
   Exploring Eventual Consistency Support in ZHT 

 
                              Shukun Xie, Ran Xin
                        Illinois Institute of Technology

                      sxie11@hawk.iit.edu, rxin@hawk.iit.edu 
 
 
 

 
 

 
 
 

ABSTRACT 
ZHT, short for zero-hop distributed hash table, aims to 
provide high availability, good fault tolerance, high 
throughput and low latencies, at extreme scales of millions 
of nodes. To reach these goals we designed and 
implemented the replication scheme and eventual 
consistency support. Replication is one of the most 
commonly used fault tolerance scheme in distributed 
system, with which single node failure won’t affect the 
availability of the system. Also, we applied eventual 
consistency as the consistency model. Eventual consistency 
allows updating replica asynchronously, which can reduce 
the latency of requests, and provides high reliability, which 
means every data access can get the latest updated value. 
Our experiments provided performance evaluation of 
different consistency strategies.   

Keywords 
ZHT, Replication-based Fault Tolerance, Eventual 
Consistency 

1. INTRODUCTION 
Reliability at massive scale is one of the most import issues 
in distributed system. Replication is a well-known fault 
tolerance strategy for distributed storage system. The 
discussion of replication has been started a long time since 
early database works [1]. Replication can provide two 
major advantages, which are: 1) a read request is higher 
possible to be satisfied than if the data only has a single 
copy in the network; 2) it offers the opportunity to 
distribute the workload on frequently accessed data. 
However, we need to take careful consideration when we 
work on the consistency issue with replication. Properly 
choose the time when to resolve inconsistency is very 
important to the performance. Otherwise it may increase 
the latency and operation rejection possibility of distributed 
system, especially when node failure happens. [2] 

ZHT [3, 23], zero-hop distributed hash table, aims to 
provide high availability, good fault tolerance, high 
throughput and low latencies, at extreme scales of millions 
of nodes. It applies replication-based fault tolerance and 
our project works on the consistency issue for ZHT. 
Different systems tend to apply different consistency 
strategies due to different tradeoff based on system 
requirements. For ZHT, eventual consistency is a better 
solution. It allows certain inconsistency window exists after 

write happens and resolve it when a lookup to the 
corresponding data happens. Therefore, it can guarantee the 
reliability at the situation where primary server is unable to 
reach without heavy performance loss on latency. This 
report will deeply introduce our project in following 
organization: Section 2 will provide background knowledge 
of the technique we applied and the system we worked on, 
and also the design motivations. Section 3 will includes our 
design and implementation in detail. Section 4 will talk 
about our experiments and results on performance. Section 
5 and 6 will introduce some related work on consistency 
issues and the conclusion. 

2. BACKGROUND AND MOTIVATION 
2.1 Background 
Our project aims to provide eventual consistency support 
for ZHT. As we discussed in Section 1, the goal of ZHT is 
a building block for future distributed systems, such as 
parallel and distributed file systems, distributed job 
management systems, and parallel programming systems. 
Since replication is used to provide fault tolerance, 
consistency between multiple replicas need to be 
considered. Currently, the replicas in ZHT have distinct 
orders, which means client requests always go to a single 
replica (e.g. primary replica when it is applicable). At this 
situation, consistency is straightforward to be maintained. 
The primary and secondary replicas are strongly consistent 
and the other replicas are weakly consistent, which makes 
ZHT follow weak consistency model. This currently design 
has its potential problem of data loss, inconsistency and 
unbalanced workload. 

Our work focuses on providing better consistency model 
support. Basically, we have two options, which are strong 
consistency and eventual consistency. Strong consistency 
requires primary actively updates the data on all the 
replicas before it returns the write request 
acknowledgement to clients. [2][4] So, strong consistency 
can provide high data availability because the following 
data accesses can always achieve the latest updated value. 
However, this takes expensive cost. And in some systems 
with strong consistency, like Harp, [5] write operations 
only commits when the updating is successful among all 
replicas, which could make operation highly possibly 
rejected when the machines are not very stable or do not 
have great recovery mechanism. In addition, only primary 
can serve lookup requests because replicas cannot return 



latest updated value when the inconsistency repair 
procedure from primary to replicas is undergoing.  

