at rank-0 slurmd. When a job is

finished, the rank-0 slurmd returns the result to

slurmctld. The input to SLURM is one configuration

file that is read by slurmctld and all slurmds. The

configuration file specifies the identities of slurmctld

and all the slurmds so that they can communicate

current_value as the next seen_value and retry the

procedure until getting success.

We implemented this compare and swap as

extension to ZHT. The API looks like

compare_swap(key, seen_val, new_val, current_val).

For the standard compare and swap, there are only two

parameters, seen_val and new_val. It is like

compare_swap(seen_val, new_val), but in order to be

compliant with ZHT key/value semantics, the key

parameter in added, and moreover, one more parameter,

current_val, is added as augment to keep the most

recent value queried by that key in terms of ZHT server

clock, even if this compare and swap probably is not

satisfied. This additional parameter current_val saves

one lookup network round trip that is required to get the

most recent value by the later compare and swap.

B. Remote Polling vs. State Change Callback

SLURM does tree-based job launch, in a few words,

the slurmctld talks to the first slurmd(with rank 0) in the

list of slurmd that are assigned to jobs to be run. When

job is done, control flows from the first slurmd to

slurmctld. This design is not good enough for multiple

controllers that are fully connected, for example,

controller A steals resource from B, slurmd in B helps

run jobs for A and return control to only B’s slurmctld,

in order to avoid coupled communication between

controllers such as A and B, B has to write when job is

done to ZHT, and A keeps polling ZHT to know when

job is done by lookup. This polling contributes 90% of

total messages involved.

One operation we implemented in ZHT is the state

change callback operation that is specific to the job

returning procedure in SLURM++. Without this new

operation, the controller would have to poll the ZHT

server on a regular basis on a regular basis incuring

intensive network communication overhead between

the controller and ZHT. This new operation

implemented a blocking “state change callback”

operation that keeps polling in the server side (with

local messages) until the correct state is found, and a

callback over the network is performed to complete the

call. In order to make the “state change callback”

operation more adaptive, we set adjustable timeout to

the blocking period. After the timeout, if the state hasn’t

changed, the quering controller will do state change

callback operation again. By moving the polling

messages to local messages, this operation helps

improve performance under intense resource stealing by

reducing the number of remote message.

C. Operation Level Thread Safe vs. Socket Level

Thread Safe

ZHT server is highly scalable to support concurrent

incoming requests, so it would be nice to make client

highly scalable in terms of concurrency in multi-

threaded context. The ZHT server is thread-safe, while

ZHT client is not. The naive way to do that is to create a

shared mutex to protect any shared data access by

operations in client, that’s so called operation level

thread-safe, but benchmark shows that the single shared

mutex is performance bottleneck, because all operations,

e.g. insert, delete, append, lookup and compare_swap

are scheduled totally sequentially for synchronization.

As we dig deeper, we found that any network related

concurrency issues come from shared socket over

which send/receive overlapped. We propose making

ZHT client as thread safe not in operation level but in

socket as well as MPI rank level, when there are many

ZHT servers, the mutex contention due to concurrency

caused by SLURM++ controller's multithreaded job

launch could be distributed to many sockets or MPI

ranks, which is a promising improvement.

D. Random Stealing vs. Resource Status Caching

Instead of doing totally random selection of

controllers to steal resource from, we propose that a

better solution would be caching how much resource

available in certain controller, after it is contacted and

stolen resource from. Based on this knowledge, when

resource is needed for next time job scheduling, the

controller would select the cached controllers with

maximum free resources as candidates to steal from. In

order to make this mechanism adaptive to frequent

resource changes, several parameters are designed to be

tuned, for example, the interval of cleaning total cache,

eviction polices, cache pool size, and so on.

E. Random Stealing vs. Consulting Resource Monitor

A distributed monitor is designed to memorize

resource status of controllers. When controller starts, it

registers itself to distributed monitor. Controller reports

its resource status to monitor when it changed. So when

controller needs to steal resources, it consulted monitor

that has global knowledge of free resource.

