
Exploring Distributed HPC Scheduling in MATRIX

Kiran Ramamurthy*, Ke Wang*, Ioan Raicu*†

*Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA
†Mathematics and Computer Science Division, Argonne National Laboratory, Argonne IL, USA

Kramamu1@hawk.iit.edu, kwang22@hawk.iit.edu, iraicu@cs.iit.edu

Abstract - Efficiently scheduling large number of jobs
over large scale distributed systems is very critical in
order to achieve high system utilization and
throughput. Today's state-of-the-art job schedulers
mostly follow a centralized architecture that is
master/slave architecture. The problem with this
architecture is that it cannot scale efficiently upto
even petascales and is always vulnerable to single
point of failure. This is over come by the distributed
job management system called MATRIX (MAny-Task
computing execution fabRIc at eXascale) which
adopts a work stealing algorithm which aims at load
balancing throughout the distributed system. The
MATRIX currently supports Many Task Computing
(MTC) workloads. This project aims at extending
MATRIX in order to support the High Performance
Computing (HPC) workloads. The HPC workloads are
nothing but long jobs which needs multiple
nodes/cores to run the tasks. It is a challenge to
support HPC on the framework which supports MTC
jobs. The framework is focused at efficiently
scheduling sub-second jobs on available workers. The
design of scheduling HPC jobs should be efficient
enough in order to not hamper the efficient working
of MTC tasks.

I. Introduction

High-Performance Computing (HPC) is a distributed
paradigm defined to address challenges in running
large jobs spanning across multiple nodes along with
the small jobs (MTC) by maintaining load balancing
as well as efficient scheduling mechanism. Running
HPC jobs should not be a bottleneck for the
performance of MTC jobs.

Efficiently scheduling large number of jobs over large
scale distributed systems is very critical in order to
achieve high system utilization and throughput.
Workflow systems such as Swift, have been shown
to generate massive amounts of MTC tasks on Grids,

Supercomputers, and clouds [16, 17]. Today's state-
of-the-art job schedulers mostly follow a centralized
architecture that is master/slave architecture. The
problem with this architecture is that it cannot scale
efficiently up-to even petascales and is always
vulnerable to single point of failure. Supporting large
jobs and small jobs together will affect the
performance with a centralized scheduler. This is
over come by the distributed job management.

MATRIX already implements work stealing algorithm
in order to maintain load balancing. A new paradigm
called resource stealing is introduced for the large
jobs. The work stealing and resource stealing co-
exists and performs better at large scales. The idea
of resource stealing is to steal compute units (in
these case, cores) from the neighbors in order to run
a large job. The neighbors are selected in random in
the similar way as work stealing. This can be
improved since it has lot of alternatives to choose
from. The current initial system implements random
neighbor selection to steal resources. The report
presents the architecture of MATRIX supporting HPC,
resource stealing and the design consideration along
with the results obtained so far.

MATRIX being a MTC job execution framework, the
motive was to make MATRIX support HPC jobs. This
needs to be done along with the co-existing work
stealing mechanism. Developing an HPC support
should not be a bottleneck for the MTC tasks.
Making work stealing and resource stealing work as
separate entities poses a lot of challenges like
deadlocks, improper load balancing and executing
tasks in a generic way.

II. Background Information

Many Task Computing: Many-Task Computing is a
paradigm which bridges the gap between High
Performance Computing (HPC) and High Throughput
Computing (HTC). The MTC workloads are finer
granularity tasks which takes many computing

resources in order to complete many task in lesser
time. The throughput is measured in terms of
seconds. Tasks can be small or large, uniprocessor or
multiprocessor, compute intensive or data intensive.
The set of tasks may be static or dynamic,
homogeneous or heterogeneous, loosely coupled or
tightly coupled. The aggregate number of tasks,
quantity of computing, and volumes of data may be
extremely large [2][3][4][5].

High Performance computing: The HPC jobs are the
ones which might needs a whole node consisting of
multiple cores or more than one node to complete
the tasks[4]. Current MATRIX system does not
support the HPC jobs and needs to be extended in
order to support the same.

Centralized Architecture: Most of the state-of-the-
art job management systems today have a
centralized architecture that is jobs are submitted to
a single scheduler which has multiple compute
nodes under it. The scheduler is responsible for
submitting jobs to the compute nodes and also the
load balancing. This is an inefficient as it cannot scale
enough. At the same time this architecture is
vulnerable for a single point of failure that is if the
scheduler fails then the entire system falls apart as
there would be no track of the jobs submitted as
well as no scheduler to accept new jobs. Some of the
examples are Condor, Slurm, Falkon [1].

