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ABSTRACT 
“GPU Computing “utilizes high level language to 

run sequential part of the code on the CPU as well as 

speeds up parallel part via running it on GPUs but 

GPUs are SIMD by default which means they can run 

only single instruction on multiple data. The 

introduction of GEMTC framework [1] addresses 

these limitations by providing an efficient 

middleware through which tasks are submitted to a 

common task queue to the device and workers (warp 

which represent the lowest possible level of control 

on device) take out the tasks, execute them and put 

them back on the result queue. This work explores 

porting and evaluation of real world applications 

into GEMTC framework. I choose Imogen [2] 

advanced astrophysical simulation tool and 

SciColSim [3] which simulates scientific discovery. I 

was able to port pure fluid kernels from Imogen and 

expensive functions of SciColSim to GEMTC. The 

evaluation resulted in performance up to 200 plus 

tasks/sec for kernel with moderate size data inputs. 

The results were compared with the CPU equivalent 

code and GEMTC was able to outperform CPU code 

for moderate size data inputs.  

Categories and Subject Descriptors 
C.2.4 [Distributed Systems]; H.3.4[Systems and 

Software] 

General Terms 
Performance, Experimentation 

Keywords 
GPGPU, MTC, CUDA, Matlab, Accelerator, Swift.  

1. INTRODUCTION 

This work involves porting of real work applications 

to GEMTC framework. GEMTC provides framework 

to use a GPU for MTC applications. The evaluation 

of GEMTC earlier was done using sleep jobs. The 

work discusses the applications Imogen and 

SciColSim which were chosen to be ported on 

GEMTC. Imogen originally was written in Matlab 

and CUDA. SciColSim is a C++ code using swift for 

launching parallel tasks.  

Imogen solves fluid dynamics and Ideal Magneto 

Hydro Dynamics equations using GPU. This project 

discusses the effort involved in porting, including the 

analysis, porting challenges encountered. Also 

discusses the problems and bugs encountered during 

the development cycle. The work also explore design 

implementation strategies and methodologies which 

came handy and had considerable impact on 

performance. It provides tips and guidance for 

developing new applications on GEMTC. This will 

answer question like what approach will work easily? 

What will not work? What are the shortcuts? 

Furthermore the work discuses performance 

evaluation of the ported kernels in GEMTC. Plots 

and analyses of the same has been discussed in detail 

giving focus on similarities and dissimilarities found 

between different kernels. This work also coded C 

equivalent host code for all the ported kernels of 

Imogen as original code is all in MATLAB. Also 

benchmarking code was developed for performance 

evaluation. During the development cycle memory 

bugs in the GEMTC framework were also 

encountered and a basic code to quickly trigger this 

error has been discussed in this paper.   

The discussion on porting effort for SciColSim is 

discussed and here the focus is on the challenges for 

porting. I have provided the reason that why porting 

the complete application itself was not feasible. I 

have also discussed the various approaches attempted 

for migration and what I was able to achieve for 

SciColSim. This application involved lot of tool-

chaining effort all of which has been discussed and 

also detailed understanding of compiling shared 

libraries and combining them together. I have also 

discussed why Imogen is different from SciColSim 

and why a design of porting used for Imogen doesn’t 

work for SciColSim. 

Discussion on future work gives insight on what 

more can be done. I also identified some applications 

which will show very high efficiency in GEMTC. 

Reason for why they will show high efficiency on 

GEMTC has been provided. I have also discussed the 

thought process for choosing an application to be 

ported be ported on GEMTC, this can be used as 

reference in future porting efforts.  

2. BACKGROUND 

The GPUs started as specific fixed function 

pipelining in their early era. With the bent of 

exploiting usage of GPU for scientific applications 
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they went enhancement to include support for 

floating point operations and were termed General 

Purpose GPUs. The main hurdle in extensive usage 

of GPGPUs was their programmability. Hence 

programming model to extend C for data-parallel 

constructs was adopted and CUDA was born. It is a 

parallel computing platform and programming model 

enabling increase in computing performance by using 

GPUs. NVIDIA claims acceleration of two order in 

magnitude for data parallel applications. It provides 

and abstraction and hence micro-kernels/application 

need not to be re-written with change in GPU 

architecture. The transfer rates between GPU and 

CPU have been claimed to be 6 GB/sec on PCI 2.0. 