Most state-of-art distributed monitors are a cluster

of nodes that replicate states reported for durability, and

process incoming query requests concurrently by

multiple nodes, but they are not totally distributed so

horizontal scalability is hard to be achieved. In order to

make distributed monitor dynamically expands and

shrinks, we propose to augment ZHT to implement a

distributed Bi-directional sorted map as a distributed

monitor. The keys are sorted, and so are values. For

example, key is controller id, value is number of free

nodes along with free nodes list, where number of free

nodes is used as index for sorting. Whenever a query

request for free nodes is issued by SLURM++ scheduler,

distributed monitor responds by returning the first N

lightly loaded controllers with most free nodes, simply

by lookuping the distributed Bi-directional workload

sorted map maintained. Since this distributed monitor is

on top of ZHT, it inherits horizontal scalability due to

peer-to-peer symmetric feature.

Another approach is to adopt AMQP protocol based

system like Apache Qpid. We prefer all to all mapping,

that is, creating a distributed queue for every

SLURM++ controller in initialization, all controllers

register themselves as resource-state-change subscriber

of all other controllers’ distributed queues. Whenever

one certain controller’s resource state changed, it

publishes this event to get all interested subscribers

notified of. To make this approach ideally scalable

horizontally and system dynamically expanding and

shrinking, the brokers that take care these distributed

queues have to be fully connected and equipped with

bi-directional routes as double of all.

F. Implementation Details

We developed SLURM++ in the C programming

language. We implemented the controller code, re-

wrote part of the “srun” code of SLURM inside the

controller, which summed to around 3K lines of code;

this is in addition to the SLURM codebase of

approximately 50K-lines of code (which was left

mostly unmodified) and the ZHT codebase of 8K lines

of code (of which 2K lines of code were added to

implement compare and swap, as well as the state

change callback). We put the controller and ZHT

directly in the SLURM source file, and name the whole

prototype SLURM++. SLURM++ has dependencies on

Google Protocol Buffer [17], ZHT [14], and SLURM.

III. EVALUATION

With the solution that we proposed in last section,

we evaluate the SLURM++ prototype by comparing it

with the SLURM job launch with three different micro-

benchmarks (small jobs, medium jobs and big jobs) on

a Linux cluster up to 500 nodes. We configure

SLURM++ with both HPC and MTC architectures to

evaluate the general use case of SLURM++. This

section presents the experiment environment, evaluation

metrics, as well as architecture configuration and

evaluation results.

A. Experiment Environment

We conduct all the experiments on the Kodiak

cluster from the Parallel Reconfigurable Observational

Environment (PROBE) at Los Alamos National

Laboratory [18]. Kodiak has 1028 nodes, and each node

has two 64-bit AMD Opteron processors at 2.6GHz and

8GB memory. The network supports both Ethernet and

InfiniBand. Among the 1028 nodes, there were 500+

nodes available for our experiments (some nodes are

pre-occupied, and some were down). We conducted

experiments up to 500 nodes. The version of SLURM

we use is version 2.5.3, the latest stable version when

we started this work.

B. Metrics

The metrics used to evaluate the performance are

throughput (jobs/sec), and ZHT message count.

Throughput is calculated as the number of jobs finished

dividing by the total launch time. For SLURM, the total

launch time is the time difference between the earliest

starting time of launching individual jobs, and the latest

ending time of launching individual jobs. For

SLURM++, the throughput of each controller is

calculated, and then all the throughputs are summed up

as the final total throughput. The ZHT message count

metric just applies to our SLURM++.

C. Partition Size

The partition size (number of slurmds a controller

manages) is configurable. In our experiment sets, for

HPC configuration, we set the partition size to 50; each

controller is responsible for 50 slurmds, and at the

largest scale (500 nodes), the number of controllers is

10. We choose a moderate partition size insure a

sufficient number of controllers to compare and contrast

the performance of SLURM job launch with that of our

distributed job launch; for MTC configuration, the

partition size is 1 and the controller and slurmds are

collocated at the same compute nodes, therefore, at the

largest scale, we will have 500 controllers and 500

slurmds with one-to-one mapping.

D. Small-Job Workload (job size is 1 node)

In our evaluation, we use micro-benchmark

workloads. Since our goal is to study the ability of

SLURM and SLURM++ to handle job launch

efficiently, we designed the simplest possible workload

– many independent NOOP HPC jobs (e.g. sleep 0) that

require different number of compute nodes per job.