Many-Task computing execution fabRIC at
eXascale: MATRIX is a state-of-the-art distributed
job management system which eliminates the
concept of master/slave architecture. This job
management system has many compute nodes
connected in the cluster. Each compute node has
servers running on it. A client generated jobs and
submits to one of the compute nodes. Each compute
node would have a scheduler. The idle nodes
perform a Work Stealing mechanism in order to steal
jobs from heavily loaded system. The current
implementation selects the nodes randomly to steal
the jobs. If the randomly selected node does not
have any job or is not overloaded, the node which
made the request waits for sometime before
performing the work stealing again [1].

III. Proposed Work

This project aims to extend MATRIX with HPC
support along with the current MTC support. This is
achieved through the random approach where in the
requested number of nodes is selected in random.
The major considerations of the project would also

be to facilitate inter process communication since a
single process might be running across multiple
nodes and the task dependency, resource
deallocation during system under high utilization.

The proposed work is to implement a real system
which supports HPC tasks on the MTC task execution
framework, MATRIX. The system includes numerous
compute nodes to execute submitted jobs and client
to generate the jobs.

The work proposed is to run HPC jobs on MATRIX.
The system takes the information as to how many
cores each job needs to run. Resource stealing is
implemented in order to obtain the resources to run
the job. The nodes are selected in random to steal
resources. The jobs to be executed are the sleep
jobs. In case of high system utilization, the resources
need to be released if enough resources cannot be
obtained. In order to avoid deadlocks and starvation,
back-off time will be implemented as required.

a. Architecture

The MATRIX-HPC has 4 components, a client,
scheduler, worker and a ZHT server. The client is a
benchmarking tool used to generate tasks to submit
to the scheduler. The scheduler places the tasks on
the wait queue of the worker. The worker takes the
tasks from the ready queue and executes it. The ZHT
server is used to maintain the metadata of the tasks
like Task ID, which is a combination of the client id
and self index of the worker.

MATRIX-HPC supports single core jobs, referred to as
MTC tasks and multiple core jobs, referred to as HPC
tasks. The HPC task does not support dependency
between each task, while the dependency is
maintained within the task.

The Client initializes the workload of given type and
submits the workload to one or more compute
nodes. With the help of ZHT, the task dispatcher
could submit tasks to one arbitrary node or to all the
nodes in a balanced distribution [11]. In the
background, the compute nodes distribute the task
among themselves with 2 mechanisms, work stealing
and resource stealing. The ZHT server maintains
information of the all the tasks distributed across
compute nodes. The ZHT also keeps information
about the sub tasks of an HPC tasks as to which node
the sub tasks has been migrated to. Whenever the
task needs to be migrated or broken into sub tasks
and needs to be migrated, the ZHT is updated with
the task id and description.

Figure 1: MATRIX-HPC architecture

b. Implementation

Figure 2 shows the step-by-step process of the
execution of MATRIX-HPC.

The client submits the tasks to the scheduler. The
task ID and description is stored in ZHT and NoVHT.
The task is then placed in the wait queue. Once the
task is ready to execute, that is there is no more
dependency (in case of MTC tasks), it is moved to
the ready queue.

The worker picks the task from the ready queue. The
ZHT server is looked up using the task ID to get the
description. Once the description is received, the
information regarding the number of cores required
for executing and the source index is retrieved.

If the number of cores required is 1 and the source
index is -2, the task is an MTC task. The index -2 is
used to identify that the task is not migrated from
other node as a HPC subtask. If the number of cores
required is more than 1, a check is performed if the
task can be run on a single machine or needs
resource stealing. If the task can be performed on
the same node, the task waits until it acquires the
required number of resources and executes the
tasks. If the index is -1, then the source is current
node and the task is placed in the complete queue. If
the index is 0 or more, then the result is sent back to
the source with retrieved index. If the number of

cores is greater than 1and sufficient resources are
not available on the same node, resource stealing is
initiated.

i. Resource Stealing

Random neighbor Selection: Every worker has a
membership table is aware of all the other workers.
The neighbors can be selected in 2 ways for resource
stealing. One is static that is the neighbor from
which the resource needs to be stolen has to be pre-
defined. In dynamic selection multiple nodes are
selected in random from the membership table to
look up for the resource. Once the neighbors are
chosen, the resource information is requested from
the selected neighbors. The number of neighbors to
be selected can be set. At present the square root of
the total number of nodes available would be
selected. For example if there are 1024 nodes, then
for each resource stealing initiation, 10 nodes will be
selected to run the tasks [10].

