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Abstract - In today's world the emphasis is on distributed 

systems which plays an important role on achieving good 

performance , high system utilization and scalability. Task 

scheduling and execution over large scale, distributed 

systems plays an important role on achieving good 

performance and high system utilization. Due to the 

explosion of parallelism found in today’s hardware, 

applications need to perform over-decomposition to deliver 

good performance; this over-decomposition is driving job 

management systems’ requirements to support applications 

with a growing number of tasks with finer granularity. 

Most of today’s state-of-the-art job execution systems have 

predominantly Master/Slaves architectures, which have 

inherent limitations, such as scalability issues at extreme 

scales and single point of failures. On the other hand 

distributed job management systems are complex, and 

employ non-trivial load balancing algorithms to maintain 

good utilization. 

CloudKon is a distributed job management system that can 

support distributed HPC and MTC scheduling, running 

millions of tasks on multiple nodes. CloudKon, a compact, 

light-weight, scalable, and distributed task execution 

framework (CloudKon) that builds upon cloud computing 

building blocks (Amazon EC2, SQS, and DynamoDB) has 

been developed to support high performance , high system 

utilization and scalability, however with some challenges 

and drawbacks. The downsides lie in Worker-Client 

communication, Monitoring system causing communication 

overhead and resource contention respectively. This may 

prove to be a potential bottleneck at higher scalable 

systems. The goal in this project is to reload or extend 

existing CloudKon with features like 1. Improved 

Concurrency 2. Bundled Response 3. Efficient Monitoring 

to address the existing challenges in CloudKon  as well as  

implementation of dynamic provisioning. 

I. Introduction 

The goal of a job scheduling system is to efficiently 

manage the distributed computing power of workstations, 

servers, and supercomputers in order to maximize job 

throughput and system utilization. With the dramatic 

increase of the scales of today’s distributed systems, it is 

urgent to develop efficient job schedulers. Predictions are 

that by the end of this decade, we will have exascale system 

with millions of nodes and billions of threads of execution 

[1].  

Unfortunately, today’s schedulers have centralized 

Master/Slaves architecture (e.g. Slurm[2], Condor [3][4], 

PBS [5], SGE [6]), where a centralized server is in charge 

of the resource provisioning and job execution. This 

architecture has worked well in grid computing scales and 

coarse granular workloads [7], but it has poor scalability at 

the extreme scales of petascale systems with fine-granular 

workloads [8][9]. The solution to this problem is to move 

to the decentralized architectures that avoid using a single 

component as a manager. Distributed schedulers are 

normally implemented in either hierarchical [10] or fully 

distributed architectures [31] to address the scalability 

issue. Using new architectures can address the potential 

single point of failure and improve the overall performance 

of the system up to a certain level, but issues can arise in 

distributing the tasks and load balancing among the nodes 

[26].  

The idea of using cloud services for high performance 

computing has been around for several years, but it has not 

gained traction primarily due to many issues. Having 

extensive resources, public clouds could be exploited for 

executing tasks in extreme scales in a distributed fashion. 

Our goal in this project is to provide a compact and 

lightweight distributed task execution framework that runs 

on the Amazon Elastic Compute Cloud (EC2) [18], by 

leveraging complex distributed building blocks such as the 

Amazon Simple Queuing Service (SQS) [19] and the 

Amazon distributed NoSQL key/value store (DynamoDB) 

[34]. 

There have been many research works about utilizing 

public cloud environment on scientific computing and High 

Performance Computing (HPC). Most of these works show 

that cloud was not able to perform well running scientific 

applications [11][12][13][14]. Most of the existing research 

works have taken the approach of exploiting the public 

cloud using as a similar resource to traditional clusters and 

super computers. Using shared resources and virtualization 

technology makes public clouds totally different than the 

traditional HPC systems. Instead of running the same 

traditional applications on a different infrastructure, we are 

proposing to use the public cloud service based applications 

that are highly optimized on cloud environment. Using 

public clouds like Amazon as a job execution resource 

could be complex for end-users if it only provided raw 

Infrastructure as a Service (IaaS) [35]. It would be very 



useful if users could only login to their system and submit 

jobs without worrying about the resource management.  