The first workload we used just includes one-node

small jobs (essentially MTC jobs), and does not require

any resource stealing because all the jobs could be

satisfied locally. Specifically, each controller launches

50 jobs, with each job requiring just 1 node. The format

of the jobs is “srun –N1 /bin/sleep 0”. Therefore, when

the number of controller is n (number of compute nodes

is 50*n), the total number of jobs is 50*n. The same

workload is applied to SLURM job launch – 50*n

nodes will have 50*n “srun –N1 /bin/sleep 0” jobs. This

workload is used to test the pure job launching speed in

the best case scenario from a performance perspective.

The throughput comparison results are shown in Figure

2, and Figure 3 shows the ZHT message count (both

summation and average) of SLURM++.

Figure 2: Small-Job; throughput comparison between
SLURM and SLURM++

From Figure 2, we see that for SLURM job launch,

the throughput first increases to a saturation point, and

then has a decreasing trend as the number of nodes

scales up (51.6 jobs / sec at 250 nodes, down to 39 jobs

/ sec at 500 nodes). This is because the processing

capacity of the centralized “slurmctld” is limited. Even

though all jobs can be satisfied in terms of job size, it

takes longer and longer time for the slurmctld to launch

jobs as the job count and system scale increase. For our

SLURM++, the throughput increases almost linearly

with respect to the scale, and this linear speedup trend is

likely to continue at larger scales. At scale of 500 nodes,

SLURM++ can launch jobs at 2.34X faster rates than

SLURM job launch (91.5 jobs/sec vs. 39 jobs/sec). In

addition, given the fact that the throughput of

SLURM++ is increasing linearly while SLURM has a

decreasing trend, we believe that the gap between

SLURM++ and SLURM will only grow as the scale is

increased.

Figure 3 shows the individual and overall message

counts going to the ZHT servers from all the controllers.

The overall message count experience perfectly linear

increase with respect to the scale, while the average

message count remains almost constant. These trends

show great scalability of our SLURM++ for this small-

job workload. In prior work on evaluating ZHT [14],

micro-benchmarks showed ZHT achieving more than

1M ops/sec at 1024K node scales. We see that at the

largest scale, the number of all messages is about 6K

for 500 jobs (or about 12 messages / job). Even with

our NOOP workloads achieving 91.5 jobs per second at

500 node scales, it generates 1098 messages / second.

ZHT was far from being a bottleneck for the workload

and scale tested.

Figure 3: Small-Job; ZHT message count of SLURM++

We also tuned the configuration to best support

MTC workloads (e.g. one-to-one mapping of

controllers to slurmd, both running on the same

compute node). Each controller launches just one job

requiring just one node. We ran experiment up to 200

nodes; there would be 200 controllers and 200 slurmds

with one-to-one mapping. The throughput and all ZHT

message count results are shown in Figure 4.

Figure 4: Small-Job; throughput and message count of MTC

configuration

Both the throughput and all ZHT message count

increase linearly with respect to the scale perfectly. In

the 1:1 MTC configuration, based on these trends,

ideally, we can achieve 20K jobs / sec at 1K-node scale,

which will need to process 650K ZHT messages; ZHT

can support more than 1M ops/sec at 1K-nodes, which

is about twice as high as the expected number of

messages generated by the 20K jobs/sec expected from

SLURM++. Besides, SLURM++ could be configured

less aggressively for larger partition sizes, which

effectively would reduce the traffic load to ZHT due to

smaller number of controllers.

E. Medium-Job Workload (job size is 1-50 nodes)

The second experiment tests how SLURM and

SLURM++ behave under moderate job sizes that will

result in moderate resource stealing. The workload is

that each controller launches 50 jobs, with each job

requiring a random number of nodes ranging from 1 to

50. So, at the largest scale, the total number of jobs is

500, and each job requires 1-50 nodes. The throughput

and the ZHT message count results are shown in Figure

5 and Figure 6, respectively.