All NVIDIA GPUs support 32 bit integer and single 

precision floating point arithmetic. NVIDIA GeForce 

6 series support MIMD branching in vertex 

processors. GEMTC framework has been designed to 

utilize GPU as a MIMD resource by enabling 

different warps to run different micro-kernels. It 

accomplishes this by running a superkernel on the 

device. This kernel and CPU component 

communicate via shared memory on GPU. Device 

maintains two types of queues in it, one is the task 

queue on which the host submits task to device and 

the other is the result queue on which the results are 

placed by warps (workers) once the task computation 

is complete. Each task has a task description with the 

help of which the information about which kernel to 

be executed is communicated to the warp. Hence 

forming a MIMD architecture.  

The major components included in GEMTC are task 

descriptions which is responsible for encoding key 

information for MTC workloads on host and device. 

TaskID in task descriptor differentiates one task from 

another. Tasktype refers to pre-complied micro-

kernel. The author has mentioned a big list of 

microkernel GEMTC supports and numThreads 

indicates the number of threads of worker which will 

be requires to accomplish the task. GEMTC allows 

working at wrap level which is the lowest possible 

level of control on the device. It is these separate 

wraps which gives the MIMD behavior to the device. 

To improve malloc’s and reduce the cost of 

allocating device memory GEMTC framework also 

includes a sub-allocator [10] which uses the existing 

CUDA malloc to allocate large contiguous pieces of 

memory, allocating more as needed. The pointers of 

these free chunks and their sizes are stored in a 

circular linked list on the CPU. This list is ordered by 

increasing device address to allow easy memory 

coalescing. The performance of the sub-allocator has 

been compared to CUDA and the sub-allocator shows 

efficient behavior with execution time on same order 

of magnitude as memory transfer to/from device. 

Comparison has been made of sleep task with 

varying time and it was notices that GEMTC 

achieves very high efficiency with tasks of size > 

5000 micro seconds. 

 

3. MOTIVATION 

GEMTC framework [1] evaluated all its performance 

and efficiency using sleep tasks but to the is strong 

reason to test and benchmark results for real work 

applications. This is because sleep job don’t perform 

any computation, it too simple in the sense that it can 

neither evaluate impact of heavy computation tasks 

on GEMTC nor evaluate impact of data intensive 

tasks on GEMTC. Heavy computation job involves 

evaluating result of a complex mathematical function, 

predicting probabilities etc. whereas data intensive 

task will involve too many read/writes for example 

weather forecasting using data for sensors. The real 

work applications will range from being totally 

compute intensive to totally data intensive. Also for 

making any framework suitable for wide acceptance 

firstly the framework must have solid results on real 

world applications and must be able to address large 

variety of problems falling under its category. This 

motivated migration of real world applications like 

Imogen which solves Fluid dynamics equations. 

Similarly SciColSim was chosen for porting because 

this application attempts to understand the process of 

discovery by modeling knowledge as graph of 

concepts and then tries to simulate different graph 

exploration strategies. 

4. PROPOSED SOLUTION 

The work as such consisted of migrating real world 

applications to GEMTC framework. Nature of project 

is implementation of real system. The first goal 

consisted of identifying a real world application for 

the project. Imogen was the first candidate chosen for 

porting. This application is an advanced astrophysical 



simulation tool which uses MPI-parallel code to solve 

FD and MHD equations using GPUs. It uses Matlab 

to control management functionalities and the heavy 

duty processing is kept at GPU level. The core 

functions are compiled Mex files. The second 

application was SciColSim (Simulating Scientific 

Discovery). This is ongoing research at University of 

Chicago. Objective is to understand process of 

scientific discovery. Like “How do scientists select 

hypotheses to work upon”, what are the most 

effective strategies”. This can be explored with 

simulation by “modeling knowledge as graph of 

concepts. Then simulate different graph exploration 

strategies. There are computational characteristics 

associated with this application. Each simulation 

implemented with sequential C++ code. The 

application is floating point intensive, many 

probability calculations are involved in it. The second 

goal consists of writing micro-kernels for some 

applications from first goal. I was able to successfully 

write GEMTC kernels corresponding to CUDA 

kernels of Imogen. The first kernel ArrayAtomic 

solves setting array elements having value less than a 

certain threshold to that specific threshold, setting 

array elements having a value greater than certain 

threshold to that specific threshold, or setting array 

elements with values Not a Number to zero or some 

specified value. The second kernel ArrayRotate 

solves the problems of martrix transpose and also is 

capable of performing array exchange in Y and Z 

dimension for 3-D data. The third kernel FluidW 

calculates a first order accurate half-step of the 

conserved transport part of fluid equations CFD 

which is used as predictor input to the matching TVD 

function. Only pure hydro kernel was ported 

implying the magnetic variables are all zero. The 

fourth kernel freezeAndPtot is used to derive pressure 

and freeze parameters to enforce minimum pressure. 