Unlike strong consistency, eventual consistency [7] [12] 
only requires primary updating the secondary replica before 
it return write request acknowledgement to client and rest 
replicas can be asynchronously updated afterward by each 
other. This can reduce the latency of write operation. To 
maintain the reliability, eventual consistency also applies 
version exchange. Every key-value data copy has a version, 
and a version comparison procedure happens when a 
replica received a lookup request. So, part of inconsistency 
is detected and repaired on lookup requests. Although the 
version exchange process will slow down the lookup 
operation responses, overall eventual consistency can lead 
to fault-tolerant, highly available and low-latency. So, 
compared with strong consistency, eventual consistency is 
the best relative solution for ZHT. Many distributed system 
are using eventual consistency, like CouchDB [9], 
MongoDB [10], and Cassandra [11]. 

2.2 Motivation 
ZHT applies replication-based fault tolerance and replicas 
have distinct ordering in terms of which ones are accessed 
by clients. Therefore, the failure of a single node doesn’t 
affect ZHT as a whole. However, to make sure every data 
access can get the latest updated value, we still need to 
work on the consistency issue between primary and replicas 
of the same key-value pairs when write operation happens 
on primary. 

In addition, due to the distinct ordering of replicas, only 
primary is serving all the request and clients can interact 
with replicas only at the time when primary is inaccessible, 
which means the access pressure on primary is higher than 
replicas. We want distribute some of the requests on 
primary to replicas in order to get a better latency 
performance. 

3. PROPOSED SOLUTION 
3.1 Overview 
Our project aims to design and implement a technique in a 
real distributed system and evaluate its performance. 
Majorly we focus on two parts shown as follows. 

Replication: Our project sets up a replica list for each 
server (primaries and replicas). Then every server knows 
which else holds the same data and it can communicate 
with these servers when it is necessary. 

Eventual Consistency: With eventual consistency, our 
project allowed replicas to serve lookup requests. 
Whenever a replica received a lookup request, it will first 
find the latest version of the requested data and send a 
version comparison request with primary. If the primary 
detects a version conflict exists, which shows the 
inconsistency, it will send the latest data to the replica. In 
addition, when a primary received a write operation, it will 
update its secondary replica after it assigned the data the 

latest updated version and executed this write operation on 
itself. 

3.2 Replica List 
Our project sets up a Replica List based on the Neighbor 
List for each server when it starts. The Replica List records 
the host names and ports of all the servers stored the same 
data, including the one this list locates on. Our project 
treats the Replica List as a preference list, which means 
when a server wants to update a replica, it will find the first 
replica in this list indexed after it, and when it finds a 
server is failed to communicate, it will treat the first server 
indexed after the failed one in Replica List to be the 
substitution. The construction of this Replica List follows 
the following rules: 

1. The number of replicas is configured by 
“NUM_REPLICAS” in “zht.conf”. The size of 
Replica List should be this number plus 1. 

2. For each data item, we use the hosts indexed after 
the host of the Primary server that holds this data 
item in Neighbor List (We see Neighbor List as 
circular, which means when the index reaches the 
end of the list, it starts over from the head) to be 
the host of Replica servers. 

3. The port differential between every two adjacent 
servers in Replica List is configured by 
“PORT_DIFFERENTIAL” in “zht.conf”. With 
this port differential and the port of the server 
itself, we can easily get the port of Primary server 
or other Replica servers. 

The ports of primary servers are configured in file “zht.conf” 
with “PORT”. And the ports of replica servers are 
configured with command that starts them. Combine with 
the port differential, servers are able get their position in 
the Replica List, which is useful for data synchronization 
and version comparison for eventual consistency. 