Figure 5: Medium-Job; throughput comparison between

SLURM and SLURM++

Figure 5 shows that for SLURM, as the number of

nodes scales up, the throughput increases a little bit

(from 2.1 jobs / sec at 50 nodes to 7 jobs/sec at 250

nodes), and then keeps almost constant or with a slow

decrease. For SLURM++, the throughput increases

approximately linearly with respect to the scale (from

6.2 jobs / sec at 50 nodes to 68 jobs / sec at 500 nodes).

Our SLURM++ prototype can launch jobs faster than

SLURM at any scale we evaluated, and the gap is

getting larger as the scale increases. At the largest scale,

SLURM++ can launch jobs 11X (68 / 6.2) faster than

SLURM; and the trends show that this speedup would

continue at larger scales.

Figure 6: Medium-Job; ZHT message count of SLURM++

From Figure 6, we see that the overall ZHT message

count increases somehow linearly with respect to the

scale; the average per-job ZHT message count first

increases slightly (from 13 messages / job at 50 nodes

to 19 messages / job at 200 nodes), and then experience

perturbations after that. The average per-job ZHT

message count will likely keep within a range (17-20),

and might be increasing slightly at large scales. This

extra number of messages comes from the involved

resource stealing operations.

F. Big-Job Workload (job size is 25 – 75 nodes)

The third experiment sets test the ability of both

SLURM and SLURM++ to launch jobs under a serious

resource stealing case. In this case, each controller

launches 20 jobs, where each job requires a random

number of nodes ranging from 25 to 75. At the largest

scale, the total number of jobs is 20 * 10 = 200, and

each job requires 25-75 nodes. The throughput and the

ZHT message count results are shown in Figure 7 and

Figure 8.

In Figure 7, SLURM shows a throughput increasing

trend up to 500 nodes (from 1.2 jobs / sec at 100 nodes

to 4.3 jobs / sec at 500 nodes), and the throughput is

about to saturate after 400 nodes (from 3.8 jobs / sec at

400 nodes to 4.3 jobs / sec at 500 nodes). On the other

hand, the throughput of SLURM++ keeps increasing

almost linearly up to 500 nodes, and will likely keep the

trend at larger scales. Like the mid-job case, SLURM++

can launch jobs faster than SLURM at any scale we

evaluated, and the gap is getting larger as the scale

increases. At the largest scale, SLURM++ can launch

jobs about 4.5X (19.3 / 4.3) times faster than SLURM;

and again, the trends show that this speedup would

continue at larger scales.

Figure 7: Large-Job; throughput comparison between

SLURM and SLURM++

Figure 8 shows that the overall ZHT message count

is increasing sub-linearly and the average per-job ZHT

message count shows decreasing trend (from 30.1

messages / job at 50 nodes to 24.7 messages at 500

nodes) with respect to the scale. This is likely because

when adding more partitions, each job that needs to

steal resource would have higher chance to get resource

as there are more options. This gives us intuition about

how promising the resource stealing and compare and

swap algorithms would solve the resource allocation

and contention problems of distributed job management

system towards exascale ensemble computing.

Figure 8: Large-Job; ZHT message count of SLURM++

G. Discussion

The conclusions we can draw up to here are that

SLURM++ with multiple distributed controllers and

ZHT servers have great scalability, and is likely to

deliver orders of magnitude higher throughput than

SLURM at extreme scales for traditional HPC

workloads, as well as ensemble workloads. In order to

understand the impact of workload on the performance

of job launch, we show the result of comparing the

throughputs of the three workloads with different

resource stealing intensities (small-job/medium-

job/big-job) in Figure 9.

Figure 9: Throughput comparison with different workloads

For SLURM (the solid lines), we see that from

small-job to large-job, the throughput decreases from 39

jobs/sec to 4.3 jobs / sec at 500 node scales (a

slowdown of 9X). For our distributed job launch (the

dotted lines), we observe that from small-job to large-

job, the throughput decreases from 91.5 jobs / sec to

19.3 jobs / sec at the largest scale (a slowdown of 4.7X).

We point out that not only does SLURM++ outperform

SLURM in nearly all cases (except the small scale), but

the performance slowdown due to increasingly larger

jobs at large scale is better for SLURM++ by 2X,

highlighting the better scalability of SLURM++.