Another benefit of the cloud services is that using those 

services, users can implement relatively complicated 

systems that are able to serve in larger scales with a very 

short code base in a short period of time. Our goal is to 

show evidence that using these services we are able to 

provide a system that provides high quality service that is 

on par with the state of the art systems in with a 

significantly smaller code base. To our knowledge, 

CloudKon [15] is the only distributed task scheduler with 

the ability of running both MTC [16] and HPC tasks that is 

designed and optimized to perform well on public cloud 

environment. 

In this paper, we design and implement a scalable task 

execution framework on Amazon cloud using different AWS 

cloud services. The most important component of our 

system is Amazon Simple Queuing Service (SQS) which 

acts as a content delivery service for the tasks. Amazon 

DynamoDB is another cloud service that is used to make 

sure that the tasks are executed exactly once. We also 

leverage the Amazon Elastic Compute Cloud (EC2) to 

manage virtual resources. With SQS being able to deliver 

extremely large number of messages to large number of 

users simultaneously, the scheduling system can provide a 

high throughput even in larger scales. 

Today’s data analytics are moving towards interactive 

shorter jobs with higher throughput and shorter latency 

[36][10]. More applications are moving towards running 

higher number of jobs in order to improve the application 

throughput and performance. A good example for this type 

of applications is Many Task Computing (MTC) [16]. 

MTC applications often demand a short time to solution 

and may be communication intensive or data intensive [17]. 

Tasks may be small or large, uniprocessor or 

multiprocessor, compute-intensive or data-intensive. 

As we mentioned above, running jobs in extreme scales is 

starting to be a challenge for current state of the art job 

management systems that have centralized architecture. On 

the other hand, the distributed job management systems 

have the problem of low utilization because of their poor 

load balancing strategies.  

We propose CloudKon-Reloaded , which is an extension to 

existing CloudKon [15] and built upon the prior work of 

CloudKon [15],  as a job management system that achieves 

good load balancing and high system utilization on large 

scales with extended features viz. 1. Improved Concurrency 

2. Bundled Response 3. Efficient Monitoring , which 

address the existing challenges in CloudKon [15]. Instead 

of using trivial techniques such as random sampling or 

hierarchical system design, CloudKon [15]  uses distributed 

queues to deliver the tasks fairly to the workers without any 

need for the system to choose between the nodes. The 

distributed queue serves as a big pool of tasks that is highly 

available. The worker gets to decide when to pick up a new 

task from the pool. This approach brings design simplicity 

and efficiency. Moreover, taking this approach, the system 

components are loosely coupled to each other. Therefore 

the system will be highly scalable, robust, and easy to 

upgrade. 

The main contributions of this work are: 

1. Extending the existing CloudKon framework with 
improved level of concurrency at client and server side 
for homogenous tasks. 

2. Appending response bundling of tasks at server side to 
client response queue reducing communication 
overhead as an addition  to existing  CloudKon 
framework. 

3. Reloading the existing CloudKon framework with an 
efficient monitoring  feature that reduces the resource 
contention and communication overhead.  

4. Performance evaluation from 1 thru 1024 instances 
scale on Cloudkon reloaded framework. 

5. Contribution to evaluation of throughput and efficiency 
to CloudKon paper submitted to CCGRID 2014. 

II. Proposed Solution 

We have designed the reloaded CloudKon framework with 

the following improvements: 

1. Improved Concurrency 

2. Response bundling 

3. Efficient Monitoring 

Having these improvements has major focus we have 

designed a new architecture. This section explains about 

the system design of reloaded CloudKon. We have used a 

component based design on this project for two reasons: (1) 

A component based design fits better in the cloud 

environment. It also helps designing the project in a 

loosely-coupled fashion. (2) It will be easier to improve the 

implementation in the future. 