3.3 Lookup 
Both of primary and replica servers are able to serve 
Lookup requests. Since the number and selection rule of 
replicas for each data item is determined (see Section 3.2), 
after client found the primary server that holds the 
requested data through hash function, it can randomly 
select a primary or replica to serve this request. The major 
difference between primary and replica on serving Lookup 
requests is that primary returns local lookup result directly 
to clients, which is shown in Figure #. Replica need first 
find the latest version of the requested data it holds and 
compare it with primary, which is shown in Figure #. We 
designed two types of version comparison requests, version 
compare and existence check, corresponding to the 
situation that whether replica contains the requested data. If 
version conflict is found on primary, it knows that 
inconsistency exists between it and the replica which sent 
this version compare request. Then it will send the latest 
data to replica or notify the replica that the data has been 
removed, and the replica will first update itself before it 



returns the updated data to the client. Otherwise, the 
primary will simply return an acknowledgement and replica 
knows it already has the latest updated version of the data, 
or the data was removed from primary either.  Then this 
replica can return the data it holds to client. The flow chart 
in Figure 3 and 4 shows how replicas serve lookup request 
and primary serves version comparison request in detail. 

 

Figure 1 Lookup Request Served by Primary Server: 1) Client 
sends Lookup request to Primary Server; 2) Primary sends 
Lookup result to Client 
 

 
Figure 2 Lookup Request Served by Replica Server: 1) Client 
sends Lookup request to Replica Server; 2) Replica sends 
Version Compare request to Primary Server; 3) Primary 
sends Version Compare result to Replica Server; 4) Replica 
server sends Lookup result to Client 

3.4 Insert/Append/Remove 
Unlike Lookup requests, only primary servers can serve 
these three kinds of write requests. For Insert and Append 
requests, primary servers will first execute local lookup to 
find the current latest version of the data item with the 
same key and update the version of the data sent by clients 
before it executs a local Insert or Append. In addition, after 
local Insert or Append is finished, primary servers actively 
forward this Insert/Append request received from client to 

the first replica, which is the secondary replica we 
mentioned above, in its Replica List to repair the 
inconsistency. It will return the request acknowledgement 
to client after it receives a successful acknowledgement 
from the secondary replica. Therefore, we can see client, 
primary server and the secondary replica are maintained 
with strong consistency. We do this for failure handling 
(Section 3.5). For remove requests, the primary also need to 
update the secondary replica with the same procedure, 
except it doesn’t need execute local lookup first to get the 
latest version.  

 
Figure 3 Flow Chart of Primary Serves Version Compare 
Requests 

When a replica receives a write request from a primary or 
another replica and there are other replicas indexed after it 
in its Replica List, it needs to update the next replica after it 
executed local write. To reduce the latency, at first, we 
create a thread for updating replica task, put this thread into 
a queue for following execution and immediately return 
acknowledgement to primary/replica. However, this 
method restricts the scalability of our system due to the 
extreme large number of newly created thread when the 
number of client and servers is increased to a relative large 
scale. Then we modified our design and put the request 
need to forward to another replica into a queue and return 
the Insert/Append/Remove acknowledgement to the sender 
immediately. In this method we only create one thread at 
the time this replica receives the first write operation, 
which keeps running in a loop waiting for some request that 
is pushed into the queue. This implies we don’t require the 
consistency between replicas is strong. Figure 5 shows the 
communication between primary and replica for write 
operations. Figure 6 and 7 shows the flow chart of how 
primary server Insert/Append requests and how replicas 
forward Insert/Append request. Due to remove request is 
simpler than the other two write operations, we don’t 
provide flow chart specifically.  

Combine this active inconsistency repair strategy and 
version comparison mentioned in Section 3.2, our project 



 
Figure 4 Flow Chart of Replica Server Lookup Request and Sent Version Compare Request.

 

could guarantee that every access to the data item will get 
the updated value and the latency of write operation will be 
reduced. 

 
Figure 5 Insert/Append/Remove Requests: 1) Client sends 
Insert/Append/Remove request to Primary Server; 2) Primary 
Server synchronizes I/A/R request to first Replica; 3) First 
Replica sends I/A/R acknowledgement to Primary; 4) Primary 
Server sends Insert/Append/Remove acknowledgement to 
Client 

 
 

3.5 Primary Failure Handling 
The major consideration for replication is fault tolerance, 
so it is very important for us to design eventual consistency 
support with consideration for primary server failure. 