As the result shown above, it is safe to draw the

conclusion that SLURM++ surpasses SLURM in

efficiently handling job launch at three different kinds

of workloads. For the small one, SLURM++ exceeds

SLURM at a certain scale (250 nodes) and still

increasing, but SLURM has a decreasing trend after that

point. It is due to the single centralized server/controller

(slurmctld) issue in SLURM; the job launching time

becomes longer when to system scale goes up. In

contrast, SLURM++ uses multiple distributed

controllers with each one control a partition of

computer daemons. For the medium one, SLURM++

launches jobs faster than SLURM at any scale, and the

gap between them is becoming larger as the scale

increases since the throughput of SLURM keeps almost

constant even with a certain level of decreasing while it

increases linearly on the side of SLURM++. For the

big-job case, SLURM++ also launches jobs faster than

SLURM at any scale that we evaluated with the gap

becomes large and large.

IV. PERFORMANCE ANALYSIS

The current resource stealing approach works as

following, when a controller allocates nodes for the job,

it first checks the local free nodes by querying the data

storage system. If there are enough available nodes,

then the controller directly allocates the nodes;

otherwise, it will query for other partitions to steal

resources from them. The resource stealing procedure is

given in the pseudo-code in ALGORITHM 2.

As long as there are not enough nodes to satisfy the

allocation, the resource stealing algorithm will

randomly selects a controller and tries to steal nodes

from it. Every time when the selected controller has no

available nodes, the launching controller sleeps some

time (sleep_length) and retries. If the launching

controller experiences several failures (num_retry) in a

row because the selected controller has no free nodes, it

will release the resources it has already stolen, and then

tries the resource stealing algorithm again. The number

of retries and the sleep length after stealing failure are

critical to the performance of the algorithm, especially

for many big jobs, where all the launching controllers

try to allocate nodes and steal resources from each other.

ALGORITHM 2. Resource Stealing

Input: number of nodes required (num_node_req), number of
controllers (num_ctl), controller membership list (ctl_id[num_ctl]),
sleep length (sleep_length), number of reties (num_retry).
Output: list of involved controller ids (ctl_id_inv), participated nodes
(par_node[]).
num_node_allocated = 0; num_try = 0; num_ctl_inv = 0;
while num_node_allocated < num_node_req do

 remote_ctl_idx = Random(num_ctl);
 remote_ctl_id = ctl_id[remote_ctl_idx];
 again:
 remote_free_resource = lookup(remote_ctl_id);
 if (remote_free_reource == NULL) then
 continue;
 else
 remote_num_free_node = strtok(remote_free_source);
 if (remote_num_free_node > 0) then
 num_try = 0;
 remote_num_node_allocated =
 remote_num_free_node > (num_node_req –
 num_node_allocated) ? (num_node_req –
 num_node_allocated) : remote_num_free_node;
 if (allocate nodes succeeds) then
 num_node_allocated +=
 remote_num_node_allocated;
 par_node[num_ctl_inv++] = allocated node list
 strcat(ctl_id_inv, remote_ctl_id);
 else

 goto again;
 end

 else
 sleep(sleep_length);
 num_try++;
 if (num_try > num_retry) do
 release all the allocated nodes;
 Resource Stealing again;
 end
 end
 end

end
return ctl_id_inv, par_node;

A. Per-Job Sampling vs. Batch Sampling

The resource stealing cited above is pretty naive.

Simple random selection is not good because multiple

random selections of controllers shared nothing

between. The current approach is not batch sampling

but nothing more than per-job sampling. We can view

one random selection as one probe. In per-job sampling,

number of free nodes on controller is the only basis for

consideration, for example, chances are that controller

with few free nodes will release nodes more quickly

than that with more free nodes but release nodes slower.

In this case, the former is a choice in priority rather than

the latter to steal resource from because these will result

in higher throughput as overall. Batch sampling adopts

the power of two techniques, that is, it suggests that,

each time, the SLURM++ controller is to randomly

probe N*2 or N*2*2 controllers for N jobs to be

scheduled, this will overcome per-job’s shortcomings

due to shared information between probes.