Figure 1 shows the different components of CloudKon .The 

client node works as a front end to the users to submit their 

tasks. SQS has a limit of 256 KB for the size of the 

messages which is sufficient for CloudKon Task lengths. In 

order to send tasks via SQS we need to use an efficient 

serialization protocol with low processing overhead. We 

use Google Protocol Buffer for this reason. The task saves 

the system log during the process while passing different 

components. Thus we can have a complete understanding 

of the different components using the detailed logs. 

The main components of the CloudKon for running MTC 

jobs are Client, Worker, Global Request Queue and the 

Client Response Queues. The system also has a Dynamic 

Provisioner to handle the resource management and a 

Monitoring System to monitor the system utilization. 

The client component is independent of other parts of the 

system. It can start running and submitting tasks without 

the need to register itself into the system. Having the 

Global Request Queue address is sufficient for a client 

component to join the system. The client program is 

multithreaded. The number of threads can be configured by 



the user or also be made dynamic depending on the number 

of cores in the system on which the client is running. So it 

can submit tasks in parallel. Before sending any tasks, the 

client creates a response queue for itself. All of the 

submitted tasks carry the address of its Client Response 

Queue. The client has also the ability to use task bundling 

to reduce the communication overhead. The client has one 

more level threading, created by client workers which is 

used only when it pulls the results back from its response 

queue. While pulling back results from the response queue 

the client workers pulls a message bundle and creates task 

threads that does the actual work. So that the client worker 

need not wait until all the messages in the bundle are 

deleted from the queue and stored in the list. The task 

thread takes this responsibility. Task threads contribute a 

lot to the increase in the throughput and decrease in latency 

and high concurrency. The task threads run in Maximum 

Concurrency Mode. 

 
Figure 1.CloudKon Reloaded Architecture 

Similar to the Client component, the Worker component 

runs independently in the system. Having the Global 

request queue, the Workers can join and leave the system 

any time during the execution. The Global Request Queue 

acts as a big pool of tasks. Clients can submit their tasks to 

this queue and Workers can pull tasks from it. Using this 

approach, the scalability of the system is only dependent on 

the scalability of the Global Request Queue and it will not 

put extra load on workers on larger scales. Worker code is 

also multithreaded and is able to receive multiple tasks in 

parallel. The number of threads can be configured by the 

user or also be made dynamic, depending on the number of 

cores in the system on which the client is running. So it can 

submit tasks in parallel. Each thread can pull up to 10 

bundled tasks together. Again, this feature is enabled to 

reduce the large communication overhead. After pulling a 

bundle of tasks from Global Request Queue the worker 

thread creates task threads that does the actual work.It 

deletes the task from the global queue and checks with the 

DyanamoDB for duplication  and  then execute the actual 

task and writes the result to the client specific array in the 

buffer. The task threads run in Optimal Concurrency Mode. 

The Send Response Thread sleeps and periodically empties 

the buffer and sends all the results to the corresponding 

Client Response Queue in bundles. Thus reduces the 

network overhead and also utilizes the network bandwidth 

efficiently as results (maximum of 10 at a time) to the same  

client are bundled together and sent at one time. After 

which the Client will be able to pull the results from its 

response queue.  

A. Concurrency 

We increase the level of concurrency on both the server and 

client by adding one more level of threading called Task 

Threads (TT).We also have two modes in which the task 

threads can be made to run: Optimal Concurrency Mode 

and Maximum Concurrency Mode. If the threads don't do 

I/O, synchronization, etc., and does only computation, 1 

thread per core will get you the best performance. On the 

Client side there is going to be no computation so we run 

task threads on the Client side in Maximum Concurrency 

Mode, but on the Server side there is going to be both 

computation and also uses system services. So we run task 

threads on the Server side in Optimal Concurrency Mode 

1. Optimal Concurrency Mode 1: Figure 2 shows the 

architecture of Optimal Concurrency Mode. In this mode 

we control the number of task threads running 

concurrently. That is we set a limit. The number can be 

configured or also be made dynamic .The optimal number 

of threads is not same for all tasksand is not always 

proportional to the number of cores in the system. We use 

this mode on server side for sleep 0 tasks for our 

benchmarking. 