The basic idea is that we create an attribute called 
“reachable” to each entry in Neighbor list and Replica list. 
This attribute is used to record the host communication 
history. Every time the host in the list is failed to 
communicate, the reachable value is increased by 1 and this 
value can at most be 2. When the reachable value is set to 
be 2, it is treated to be unreachable. Otherwise, if this host 
is successfully be reached before the value of reachable is 
set to be 2, its reachable value will be reset to be 0.  

When a client tries to find a server to serve a request, it will 
search all the hosts hold the primary and replicas of the 
requested key-value pair in the Neighbor list, until it find 
one with reachable value less than 2. The client will treat 
this hosts as the primary and the replicas start from it as 
reachable. If this request is Lookup, our project will 
randomly select one among these reachable hosts to serve 
this request. If this request is write request, our solution 



will use the found host to serve this request. Figure 11 
shows the flow chart on client for this situation. 

 
Figure 6 Flow Chart of Primary to serve Insert/Append 

Request 
 

When a primary/replica receives a Lookup request sent 
from client, it needs to check with primary of the version of 
the requested key-value pair. Similarly with client, this 
primary/replica needs to check its Replica list first to find 
the entry with reachable value less than 2 and try that 
server. If this server is not working, this primary/replica 
will send version comparison request again with the next 
entry in the Replica List. Figure 9 and 8 shows an example 
of the situation when Lookup request falls on a failed 
primary server and the flow chart on primary/replica 
including sending version compare request.  

When a primary/replica receives a write request from client, 
it knows it need to execute full primary function, which has 
to update the secondary replica. The secondary replica is 
the one with reachable value less than 2 and indexed after 
this primary/replica in Replica List.  Figure 10 shows the 
communication between primary and replicas when a write 
operation is served with primary failure. In Figure 12, we 
only showed the flow chart of queue processing, which is 
the major part different from how Section 3.4 forwarding 
requests. 

We validated the failure handle solution on 8 physical 
nodes. After two primary servers have been down manually, 
the whole system could still serve requests well. We will 
validate the failure handle mechanism scale up to more 
nodes in the future. 

3.6 Laziness and Unreliable Eventual 
Consistency  
Laziness eventual consistency is an extreme version of 
our eventual consistency strategy. It only relies on version 
comparison to maintain consistency. It will provide low 
latency for write operation, because no updating replicas 
happen when serving such request. But, the latency of 
Lookup requests will be very high, due to the version 
comparison and following data transmission. Also, all the 
inconsistency repairs happen when a Lookup request is 
waiting for response, the overall throughput may also be 
low.  In addition, it is not reliable. If no lookup ever 
requests some key-value pair and the primary holds this 
data is power off, this data will be lost. Laziness eventual is 
part of our initial designs. We will use it in the performance 
evaluation to show the performance improvement when we 
combine two mechanisms, version comparison and active 
inconsistency repair in our solution.  

 

Figure 7 Flow Chart of Replica serving Insert/Append request 
from primary/other replica 



 
Figure 8 Flow Chart on Primary/Replica serves lookup request with Primary Failure

 

 

Figure 9 Lookup To Primary with Primary Failure: 1) Client 
sends Lookup request to Primary Server; 2) Client sends 
Lookup request to random Replica Server (Replica 2); 3) 
Replica 2 sends Version Compare request to Primary Server; 
4) Replica 2 sends Version Compare request to Replica Server 
1; 5) Replica 1 sends Version Compare result to Replica 
Server 2; 6) Replica 2 sends Lookup result to Client. 