B. Eagerly Resource Stealing vs. Late Binding

In current approach, if there are free nodes in

controllers probed, scheduler eagerly steals the

resources, but this doesn’t necessarily guarantee higher

throughput as overall. A better solution would be late

binding, for example, the scheduler send resource

reservation to the controllers probed if they have free

nodes. If the controllers promised the reservation, and

the initial scheduler will wait for notification when the

reservation is really satisfied, and then schedule running

the job. Even if the reservation is partially satisfied at

some point by a certain controller, the initial scheduler

is left freedom and enough information to decide where

to steal resource from since it is informed of many

potential candidates with free nodes that promised

reservation. This will surprisingly improve overall

throughput.

C. Sleep-and-wait vs. Nonsleep-and-notify

In current approach, scheduler randomly selects a

controller and tries to steal nodes from it. Every time

when the selected controller has no available nodes, the

launching controller sleeps some time (sleep_length)

and retries. If the launching controller experiences

several failures (num_retry) in a row because the

selected controller has no free nodes, it will release the

resources it has already stolen, and then tries the

resource stealing algorithm again. During the sleeping

time, controller occupies nodes stolen but does nothing;

this could lead to accumulatively and causally related

lower utilization. Scheduling proficiency heavily relies

on parameters tuning. We prefer nonsleep-and-notify

method as described in B.

D. Distributed Job Submission

So far, all job submissions take place on a single

node for both SLURM baseline and SLURM++

benchmark. If the submissions are distributed many

nodes, the throughput will be higher.

V. RELATED WORK

SLURM [9] is one of the most popular traditional

batch schedulers, which uses a centralized controller

(slurmctld) to manage compute nodes that run daemons

(slurmd). SLURM does have scalable job launch via a

tree based overlay network rooted at rank-0, but as we

will show in our evaluation, the performance of

SLURM remains relatively constant as more nodes are

added. This implies that as scales grow, the scheduling

cost per node increases, requiring coarser granular

workloads to maintain efficiency. SLURM also has the

ability to configure a “fail-over” server for resilience,

but this doesn’t participate unless the main server fails.

There are other JMSs that have been deployed on

clusters and supercomputers as resource managers for

years, such as Condor [10], PBS [11], and SGE [12].

All of them have a similar centralized architecture as

SLURM. We choose SLURM as the basis of our work

instead of others, because SLURM is open source and

well supported.

There have also been several other projects that

have addressed efficient job launch mechanisms. In

STORM [20], the researchers leveraged the hardware

collective available in the hardware of the Quadrics

QSNET interconnect. They then used the hardware

broadcast to send out the binaries to the compute nodes.

Though this work is as scalable as the interconnect, the

server itself is still a single point of failure. BPROC [21]

was a single system image and single process space

clustering environment where all process id were

managed and spawned from the head node, and then

distributed to the compute nodes. BPROC transparently

moved virtual process spaces from the head node to the

compute nodes via a tree spawn mechanism. However,

BPROC was a centralized server with no failover

mechanism. LIBI/LaunchMON [22] is a scalable

lightweight bootstrapping service specifically to

disseminate configuration information, ports, addresses,

etc. for a service. A tree is used to establish a single

process on each compute node, this process then

launches any subsequent processes on the node. The

tree is configurable to various topologies. This is a

centralized service with no failover or no persistent

daemons or state, therefore if a failure occurs they can

just re-launch. PMI [23] is the process management

layer in MPICH2. It is close to our work in that it uses a

KVS to store job and system information. But the KVS

is a single server design rather than distributed and

therefore has scalability as well as resilience concerns.

ALPS [24] is Cray’s resource manager that constructs a

management tree for job launch, and controls separate

daemon with each one having a specific purpose. It is

multiple single-server architecture, with many single-

point-of failures.

There are also light-weight task execution

frameworks that are developed specifically for

ensemble workloads. In the MTC domains, Falkon [25]

is a centralized task execution fabric with the support of

hierarchical scheduling, while MATRIX [26] is the

distributed task execution framework that uses work

stealing [19] to achieve distributed load balancing.