The fifth kernel FluidTVD takes a single forward-

time step, CFD  of the conserved-transport part of the 

fluid equations using a total variation diminishing 

scheme to perform a non-oscillatory update. I 

migrated only purehyro kernel, hence magnetic 

parameters are all 0. For SciColSim I wrote kernel 

for its expensive function. The third goal consists of 

writing test cases for applications. The benchmarking 

code for all the kernels were written and tested for 

results. The fourth goal was comparative analysis of 

CPU with GPU version of the code. I tried to plot as 

many comparison graph marking impact of data size 

on performance, impact of submitting bunch of tasks 

together to GEMTC, time taken by single task in 

kernel. For all the kernels their respective CPU only 

code was also written. With that only the 

benchmarking and performance analysis was made. 

 

There is big list of techniques which were used for 

this project. C/CUDA programming was the most 

utilized programming languages used. Apart from 

this Imogen required additional effort of learning 

Matlab code, this was because there were few Matlab 

library calls which were absent inside C/CUDA, I 

have struggled to find C equivalents and 1-2 times 

even implemented them. Also at the time of project 

development I didn’t have any algorithm to start with 

and the comments present inside Imogen were too 

poor to get any idea what the kernel was solving. I 

will specify that the equations itself were absent on 

top of the kernel. There were lot of grep and search 

on Imogen ‘s base to find what actually is happening. 

(Just to mark it the equations were updated 11 days 

back only in Imogen). Hence apart from porting it 

was a reverse engineering effort (I guess it should 

also be counted as technique) and I didn’t have any 

previous experience on Matlab. So what was done is 

usage of an online Matlab simulator to figure out the 

outcome of code at various stages, especially the 

unit-testing code of Imogen. The benchmarking code 

has been adopted from unit-testing code of Imogen. 

Imogen’s implicit grid, block and thread logic in its 

CUDA kernel was broken for data processing by 1 

single warp inside GEMTC. In Imogen we move in 

all three dimensions and data to process is implicitly 

determined by grids, block indices but GEMTC has 

only 32 threads. Another time consuming effort was 

on packing and unpacking of input, output 

parameters for submitting tasks into GEMTC and 

getting them back. All Imogen kernels required 

passing of 5-6 3-dimensional parameters, 3-4 2-

dimensional parameters, and few single variables into 

GEMTC. This was one among the calculation 

intensive work. About 75% “Segmentation Fault” 

bugs were due to incorrect pointer arithmetic. High 

optimization for copying relevant parameters only 

back from GEMTC was accomplished. Imogen’s unit 

testing code generated inputs itself, this inbuilt input 

generation code has also been written. The data 

provided was used for 1 kernel only “FluidTVD.cu” 

so for that kernel file read code was used. I also 

encountered memory bug inside GEMTC which was 

earlier thought to be a pointer arithmetic bug but I 

was able to re-create the bug without GEMTC kernel 

only via plain data copy to and fro from GEMTC. I 

have written a small code to re-create the issue. This 

is where we can clearly see that why we need to 

migrate and test real world application into GEMTC, 

sleep jobs will not encounter these bugs.  

Each of ported Imogen’s kernel incurred some 

challenges. “ArrayAtomic” kernel though looks 

simple had an issue, Imogen’s kernel didn’t have to 

care about processing the entire data with single 

warp, it was to be achieved by us with 1 warp. 



Imogen’s “ArrayRotate” relied on shared memory to 

rotate the array but if GEMTC starts using shared 

memory we will be limited on the maximum size 

array which can be rotated as only 8192 bytes are 

available per warp in GEMTC. As the data matrix is 

double the number of elements will be 1024 or in 

other terms 32*32 matrix of float. Imogen’s 

“FluidW”, “FluidW” and “freezeAndPtot” had lack 

of code comments, the unit-testing code required 

Matlab’s library call hence had to be re-implemented 

in C. 