Migrating Tasks: After selecting the neighbors in
random, ZHT server is used to get the resource
information. There are 2 types of resources, number
of cores idle with the worker and the worker’s ready
queue. Each worker replies with the number of cores
idle with them and the size of their ready queue.

The information received is stored in a structure
array which consists of the neighbor’s index and the
number of idle cores associated with it. Once
receiving information from all the selected nodes, a
check is performed to evaluate if enough resources
are available on all the nodes in order to migrate the
task. If enough resources are available, then task is
broken into sub tasks and migrated to the selected
nodes. For example if task 1 needs 10 cores to
execute the task on a cluster with 4 nodes and each
node having 8 cores in total, the random node
selection algorithm chooses 2 nodes in random with
index 1 and 2. Node with index 1 replies with the
number of idle cores available to be 6 and the node
with index 2 replies with number of idle cores
available to be 4, the task is broken into 2 parts. One
with id appended with index 1 and the number of
cores information in the package updated to 6 and
the other with id appended with index 2 and the
number of cores information in the package updated
to 4.

After breaking the task, the new task id and the
description is inserted into ZHT and NoVHT keeping
the main task id and description intact. The tasks are
then migrated to the selected nodes and inserted at

the front of the ready queue such that the tasks will
the next immediate one to be executed. There are 2
design considerations in stealing the resources:

1. When requesting for resource information,
none of the resources on the other node are
locked. Instead only the information is collected
and the task is migrated if enough resources are
available. The advantage of this approach is it is
not prone to deadlocks. But the major
disadvantage of this approach is, 2 nodes might
select same random nodes for resource stealing.
Though the information received is accurate, by
the time the task is placed on the ready queue,
the resource would be gone. This leads to extra
waiting time for the task to get hold of the
resources again and execute.

2. When requesting for resource information,
variable idle core information is locked along
with the ready queue. This is to ensure that the
information received will remain the same even
after migrating the task. This is the best
approach. But the drawback of this design is
deadlock. Multiple parameters need to be taken
into consideration while developing this
method. Work stealing and resource stealing
should be deadlock free when they work
together. At the same time in resource stealing
the chances of a circular deadlock are high. For
example, 2 nodes select same random nodes
with index 0 and 3, the node 1 tries to steal
resource from index 0 and hence locks the
resources on 0. Node 2 tries to steal resources
from 3 and locks resources on 3. Now node 1
has 0, but blocks on 3 while node 2 has 3 and
blocks on 0. This leads to a circular deadlock.

ALGORITHM 1. Dynamic Multi-Random Neighbor Selection
(DYN-MUL-SEL)

Input: Node id (node_id), number of neighbors (num_neigh), and
number of nodes (num_node), and the node array (nodes).
Output: A collection of neighbors (neigh).
bool selected[num_node];
for each i in 0 to num_node do
 selected[i] = FALSE;
end
selected[node_id] = TRUE;
Node neigh[num_neigh];
index = −1;
for each i in 0 to num_neigh−1 do
 repeat
 index = Random() % num_node;
 until !selected[index];
 selected[index] = TRUE;
 neigh[i] = nodes[index];
end
return neigh;

Figure 2 - HPC execution sequence

3. ALGORITHM 2. RESOURCE STEALING ALGORITHM

4. Input: Structure array with nodes selected in random,
package of the task to be broken into subtasks.

5. Output: NULL
6. get_idle_core_information(idle_core_info
7. Success=check_for_sufficient_cores(idle_core_info,nu

m_of_cores,selected_neigh)
8. If(!success)
9. release_resources(idle_core_info)
10. else
11. for(i=0;i<selected_neigh_count)
12.

 package=build_package_with_self_index()
13. Update_ZHT_and_NoVHT(package)
14.

 Migrate_Tasks(selected_neigh[i].index
15.

ii. ZHT and NoVoHT Updates

The ZHT and NoVHT are the integral part of MATRIX
[9]. The task metadata and description is stored in
the ZHT. Each worker has a ZHT server and a global
NoVHT store.

Figure 3 - ZHT and NoVHT: The relation between the
worker, ZHT server and NoVHT store.