 

 
Figure 10 Insert/Append/Remove with Primary Failure: 1) 
Client sends I/A/R request to Primary Server; 2) Client sends 
I/A/R request to next reachable Replica (Replica 1); 3) Replica 
1 synchronizes I/A/R request to next reachable Replica 
(Replica 2); 4) Replica 2 sends I/A/R acknowledgement to 
Replica 1; 5) Replica 1 sends I/A/R acknowledgement to 
Client 

Unreliable eventual consistency is a variant on our 
eventual consistency. The data copy on replicas would be 
updated both on read and write operations. However, the 
primary would return back the result to client after the 
completion of update on itself, while an update process 



would be issued between primary server and secondary 
replica. Only the data on primary server could get the latest 
data in this case. If the primary is down when the secondary 
replica is updating, the data may be lost. This unreliable 
eventual consistency provides a low latency on write with 
unreliable issues. 

3.7 IMPLEMENTATIONS 
We implemented our eventual consistency mechanism 
based on the original ZHT source code in C++. As the 
original ZHT code, Google Protocol Buffer [20] is used to 
transfer the messages over networks. We used Git [21] for 
source version control. Our project has been open sourced 
and it could be found on github [22]. 

 
Figure 11 Flow Chart of clients for sending a request with 

Primary Failure 

4. PERFORMANCE EVALUATION 
In this section, we describe the performance of eventual 
consistency model, latencies and throughput. We will 
introduce the testbeds and workloads first. Secondly, we 
present a comprehensive performance evaluation. 

4.1 Testbeds, Metrics, and Workloads 
The experiment environment mostly refers to the ZHT 
paper [1]. Our experiments are executed on kodiak cluster, 
a 1028-node cluster from the Parallel Reconfigurable 
Observational Environment (PROBE) at Los Alamos 
National Laboratory [13]. Each node in this cluster is setup 
with a two 64-bit AMD Opteron processors and 8GB RAM. 
We start one client and three servers (one primary and two 
replicas) on each node. Every client creates a long list of 
key-value pairs and sequentially sends all the key-value 
pairs for insert, then lookup, then append and then remove. 
Each client sends 10k requests for each of these four 
operations to the servers. The clients and servers would be 
launched by parallel ssh, which can reduce the latency to 
start the benchmark. The system has been tested scale up to 
256 physical nodes with one client, one primary and two 
replicas on each. We compared our eventual consistency 
model with the original ZHT system (without replicas), 
strong consistency model, laziness consistency model and 
unreliable eventual consistency model. 

The metrics we evaluate is as follows, 

Latency: The time taken for a request to be submitted from 
a client and a response to be received by the client, 
measured in milliseconds. 

Throughput: The number of requests a system can handle 
over a certain time, measured in ktasks per second. 

Scale: We will run our experiments up to 256 nodes. 

 

Figure 12 Flow Chart of Queue Processing with Primary 
Failure 

4.2 Latencies 
The latency has been used here to measure how long it 
needs to be taken for a task, averagely. 



 
Figure 13 Latency Performance for Insert Operation 

Figure 13 illustrates the latency of insert operations with 
different number of nodes. We can conclude that The 
latencies of strong consistency and eventual consistency are 
slower than that of ZHT original system, laziness 
consistency and unreliable eventual consistency on insert 
operations up to 344%. The reason is that strong 
consistency and eventual consistency are required to wait 
for insert on primary and replica; however, the client would 
receive the result after the insert on primary only with ZHT 
original system, laziness consistency and unreliable 
eventual consistency. Strong consistency has the slowest 
latency due to that the client can receive the result after 
insertion on both replicas; however; the client can receive 
the result after insertion just on the first replica with 
eventual consistency.  

 
Figure 14 Latency Performance for Append Operation 

 
Figure 15 Latency Performance for Remove Operation 

Figure 14 and Figure 15 illustrate the latency of append and 
remove operations with different number of nodes. We can 
conclude that ZHT original system, laziness consistency 
model and unreliable eventual consistency have lower 
latency than that of strong consistency and eventual 
consistency on both append and remove operations. 