 

The application SciColSim required even more 

techniques like tool-chaining. Making SciColSim 

itself to work on Jarvis it took 3 days due to tool-

chain issues. The main was figuring out the proper 

set of tools with which SciColSim worked. This went 

as deep as finding out the date when SciColSim was 

developed and downloading, installing tools with 

version corresponding to that time period. SciColSim 

requires STC, Turbine, MPICH, TCL, Boost, Swift. 

Path variable settings (as I wasn’t able to use default 

tools on Jarvis because SciColSim didn’t work with 

them). After the tool-chain effort another effort was 

on installation of callgrind to figure out the order in 

which call are happening when the application is 

being run. Initially I attempted migrating the 

complete application itself in GEMTC but it failed 

because 1) the code piece is too larger involving C++ 
class. 2) The input to provided is a filename from 

which graph gets constructed in the constructor. 3) It 

involve bunch of global static variables and functions 

which don't belong to class itself (have to figure out 

where they will fit). 4) Porting will mean entirely 

moving the whole computation including the object 

creation,   destruction in the GeMTC kernel. 5) There 

are Boost objects (Have to think about compiling and 

using them in GeMTC), I searched using boost in 

CUDA and found that there is no RTT (Run Time 

Type) support in CUDA. (Hence the idea of 

migrating the complete application to GEMTC was 

dropped). Also there is no Boost equivalent library 

with graph support in C. 6) The graph construction 

requires set of dynamically allocated edges, vertices, 

state, probability double dimensional pointers. I also 

noted that there is lot of sequential processing 

happening inside SciColSim. For example when we 

make a decision based on graph state it used to 

depend on previously computed values, hence there 

was a directly data dependency. This type of code 

can’t be made parallel anyhow. So once I had the 

output of callgrind and notes of SciColSim it clearly 

brought out the most time consuming functions inside 

SciColSim and I implemented the corresponding 

GEMTC kernel for the same. Further there was more 

struggle to integrate the application into GEMTC due 

to shared library dependency. As per the work 

accomplished I implemented 1 warp kernel for 

processing and 1 thread only processing kernel for 

SciColSim. During the integration work it was found 

that SciColSim will launch multiple workers and 

hence my application kept crashing. I found it latter 

that it was due multiple calls to gemtcSetup() and the 

only way to work around this was to move this call 

inside swift code itself before parallel jobs are 

launched. Inspite of multiple attempts I wasn’t able to 

make multiple worker code work it kept crashing. 

Hence benchmarking was done with single worker 

only. 

As per benchmarks done for Imogen I also anticipate 

that even launching multiple workers will not let 

GEMTC beat out CPU only code implementation. 

This is because there is sequential code inside the 

application which is run by each worker along with 

the code I parallelized. The number workers which 

can be launched by swift will be dependent on the 

core on CPUs. Hence number of tasks inside 

GEMTC queue will be limited to the number of CPU 

cores (one-to-one correspondence with workers 

launched by swift) this will have direct implications 

on GEMTC performance. For evaluation I used 

Jarvis cluster and workstations with accelerators. The 

project required Swift/T scripting also. Software 

requirement include CUDA C compiler, screen/Tmux 

application for multiple session saving, Git repository 

for code development, TCL, STC, swift, turbine, 

mpich, matlab, boost etc. 

The code for Imogen is about 4500 lines with proper 

code comments. This has been created as separate 

directory under GEMTC https://github.com/skrieder-

datasys/gemtc/tree/master/Tests/Imogen (the 

README file inside provide all details on code 

organization, building and executing, the input data is 

generated by the code itself, “FluidTVD” kernel uses 

the data present in the data directory).  

The code for SciColSim kernels is about 600 lines 

and few modified files inside the SciColSim 

application itself. This has been created as a separate 

directory under GEMTC https://github.com/skrieder-

datasys/gemtc/tree/master/Tests/SciColSim (the 

README file inside provide all details on code 

organization, compiling and executing). 

5. EVALUATION 

The benchmarking for Imogen and SciColSim 

migrated kernels was done on per kernel basis. The 

tests performed plot curves depicting effect of data-

size on application, impact of submitting multiple 

tasks together, comparison with equivalent host code 

on varying data sets, kernel processing time with 

Host processing time for CPU only application. I also 
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present best tasks/sec achieved by each kernel and 

the corresponding data set. Plot for SciColSim 

depicts performance on Host only code v/s GEMTC 

1-thread code and GEMTC 32-thread code. The 

kernel and CPU processing time is also compared. 