The ZHT and NoVHT is updated during the following
scenarios

The client requests the task launcher to generate
tasks. Once the tasks are generated, the client
submits it to the schedulers or a single scheduler.
The new task id and description is stored in ZHT and
NoVHT, which is then used by the worker to look up
the description to run the tasks. In the second
scenario, when and idle node performs work
stealing, the heavily loaded node while migrating
tasks updates the ZHT server. The third scenario is
during resource stealing. The task is looked up in the
ZHT server and after stealing resources, the task is
broken into subtasks with unique id’s consisting of
the index number of the target nodes in the task id.
The package information is also updated with the
number of resources each sub task needs. This

information is again updated on to ZHT server before
migration. Now it works in the same way on the
other node which looks up for id and executes the
task.

Using ZHT and NoVHT might be a bottleneck with
the network performance as the package needs to
be built very often and updates to the ZHT and
NoVHT is made very frequently with the HPC tasks.

iii. Execution Unit

As figure 4 describes, MATRIX uses 3 queues, Wait
Queue, Ready Queue and the Complete Queue. In
HPC implementation, Wait Queue is not taken into
consideration as the only transaction will be with the
Ready Queue and the Complete Queue. The tasks
are inserted at the front of the Ready Queue during
resource stealing and the completed tasks are
inserted back to the complete queue similar to MTC
task operation. The complete queue will always have
the source task id and not the sub task ids.

Figure 4 - Different queues used in MATRIX framework

iv. Back-off Implementation

In order to avoid deadlocks, there should be a back-
off mechanism implemented to release resources
when none of them can acquire it. There are 3 types
of back-off implementations,

1. When the task can run on a single system
that is if the number of cores needed are
available on the same node, the task waits
until the resources are relieved by other
worker threads. This can be either done by
continuous polling or make the thread sleep
for sometime before it checks the resource
status again.

2. When the resource stealing is initiated, the
resource information is received from all
the nodes. The source node then performs
an evaluation if the required number of
resources is available. If available, tasks are

migrated. If not, then the resources locked
on all resources are relieved and the thread
sleeps for a back-off time which is usually
(index*1000) ms before trying again.

3. During resources stealing, the circular
deadlock explained needs to be handled.
This would be the challenging of all. This
can be done in 2 ways. A separate thread is
created to get resource information. If the
result is not received for a specified amount
of time, the thread would be destroyed and
back-off is implemented before trying
again. In the second method, while locking
the resources on the other nodes, a timed
lock can be implemented. In the concept of
timed lock, if the lock is not obtained for
the specified amount of time, the thread
gives up on the mutex and returns with a
non-zero number. After getting this status
information, a back-off is implemented
before trying again.

v. HPC Task Execution

The HPC tasks are long tasks which needs multiple
nodes to run. Hence there should be a mechanism to
make it start at the same time and end at the same
time. Due to network latency, starting at the same
time might not be possible. Hence MATRIX-HPC
ensures that the tasks start at the same time on the
respective nodes with barrier implementation.

In order for the tasks to end at the same time, each
sub task migrated to other nodes for execution
contains the source index to which the result needs
to be sent in the task description. In the meantime
the source node maintains a map which has the task
id as the key and the amount of task executed as the
value. Each node after execution of the task, updates
the map on the source node with the amount of task
it ran. The source node keeps polling the map and
once the map is completely updated by all the
nodes, the task will be placed in the complete
queue.

This implementation ensures the HPC tasks start at
the same time and end at the same time across all
the nodes.

IV. Evaluation

In this section, the result of MATRIX run on 6 nodes
is presented. The jobs are sleep 0. A single client
submits 1000 task, with each task needing 10 cores

to run. This ensures the tasks spans atleast across 2
nodes. All the tests are run on Jarvis cluster. Each
node in Jarvis consists of 8 cores. Jarvis has 10 nodes
in the cluster. The tests were carried out till 6 nodes.
That is 1, 4 and 6 nodes. The metric measured is
throughput.

Throughput measures how fast the system can
execute tasks. It is calculated as the total tasks
executed divided by the time taken to execute all
tasks. In the current HPC implementation, the
execution time is measured at each server. The start
time is noted at the client and the end time at the
worker executing tasks.

While testing on a single node, the number of cores
each task needs is 4. As we observe, the throughput
for 1000 tasks is around 19~20 tasks per second. For
4 nodes and 6 nodes the number of tasks executed is
1000 with each task needing 10 cores. With 4 nodes,
around 33~34 tasks can be executed per second
while at 6 nodes around 47~48 tasks can be
executed per second.