Though Falkon can deliver tasks at thousands of

tasks/sec for MTC workloads, it is not sufficient for

exascale systems and it lacks support for HPC

workloads. Another fine granular framework that

schedules sub-second tasks for data centers is Sparrow

[27]. Though MATRIX and Sparrow have shown great

scalability for MTC workloads, neither of them

currently supports HPC workloads. The next-generation

JMS should be able to schedule HPC and MTC, as well

as ensemble workloads in an efficient, scalable and

fault tolerant way.

VI. FUTURE WORK

We are still working on Resource Caching and

Distributed Monitoring. Resource caching

implementation is based on our CS525 (Advanced

Database Organization) buffer manager prototype,

which realizes customization of cache eviction policies

(e.g. LRU, FIFO, CLOCK), pool size, frame and entity

mapping, dirty marking, pin and unpin, and so on.

We implemented the distributed monitor proposed

as part of our CS550 final project (Diskon: Distributed

tasK executiON framework). It is based on AMQP

based Apche Qpid distributed message queue system.

So far, it’s running as only one instance and showing

throughput flattening or degrading when it scales up to

hundreds of nodes. We will try that the brokers that take

care these distributed queues have to be fully connected

and equipped with bi-directional routes as double of all,

as mentioned in section II.

Distributed Bi-directional sorted map based on ZHT

is what we are also working on. We will compare it to

AMQP based distributed monitor from scalability and

throughput perspective.

VII. CONCLUSION

Extreme-scale supercomputers require next-

generation job management systems to be more scalable,

available while delivering jobs with much higher

throughput. We have shown that DKVS is a valuable

building block to allow scalable job launch and control.

The performance is more preferable than the production

job launch software – SLURM, and is better for both

traditional HPC workloads and ensemble MTC

workloads at modest scales of 500 nodes. Furthermore,

the distributed job launch prototype proved to have

better scalability trends, and showed its potential to

scaling to extreme scales towards supporting both MTC

and HPC workloads.

REFERENCES

[1] V. Sarkar, S. Amarasinghe, D. Campbell, W.

Carlson, A. Chien, W. Dally, E. Elnohazy, M. Hall, R.

Harrison, W. Harrod, K. Hill, J. Hiller, S. Karp, C.

Koelbel, D. Koester, P. Kogge, J. Levesque, D. Reed, R.

Schreiber, M. Richards, A. Scarpelli, J. Shalf, A.

Snavely, T. Sterling, “ExaScale Software Study:

Software Challenges in Extreme Scale Systems”,

ExaScale Computing Study, DARPA IPTO, 2009.

[2] I. Raicu, P. Beckman, I. Foster, “Making a Case for

Distributed File Systems at Exascale,” ACM Workshop

on Large-scale System and Application Performance

(LSAP), 2011.

[3] M. Snir, S.W. Otto, S.H. Lederman, D.W. Walker, J.

Dongarra, “MPI: The Complete Reference,” MIT Press,

1995.

[4] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von

Laszewski, I. Raicu. “Swift: Fast, Reliable, Loosely

Coupled Parallel Computation,” IEEE Workshop on

Scientific Workflows 2007

[5] I. Raicu, Y. Zhao, I. Foster, “Many-Task Computing

for Grids and Supercomputers,” 1st IEEE Workshop on

Many-Task Computing on Grids and Supercomputers

(MTAGS) 2008.

[6] D. Keyes. “Exaflop/s, seriously!,” Keynote lecture

for Pan-American Advanced Studies Institutes Program

(PASI), Boston University, 2010.

[7] D. Abramson, J. Giddy, L. Kotler. “High

performance parametric modeling with Nimrod/G:

Killer application for the global grid,” In Proc.

International Parallel and Distributed Processing

Symposium, 2000.

[8] I. Raicu, I. Foster, M. Wilde, Z. Zhang, A. Szalay, K.

Iskra, P. Beckman, Y. Zhao, A. Choudhary, P. Little, C.

Moretti, A. Chaudhary, D. Thain. “Middleware Support

for Many-Task Computing,” Cluster Computing

Journal, 2010.

[9] M. A. Jette, A. B. Yoo, M. Grondona. “SLURM:

Simple Linux utility for resource management.” 9th

International Workshop on Job Scheduling Strategies

for Parallel Processing (JSSPP 2003), pages 44–60,

Seattle,Washington, USA, June 24, 2003.