 

ArrayAtomic plot for varying data-size and its impact 

on turnaround time for completing a given number of 

tasks. Please note that it is for comparing data-size 

only hence there is only 1 task on GEMTC queue at a 

time. We see linear rise in time taken to complete 

jobs with increment in number of tasks also in each 

set the time taken by larger data-size array is more 

when compared to task with less data-size. This is all 

expected behavior. 

 

Here we see the impact of submitting multiple tasks 

together into GEMTC queue the performance 

increases as the total turnaround time for completion 

is decrementing. The graph behaves linear then 

suddenly seems saturating when number of tasks 

reaches 12. This is because there is no control logic 

by which we can instruct SM to executed particular 

task. It is up to the warp scheduler to execute warp. 

There is 1 more thing, we are under-utilizing 

GEMTC, because at each step we submit 15 tasks, 

then poll for them to complete and again submit 15 

tasks. Now what happens is when we are submitting 

the 11th task at that time warp executing 1st and 2nd 

tasks become free, but only 1 can take the task (or it 

may be some other warp, in that case also these 2 will 

keep waiting till submission of next bundle of tasks).  

This idle time gives the above plot. So the 

fundamental is to schedule as much job as possible in 

each iteration. 

 

This plot tells us that CPU only code beats the 

GEMTC code in performance. This is attributed to 

the fact that the data-size is too small because of this 

the GEMTC overhead of moving data Host to device 

and back dominates the processing advantage given 

by CUDA cores. 

 

Here GEMTC outperforms CPU, because the data-

size is large GEMTC overhead is less than time 

spend in data processing inside the kernel. The 

interesting part to see is that the performance of 

GeMTC is improving when number of tasks are 10 to 

100 and but seems decrementing when number of 

tasks is 1000. This sounded odd for a while and I 

found latter that this is attributed to the fact that 

“GTX 480” has 1.6 GB of memory and Array-size 

with 1 M entries will occupy 8*1MB memory (8 

because each entry is double). Now there is no way to 

schedule 8*1000MB  (8 GB) anyhow. Hence I 

scheduled 100 batch jobs at a time, which gave the 

above behavior and we can see that time taken at 

1000 tasks is 10 times the time taken at 100 tasks for 

GeMTC. In the table below we see that kernel itself 

doesn’t take much time to execute for lower data 



size. But at higher data size HOST takes over, this is 

because the shader clock rate of GPU is lower than 

CPU’s clock rate, which has direct implications on 

Instructions per Second. 

 

ArrayAtomic kernel benchmark inside CUDA. 

 

 

The plot of ArrayRotate with varying data-size.  

 

 

For comparing data-size only hence there is only 1 

task on GEMTC queue at a time. We see linear rise 

in time taken to complete jobs with increment in 

number of tasks also in each set the time taken by 

larger data-size array is more when compared to task 

with less data-size. This is all expected behavior. 

 

 

The behavior and its explanation is similar to that of 

ArrayAtomic benchmark. 

  

This plot tells us that CPU only code beats the 

GEMTC code in performance. This is attributed to 

the fact that the data-size is too small because of this 

the GEMTC overhead of moving data Host to device 

and back dominates the processing advantage given 

by CUDA cores. 

 



Here we see that GeMTC out-performs HOST when 

10 to 500 tasks are submitted together in GeMTC 

queue. The interesting part to see is that the 

performance of GeMTC is improving when number 

of tasks are 1 to 500. For this big data size 

1024*1024 we can’t schedule more than 85 tasks at a 

time in GeMTC queue.“GTX 480” has 1.6 GB of 

memory and Matrix-size with 1024*1024 will 

occupy 8*1MB memory (8 because each entry is 

double). Also there are 2 matrices which are actually 

transferred to the GeMTC kernel. Now there is no 

way to schedule (2*8*1 MB * 85) (1.42 GB), there 

will be GeMTC overhead of tasks descriptors, queues 

also. At 500 tasks we start hitting memory leak bug if 

we try to schedule more than 85 tasks per iteration. 

The behavior of time taken in kernel v/s time taken 

by host is almost dominated by host from 64*64 size 

data. The shader clock rate of GPU is lower than 

CPU’s clock rate, which has direct implications on 

Instructions per Second. 