 
Figure 16 Latency Performance for Lookup request 

Figure 16 illustrates the latency of lookup operations with 
various numbers of nodes. We can conclude that ZHT 
original system, strong consistency and eventual 
consistency model have a lower latency than that of 
unreliable eventual consistency and laziness consistency up 
to 342%. The reason is as follows. Since the lookup 
operation is served on primary only with ZHT original 
system and strong consistency, no more network 
communication would be issued after the local lookup 
operation on primary. However, since the replica could also 
be used to serve lookup operations in all the eventual 
consistency models, the key-value pair on replicas has to be 
compared with that on primary server, which results in 
more network communications. The more network 
communications could result in higher latency in all the 
three eventual consistency models. In the three eventual 
consistency models, the latency of eventual consistency is 
slower than that of laziness consistency and unreliable 
eventual consistency. The reason is that the strong 
consistency has been maintain between primary and first 
replica in eventual consistency, which results in that the 
number of version conflict would be smaller than that in 
laziness consistency and unreliable consistency. Even the 
key-value still need to be compared with primary server 
once the first replica received the lookup request, the 
smaller number of version conflicts happen, the fewer data 
would be sent back to the first replica, which results in 
lower latency.  

The latency of lookup operations would not change a lot 
with the increasing of the number of nodes on ZHT original 
system, strong consistency and eventual consistency 
model. . It shows that the laziness consistency and 
unreliable eventual consistency model does not scale well 
due to extra data would be transferred when version 
conflict happens. 



 

 
Figure 17 Latency of 4 operations on 32 nodes 

Figure 17 illustrates the latency of insert, append, remove 
and lookup operations on 32 nodes. We can conclude that 
eventual consistency has a lower latency than laziness 
consistency and unreliable eventual consistency on lookup 
operation. The latency of eventual consistency is lower 
than strong consistency on insert, append and remove 
operations and still maintain the reliability. 

4.3 Throughput 

 
Figure 18 Throughput Performance of Insert Operation 

Figure 18 illustrates the throughput of insert operations 
with various numbers of nodes. The throughput can 
increase near-linearly with scale. The ZHT original system, 
laziness consistency and unreliable eventual consistency 
have a higher throughput than that of strong consistency 
and eventual consistency on insert operation up to 293%. 
The reason is that client could receive the result after 
update on primary only with ZHT original system, laziness 
consistency and unreliable eventual consistency.  

 
Figure 19 Throughput Performance of Append Operation 

 
Figure 20 Throughput Performance of Remove Operation 

Figure 19 and Figure 20 illustrate the throughput of append 
and remove operations with different number of nodes. We 
can conclude that strong consistency and eventual 
consistency have a lower throughput than that of ZHT 
original system, laziness consistency and eventual 
consistency on append and remove operations. The reason 
is the same as that in insert operation. 

 
Figure 21 Throughput Performance of Lookup Operation 

Figure 21 illustrates the throughput of lookup operations 
with different number of nodes. the throughput of ZHT 
original system, strong consistency and eventual 
consistency model is higher than that of laziness 
consistency and unreliable eventual consistency. Since the 



replica could not serve lookup request on ZHT original 
system, strong consistency and eventual consistency, the 
number of network communications would be lower than 
that of laziness consistency and unreliable eventual 
consistency. And since the primary and the first replica 
have been updated in insert, append and remove requests 
with eventual consistency, the number of version conflict in 
eventual consistency would be lower than that of laziness 
consistency and unreliable eventual consistency. That is the 
reason why the throughput of eventual consistency is 
higher than that of laziness consistency and unreliable 
eventual consistency in lookup operation. 

So, our eventual consistency can provide a lower latency, 
higher throughput than strong consistency on write 
operations and provide a lower latency, higher throughput 
than laziness consistency and unreliable eventual 
consistency in lookup operation, while we can maintain the 
consistency between primary and replicas to enhance the 
fault tolerance on ZHT. 

5. RELATED WORK 
A lot of distributed system used replication for fault 
tolerance and the consistency strategy they used is various. 

Harp[5] is one of the first distributed system applied 
primary copy scheme. For consistency, it implemented 
strong consistency. Each requests will be replied to clients 
only after primary servers received replies from other 
backup servers (i.e. replicas). For failures, Harp designed a 
view change algorithm for failover.   