[10] D. Thain, T. Tannenbaum, M. Livny, “Distributed

Computing in Practice: The Condor Experience”

Concurrency and Computation: Practice and Experience

17 (2-4), pp. 323-356, 2005.

[11] B. Bode, D.M. Halstead, et. al. “The Portable

Batch Scheduler and the Maui Scheduler on Linux

Clusters,” Usenix, 4th Annual Linux Showcase &

Conference, 2000.

[12] W. Gentzsch, et. al. “Sun Grid Engine: Towards

Creating a Compute Power Grid,” 1st International

Symposium on Cluster Computing and the Grid, 2001.

[13] M. Jette and Danny Auble, “SLURM: Resource

Management from the Simple to the Sophisticated”,

Lawrence Livermore National Laboratory, SLURM

User Group Meeting, October 2010.

[14] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang,

A. Rajendran, Z. Zhang, I. Raicu. “ZHT: A Light-

weight Reliable Persistent Dynamic Scalable Zero-hop

Distributed Hash Table”, IEEE International Parallel &

Distributed Processing Symposium (IPDPS) 2013.

[15] K. Wang, A. Kulkarni, M. Lang, D. Arnold, I.

Raicu. “Using Simulation to Explore Distributed Key-

Value Stores for Extreme-Scale Systems Services,”

IEEE/ACM Supercomputing/SC 2013.

[16] T. L. Harris and K. Fraser and I. A. Pratt. “A

Practical Multi-Word Compare-and-Swap Operation,”

In Proceedings of the 16th International Symposium on

Distributed Computing, 2002, pp 265-279, Springer-

Verlag.

[17] Google. “Google Protocol Buffers,” available at

http://code.google.com/apis/protocolbuffers/, 2013.

[18] G. Grider. “Parallel Reconfigurable Observational

Environment (PRObE),” available from

http://www.nmc-probe.org, October 2012.

[19] J. Dinan, D.B. Larkins, P. Sadayappan, S.

Krishnamoorthy, J. Nieplocha. “Scalable work stealing”,

In Proceedings of the Conference on High Performance

Computing Networking, Storage and Analysis (SC '09),

2009.

[20] Frachtenberg, E., Petrini, F., Fernández, J., &

Pakin, S. (2006). Storm: Scalable resource management

for large-scale parallel computers. Computers, IEEE

Transactions on, 55(12), 1572-1587.

[21] Hendriks, E. (2002, June). BProc: The Beowulf

distributed process space. In Proceedings of the 16th

international conference on Supercomputing (pp. 129-

136). ACM.

[22] Goehner, J. D., Arnold, D. C., Ahn, D. H., Lee, G.

L., de Supinski, B. R., LeGendre, M. P., ... & Schulz, M.

(2012). LIBI: A Framework for Bootstrapping Extreme

Scale Software Systems. Parallel Computing.

[23] Balaji, P., Buntinas, D., Goodell, D., Gropp, W.,

Krishna, J., Lusk, E., & Thakur, R. (2010). PMI: A

scalable parallel process-management interface for

extreme-scale systems. In Recent Advances in the

Message Passing Interface (pp. 31-41). Springer Berlin

Heidelberg.

[24] Karo, M., Lagerstrom, R., Kohnke, M., & Albing,

C. (2006). The application level placement scheduler.

Cray User Group, 1-7.

[25] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M.

Wilde. “Falkon: A Fast and Light-weight tasK

executiON Framework,” IEEE/ACM SC 2007.

[26] K. Wang, A. Rajendran, I. Raicu. “MATRIX:

MAny-Task computing execution fabRIc at eXascale,”

available at:

http://datasys.cs.iit.edu/projects/MATRIX/index.html,

2013.

[27] K. Ousterhout, P. Wendell, M. Zaharia, I. Stoica.

“Sparrow: Distributed, Low Latency Scheduling,”

SOSP ’13, Farmington, Pennsylvania, USA.

[28] T. Li, R. Verma, X. Duan, H. Jin, I. Raicu.

“Exploring Distributed Hash Tables in High-End

Computing”, ACM Performance Evaluation Review

(PER), 2011