 

The plot of FluidW with varying data-size.  

 

The above graph plots the time taken to complete 

Imogen FluidW tasks by GeMTC. As usual the size 

of data has direct impact on the time taken to 

complete the number of tasks. We also observe that 

there is almost linear increase in time taken to 

complete tasks with rise in number of tasks. Also to 

be noted that data size provided to GeMTC is 

181.439 MB for 128*124*119 (because the number 

of equation parameters are large), 220.634 MB for 

333*69*100, 167KB for 12*12*12. Remember that 

this weird data-set odd looking dimensions come 

from testing program of FluidW kernel of Imogen. 

  

 

The behavior and its explanation is similar to that of 

ArrayAtomic benchmark. 

 

Here we see that GeMTC out-performs HOST when 

10 to 10000 tasks are submitted together in GeMTC 

queue. For 10000 set of tasks 1000 tasks are 

submitted in batch together in GeMTC queue. 

 

We see that GeMTC outperforms HOST in respective 

data set benchmarks. Points to note 1) For data-set 

128*124*119 at best we can schedule 7 tasks at a 

time in GeMTC queue because each task requires 



181439824 bytes of data to be submitted to GeMTC. 

2) For 100 and 1000 tasks only 4 jobs at a time were 

scheduled to avoid GeMTC memory leaks. 3) For 

data-set 333*69*100 at best we can schedule 6 tasks 

at a time in GeMTC queue because each task requires 

220634448 bytes of data to be submitted to GeMTC. 

4) For 100 and 1000 tasks only 3 jobs at a time were 

scheduled to avoid GeMTC memory leaks. 5) Due 

large data set per kernel it is wasting CUDA cores by 

keeping SMs idle. And we are not happy about it. 

It becomes a notable point that if we are scheduling a 

very heavy task in GEMTC it will under-utilize 

processing power, the best case will be to sub-divide 

this heavy task process it with GEMTC which will let 

us high the sweet spot for performance gain and 

utilization.  

FluidW kernel benchmark from insde CUDA kernel. 

 

 

freezeAndPtot benchmark 

 

The above graph plots the time taken to complete 

Imogen freezeAndPtot tasks by GeMTC. As usual 

the size of data has direct impact on the time taken to 

complete the number of tasks. We also observe that 

there is almost linear increase in time taken to 

complete tasks with rise in number of tasks. Also to 

be noted that data size provided to GeMTC is 90.778 

MB for 128*124*119 (because the number of 

equation parameters are large). 110.344 MB for 

333*69*100 and 84.136KB for 12*12*12. 

 

This benchmark analyses impact of scheduling 

multiple freezeAndPtot tasks in GeMTC queue. The 

total number of tasks scheduled is 20000.  

 

Here we see that GeMTC out-performs HOST when 

10 to 10000 tasks are submitted together in GeMTC 

queue. 

 

 

We see that GeMTC outperforms HOST in respective 

data set benchmarks. Points to note are 1) For data-

set 128*124*119 at best we can schedule 10 tasks at 

a time in GeMTC queue because each task requires 



90778952 bytes of data to be submitted to GeMTC. 

2) For 100 and 1000 tasks only 8 and 7 jobs at a time 

were scheduled respectively to avoid GeMTC 

memory leaks. 3) For data-set 333*69*100 at best we 

can schedule 10 tasks at a time in GeMTC queue 

because each task requires 110344840 bytes of data 

to be submitted to GeMTC. 4) For 100 and 1000 

tasks only 7 jobs at a time were scheduled to avoid 

GeMTC memory leaks. 5) Due large data set per 

kernel it is wasting CUDA cores by keeping SMs 

idle. Table for kernel time v/s host only time. 

 

 

 

 

The above graph plots the time taken to complete 

Imogen FluidTVD tasks by GeMTC. As usual the 

size of data has direct impact on the time taken to 

complete the number of tasks. We also observe that 

there is almost linear increase in time taken to 

complete tasks with rise in number of tasks.Also to 

be noted that data size provided to GeMTC is 

10.104688 MB for 410*280*1 (because the number 

of equation parameters are large). This was the data 

set provided by Erik the original writer of Imogen. 

 

 

 

This benchmark analyses impact of scheduling 

multiple FluidTVD tasks in GeMTC queue. The total 

number of tasks scheduled is 1000, the explanation is 

same as of ArrayRotate. 