MATRIX-HPC was run on Amazon AWS up-to 16
nodes and a throughput of around 66~67 tasks per
second were observed. The number of tasks
submitted was 1000. Since the instance type used
was m1.medium, each node has 1 core. Hence each
task requests for 4 cores which is equivalent to 4
workers. Since the results are not concrete and
cannot be made fair comparison with the Jarvis
environment, it is not included in the graph above.

The trend shows that MATRIX-HPC is performing
better in comparison with SLURM. But this needs to
be tested at higher scales to make a fair comparison.
The future works of MATRIX-HPC includes scaling the

framework up-to 64 nodes and compare it with
SLURM and CloudKon-HPC.

V. Related Work

The job schedulers could be centralized, where a
single dispatcher manages the job submission, and
job execution state updates; or hierarchical, where
several dispatchers are organized in a tree-based
topology; or distributed, where each computing
node maintains its own job execution framework [1].

The University of Wisconsin developed one of the
earliest job schedulers, Condor [6], to harness the
unused CPU cycles on workstations for long-running
batch jobs. Slurm [7][8] is a resource manager
designed for Linux clusters of all sizes. It allocates
exclusive and/or non-exclusive access to resources
to users for some duration of time so they can
perform work, and provides a framework for
starting, executing, and monitoring work on a set of
allocated nodes.

In 2007, a light-weight task execution framework,
called Falkon [6] was developed. Falkon also has a
centralized architecture, and although it scaled and
performed magnitude orders better than the state
of the art, its centralized architecture will not even
scale to petascale systems. A hierarchical
implementation of Falkon was shown to scale to a
petascale system in, the approach taken by Falkon
suffered from poor load balancing under failures or
unpredictable task execution times.

A decentralized job scheduling system called
Sparrow: Scalable Scheduling for Sub-Second Parallel
Jobs [10] was developed by University of California,
Berkeley. This job management system has many
schedulers and workers. The schedulers incorporate
power of 2 approaches, where in the scheduler
selects 2 workers randomly to run the task. The
selected workers reply with the size of the job
queue. Then the scheduler places the job on the
worker with lesser queue length. The drawback of
this system is if 2 nodes are selected, one with 2 jobs
which needs approximately 50ms each to execute
and another node has only one job which needs
approximately 300ms to execute, since the queue
length is only one in the latter node, the scheduler
places the job on it. Hence the wait time is 200ms
more compared to the first one.

CloudKon now supports HPC jobs. In this version of
CloudKon, the HPC jobs are placed on the SQS

queue. Each worker takes a task from the HPC queue
and runs the task [15]. CloudKon-HPC cannot run on
any other cluster apart from Amazon AWS
infrastructure since it uses Amazon web services. A
fully functioning MATRIX-HPC will not have any
dependency on the executing platform.

VI. Conclusion

Running MTC and HPC jobs on distributed platform
poses significant challenge. The purpose of executing
tasks across the nodes is to obtain a better
throughput and efficiency. To achieve this, we need
to design an efficient scheduler that not only works
well with sub-second tasks but also with long tasks
that needs to run on multiple nodes.

This project helped in understanding different state-
of-the-art distributed job scheduling frameworks and
also implementing one. Working alone on a real
system implementation helped in pushing the limits
and getting a working system in place. The project
also gave an opportunity to think of different
solutions that can be implemented and choose the
right one.

Considering the bottlenecks in the base MATRIX
system, the goal was to implement resource stealing
and launching tasks on the other nodes for the
current term. But the MATRIX-HPC is now a fully
working system which can run HPC tasks on multiple
nodes without any bottleneck. This is evaluated
through running the system up-to 6 nodes. The
project stayed on schedule and HPC is now
implemented. A few code changes needs to be made
to make it clean and work as expected.

Our future work includes:

1. The short term goal is to get the system
running up-to 64 nodes scales on Amazon-
AWS platform and compare it with SLURM
and CloudKon-HPC.

2. The system needs to run on all platforms
like Kodiak and Bluegene/P clusters with
the same efficiency and performance.

3. Random node selection needs to be
changed and an efficient mechanism needs
to be in place to make better selection of
nodes to migrate tasks. For example ZHT
can be used to differentiate free workers
and busy workers.