Similar as ZHT, Dynamo [6] is a key-value storage system 
to provide high availability that are severing some 
Amazon’s core services. Dynamo also applies eventual 
consistency to allow replica updating asynchronously with 
data visioning, which is very similar as our project. The 
different part is Dynamo applies consistent hashing [14]. 
With consistent hashing, both of nodes and data items has 
its position on the ring (the output range of hashing). When 
a data item from a request find its position, it will walk in 
the ring in clockwise and the first node with larger index 
than the data item will server this request. This method 
provides advantage on enabling departure or arrival of a 
node, because each node is only responsible for the data 
between it and its predecessor and therefore departure or 
arrival of a node only affect its immediate neighbors. 

6. CONCLUSION 
From this project, we had a chance to work a project with 
relative difficulty and heavy workload, from which we 
learnt a lot about distributed system.  

How to implement a distributed system: ZHT is a real 
key-value pair distributed storage system, which is under 
development. We need to first understand the workflow 
and code of ZHT and then work with it to do our own 
implementation. This procedure helped us to deeply 
learning and thinking about the implementation of ZHT, 
like how the system is layered, how to make 

communication decision, how to avoid server crash, etc. 
Also, through the experiments following implementation, 
we learned how to design experiments and what kind of 
metrics is useful to evaluate a system. 

Consistency models: when we implementing eventual 
consistency, we don’t simply get idea from the mentor and 
just code. We learn about and compare the differences 
between consistency models and how they are used in 
others’ research or projects from various materials. To help 
ourselves learn better, we decoupling the design of eventual 
consistency and execute experiments on different edition of 
eventual consistency, like laziness eventual consistency 
which only used version compare, and unreliable eventual 
consistency, which ask primary updating secondary replica 
without guarantee the strong consistency between primary 
and secondary replica. And we also implemented strong 
consistency, another common used consistency model, for 
comparison experiments. All these implementation and 
comparison helped us to learn about how the designs of 
consistency models affect latency, throughput and 
reliability.  

System scale: Another important stuff we learnt from this 
project is how to solve the scalability problem. At first, the 
scale of experiment can only reach 8 node. Be modifying 
our design to reduce the thread created for task processing, 
finally we increased the test scale from initially 8 nodes to 
256 nodes. 

As a summary, we implemented the replication scheme, 
eventual consistency support and executed experiments on 
up to 256 nodes, which has already satisfied our proposal 
and reached our goal. However, we do have space to make 
more achievements, like a completed delivery of failure 
handling, which we considered as functionality to our 
project in late semester.  

For future work, we have some thoughts on following two 
aspects,  

Maintain certain level of Replication: In our project, we 
consider the situation of single node failure, which should 
be able handled by our solution. However, this actually 
reduces the replication level, which may cause data loss if 
more node failure happens. So, if we will keep working on 
this project, we will works on how to enable a server to 
initialize new replica to maintain the original level of 
replication for each data item during the system is running. 

Server recovery: Most clusters have the server recovery 
scheme, like Harp mentioned above. When a failed server 
is recovered, it can play its old role before shutdown and 
recover the lost data, or it can be seen as new arrival server. 
For the former situation, some distributed system maintains 
a log file stored in disk to record the activity of a server, 
which can be used to retrieve the data. For the latter 
situation, this may be counted as node join and departure 
problem and need relevant solution. 



Replicas server both read and write operations: We can 
improve our design to make replicas also can serve the read 
and write requests. In this case, Paxos [16] [17] need to be 
implemented to resolve the leader selection problem. 
Chubby [15] and Zookeeper [18] could be used for the 
implementation. 

Support Frequently nodes join and departure: When the 
nodes would join and departure frequently, it would be hard 
to maintain the membership. We can provide a solution to 
resolve it as the design in Scatter [19]. 

7. REFERENCES 
[1]. Lindsay, B.G., et. al., “Notes on Distributed 

Databases”, Research Report RJ2571(33471), IBM 
Research, July 1979 

[2]. Gray, J., Helland, P., O'Neil, P., and Shasha, D. 1996. 
The dangers of replication and a solution. In 
Proceedings of the 1996 ACM SIGMOD international 
Conference on Management of Data (Montreal, 
Quebec, Canada, June 04 - 06, 1996). J. Widom, Ed. 
SIGMOD '96. ACM Press, New Y ork, NY , 173-182. 