 

Here we see that GeMTC out-performs HOST when 

10 to 10000 tasks are submitted together in GeMTC 

queue. At 1000 we were only able to submit 50 jobs 

together in GeMTC queue (memory bug becomes 

dominant). At 10000 we were only able to submit 4 

jobs together in GeMTC queue (memory bug 

becomes dominant).  

 

This is benchmark for CUDA kernel time taken. 

Explanation is same as for ArrayRotate. 

Here are the set of performance evaluation of 

SciColSim 



 

Time taken by GeMTC kernel is more than HOST 

code itself. But this has always been there in Imogen 

also. GeMTC gets performance by scheduling 

multiple tasks in GeMTC queue together, which are 

in parallel taken up by workers and executed. This is 

not happening for SciColSim. Why this can’t be 

achieved ? (remember there is only 1 GeMTC kernel 

for an expensive function but application launch as 

such has good amount of sequential code also. 

Multiple GeMTC tasks can be submitted only when 

there are multiple launch of SciColSim via Swift 

script. (But how many launch can work in parallel 

directly depends on host processor. 

 

6. RELATED WORK 

Exploiting MIMD control flow on SIMD GPUs has 

been explored in [4] where a stack is added to allow 

SIMD processing elements to execute distinct 

program path post occurrence of a branching 

instruction. It proposes dynamic warp formation for 

regrouping of processing elements of individual 

SIMD warps for efficient branch handling. MIND 

Interpretation on GPU[5] discusses compiler, 

assembler and interpreter which will not only allow 

MIMD execution model but also supports message 

passing, shared memory communication etc. [6] has 

analyzed CUDA workloads using a GPU simulator. 

The paper establishes that non-graphics applications 

are more sensitive to bisection bandwidth than 

latency and many times it is better to reduce the 

number of threads to avoid content on memory 

resources. [7] Summarizes tools and techniques in 

GPU computing. [8] Discusses implementation and 

design of SIMD-MIMD GPU architecture. [14] 

Discusses the problem statement of integrating data 

flow driven parallel programming systems and 

hardware accelerators. The work aimed to enable 

Swift to efficiently use accelerators to further 

accelerator wide range of applications, on a growing 

portion of high end systems. [15] Discusses static 

batch FIFO scheduler which sits between Swift and 

GPU handles multiple inputs from Swift and 

condenses these into single GPU calls.  

7. CONCLUSION 

5 Imogen purehydro kernels were successfully ported 

to GeMTC and were benchmarked. Also Host only 

code corresponding for these kernels was written and 

compared with GeMTC. It was observed that there is 

sweet space between the varying data sizes for each 

kernel where it was outperforming HOST only code. 

Expensive function from SciColSim was successfully     

ported and benchmarked. A good amount of time was 

spend in feasibility analysis for complete SciColSim 

migration to GeMTC kernel.  

Future work on Imogen includes 1) Achieve better 

performance by breaking kernels into smaller pieces 

and submit these smaller pieces as tasks to GeMTC.  

Migrate magnetic kernels also (as of now I migrated     

fluid kernels only). All these kernels have to be 

integrated together to get Imogen’s complete 

behavior. Future work of SciColSim include best 

case to be to find equivalent or implement 1 library 

just for all graph features being used by SciColSim. I 

still have doubt on whether this will still result in 

better performance as lot of other functions in 

SciColSim are sequentially dependent. This can have 

serious implication as it will result in 1 CUDA core 

running this sequential code which will be too slow. 

Enable support for launching multiple workers using 

GeMTC kernel. 

As part of the project I also identified class of 

applications which when migrated to GeMTC will 

show very high efficiency. Monte Carlo methods are 

broad class of computational algorithms that rely on 

repeated random sampling to obtain numerical 

results. There is a large class of application which 

utilize this method for obtaining results ranging from 

physical sciences, engineering, computational 

biology, computer graphics, applied statistics etc. As 

a start I wrote a program to calculate value of PI 

using GeMTC. It relied on sending random values to 

GeMTC and calculating PI inside the kernel. This can 

be avoided by directly generating random values 

inside the GPU kernel itself. These classes of 

applications will benefit a lot for GeMTC because the 

amount of data to be moved to and fro between CPU 

and CPU will be less which will directly result in 

significant performance improvement. Hence 



migrating these classes of application to GeMTC will 

also be attempted. 
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