4. Integrate HPC with new MATRIX that will be
built independent of ZHT.

VII. References

[1] A. Rajendran, I. Raicu. “MATRIX: Many-Task
Computing Execution Fabric for Extreme
Scales”, Department of Computer Science,
Illinois Institute of Technology, MS Thesis, 2013

[2] I. Raicu, I. Foster, Y. Zhao. "Many-Task
Computing for Grids and Supercomputers",
Invited Paper, IEEE Workshop on Many-Task
Computing on Grids and Supercomputers
(MTAGS08), 2008, co-located with IEEE/ACM
Supercomputing 2008.

[3] I. Raicu, I. Foster, M. Wilde, Z. Zhang, Y. Zhao,
A. Szalay, P. Beckman, K. Iskra, P. Little, C.
Moretti, A. Chaudhary, D. Thain. "Middleware
Support for Many-Task Computing", Cluster
Computing, The Journal of Networks, Software
Tools and Applications, 2010

[4] I. Raicu. "Many-Task Computing: Bridging the
Gap between High Throughput Computing and
High Performance Computing", Computer
Science Department, University of Chicago,
Doctorate Dissertation, March 2009

[5] I. Raicu, I. Foster, Y. Zhao, A. Szalay, P. Little, C.
M. Moretti, A. Chaudhary, D. Thain. "Towards
Data Intensive Many-Task Computing", book
chapter in "Data Intensive Distributed
Computing: Challenges and Solutions for Large-
Scale Information Management", IGI Global
Publishers, 2009

[6] D. Thain, T. Tannenbaum, M. Livny,
“Distributed Computing in Practice: The Condor
Experience “Concurrency and Computation:
Practice and Experience 17 (2-4), pp. 323-356,
2005.

[7] M. A. Jette, A. B. Yoo, M. Grondona, “SLURM :
Simple Linux Utility for Resource
Management”, 9th International Workshop on
Job Scheduling Strategies for Parallel
Processing (JSSPP 2003), pages 44-60, Seattle,
Washington, USA, June 24, 2003

[8] M. Jette and D. Auble, “SLURM: Resource
Management from the simple to the
Sophisticated”, Lawrence Livermore National
Laboratory, SLURM User Group Meeting,
October 2010.

[9] I. Raicu, Y. Zhao, C. Dumitrescu , I. Foster and
M. Wilde , “Falkon: a Fast and Light-weight

tasK executiON framework”, IEEE/ACM
SuperComputing 2007.

[10] K. Ousterhout, P. Wendell, M. Zaharia, I. Stoica,
Sparrow: Distributed, Low Latency Scheduling”,
SOSP conference, 2013

[11] I. Sadooghi, I. Raicu, “CloudKon: a Cloud
enabled Distributed tasK executiON
framework”, Illinois Institute of Technology,
Department of Computer Science, PhD Oral
Qualifier, 2013

[12] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K.

Wang, A. Rajendran, Z. Zhang, I. Raicu. “ZHT: A

Light-weight Reliable Persistent Dynamic
Scalable Zero-hop Distributed Hash Table”,
IEEE International Parallel & Distributed
Processing Symposium (IPDPS) 2013

[13] K. Wang, K. Brandstatter, I. Raicu. “SimMatrix:
Simulator for MAny-Task computing execution
fabRIc at eXascales”, ACM HPC 2013

[14] K. Wang, A. Rajendran, X. Zhou, I. Sadooghi, K.

Ramamurthy and I. Raicu, “MATRIX: MAny-
Task computing execution fabRIc at eXascale”,
under review at IEEE/ACM CCGrid 2014

[15] I. Sadooghi, S. Palur, A. Anthony, I. Kapur, K.
Belgodu, P. Purandare, K. Ramamurthy, K.
Wang, I. Raicu “CloudKon: a Cloud enabled
Distributed tasK executiON framework”, under
review at IEEE/ACM CCGrid 2014

[16] Y. Zhao, I. Raicu, S. Lu, X. Fei. "Opportunities
and Challenges in Running Scientific Workflows
on the Cloud", IEEE International Conference
on Network-based Distributed Computing and
Knowledge Discovery (CyberC) 2011

[17] M. Wilde, I. Raicu, A. Espinosa, Z. Zhang, B.
Clifford, M. Hategan, K. Iskra, P. Beckman, I.
Foster. "Extreme-scale scripting: Opportunities
for large task-parallel applications on petascale
computers", Poster Presentation, Scientific
Discovery through Advanced Computing
Conference (SciDAC09) 2009