[3]. T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. 
Rajendran, Z. Zhang, I. Raicu, “ZHT: A Light-weight 
Reliable Persistent Dynamic Scalable Zero-hop 
Distributed Hash Table”, IEEE IPDPS 2013. 

[4]. “De-mystifying “Eventual Consistency” in Distributed 
Systems”, Oracle, NoSQL Database, June 2012. 

[5]. Barbara Liskov, Sanjay Ghemawat, Robert Gruber, 
Paul Johnson, Liuba Shrira, and Michael Williams. 
Replication in the Harp file system. In 13th 
Symposium on Operating System Principles, pages 
226–238, Pacific Grove, CA, October 1991. 

[6]. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, 
A. Lakshaman, A. Pilchin, S. Sivasubramanian, P. 
Vosshall, “Dynamo: Amazon’s Highly Available Key-
value Store”, SOSP’ 07, October 14-17, 2007 

[7]. W. Vogels (Amazon.com), “Eventual Consistency”. 
[8]. S. Cribbs, “Data Structures in Riak (NoSQL Matters 

Cologne 2013”, April 26, 2013  
[9].  http://guide.couchdb.org/draft/consistency.html#cap 
[10].  http://blog.mongodb.org/post/498145601/on-

distributed-consistency-part-2-some-eventual 
[11]. J.M. Wozniak, B. Jacobs, R. Latham, S. Lang, S. 

W. Son, and R. Ross, “C-MPI: A DHT implementation 
for grid and HPC environments”, Preprint ANL/MCS-
P1746-0410, 2010 

[12]. S. Burckhardt, A. Gotsman, H. Yang, 
“Understanding Eventual Consistency”, MSR-TR-
2013-39, March 25, 2013. 

[13]. G. Grider. “Parallel Reconfigurable Observational 
Environment (PRObE),” available from 
http://www.nmc-probe.org, October 2012. 

[14]. Karger, D., Lehman, E., Leighton, T., Panigrahy, 
R., Levine, M., and Lewin, D. 1997. Consistent 
hashing and random trees: distributed caching 

protocols for relieving hot spots on the World Wide 
Web. In Proceedings of the Twenty-Ninth Annual 
ACM Symposium on theory of Computing (El Paso, 
Texas, United States, May 04 - 06, 1997). STOC '97. 
ACM Press, New York, NY, 654-663.  

[15]. Mike Burrows. The Chubby lock service for 
loosely-coupled distributed systems. In Proceeding 
OSDI '06 Proceedings of the 7th symposium on 
Operating systems design and implementation. Pages 
335-350. 

[16]. Lamport, Leslie.Paxos Made Simple. ACM 
SIGACT News Distributed Computing Column 32, 4 
Whole Number 121, December 2001 51-58. 

[17]. Lamport, Leslie. The part-time parliament. ACM 
Transactions on Computer Systems (TOCS) Volume 
16 Issue 2, May 1998. Pages 133 - 169. 

[18]. Patrick Hunt and Mahadev Konar and Flavio P. 
Junqueira and Reed Benjamin. ZooKeeper: wait-free 
coordination for internet-scale systems. Proceedings of 
the 2010 USENIX conference on USENIX annual 
technical conference, 2010. 

[19]. Lisa Glendenning and Ivan Beschastnikh and 
Arvind Krishnamurthy and Thomas Anderson. 
Scalable consistency in Scatter. SOSP '11. 

[20]. https://developers.google.com/protocol-buffers/. 
[21]. http://git-scm.com/. 
[22]. https://github.com/skxie/zht-eventual-consistency   

 
 

 
 

 
 

 
 

 
 

 

iraicu
Typewritten Text
[23]. Tonglin Li, Raman Verma, Xi Duan, Hui Jin, Ioan Raicu.  “Exploring Distributed Hash Tables in High-End Computing”, ACM Performance Evaluation Review (PER), 2011