Figure 2 Optimal Concurrency Model 

2. Maximum Concurrency Mode 2: Figure 3 shows the 

architecture of Optimal Concurrency Mode. In this mode 

we don’t control the number of threads running parallel. 

We just keep on creating threads .This mode can be used 

only with tasks that have more I/O operations and 

dependencies on system services. We use this mode on 

client side for sleep 0 tasks for our benchmarking. As there 



is no computation on the client side, we achieve very high 

utilization. 

In this section we evaluate the performance of the 

CloudKon. We evaluate the performance on different 

metrics such as throughput, efficiency, consistency, 

utilization, latency.  We compare CloudKon performance 

with two other distributed job management systems as well. 

Table 1 shows one of the experiments we ran to compare 

the Maximum Concurrency Mode and Optimal 

Concurrency Mode. 

 

Figure 3 Maximum Concurrency Mode 

Table 1 Experiments comparing the Maximum Concurrency Mode and 
Optimal Concurrency Mode. 

 

B. Task Execution Consistency Issues 

A major limitation of SQS is that it does not guarantee 

delivering the messages exactly once. It guarantees delivery 

of the message at least once. That means there might be 

duplicate messages delivered to the workers. The existence 

of the duplicate messages comes from the fact that these 

messages are copied to multiple servers in order to provide 

high availability and increase the ability of parallel access. 

We need to provide a technique to prevent running the 

duplicate tasks delivered by SQS. In many types of 

workloads running a task more than once is not acceptable. 

In order to be compatible for these types of applications 

CloudKon needs to guarantee the exactly once execution of 

the tasks.  

In order to be able to verify the duplication we use 

DynamoDB. DynamoDB is a fast and scalable key-value 

store. After receiving a task, the worker thread verifies that 

if this is the first time that the task is going to run. The 

worker thread makes a conditional write to the DynamoDB 

table adding the unique identifier of the task which is a 

combination of the Task ID and the Client ID. The 

operation succeeds if the Identifier has not been written 

before. Otherwise the service throws an exception to the 

worker and the worker drops the duplicate task without 

running it. This operation is an atomic operation. Using this 

technique we have minimized the number of 

communications between the worker and DynamoDB. 

As we mentioned above, exactly once delivery is necessary 

for many type of applications such as scientific 

applications. But there are some applications that have 

more relaxed consistency requirements and can still 

function without this requirement. Our program has ability 

to disable this feature for these applications to reduce the 

latency and increase the total performance. We will study 

the overhead of this feature on the total performance of the 

system in the evaluation section. 

C. Dynamic Provisioning 

One of the main goals in the public cloud environment is 

the cost-effectiveness. The affordable cost of the resources 

is one of the major features of the public cloud to attract 

users. It is very important for a Cloud-enabled system like 

this to keep the costs at the lowest possible rate. In order to 

achieve the cost-effectiveness we have implemented the 

dynamic provisioning system. Dynamic Provision is 

responsible for assigning and launching new workers to the 

system in order to keep up with the incoming workload. 

We first considered using Amazon Cloud Watch for this 

purpose. Amazon CloudWatch provides monitoring for 

AWS cloud resources and the applications customers run 

on AWS. Users can use it to collect and track metrics. The 

problem with using Cloud Watch in our system is that the 

shortest period for updating the state of the SQS is 5 

minutes which makes the implementation slow to respond 

to changes in workloads. This is not acceptable for our 

application requirements running MTC and HPC tasks. 

We decided to implement our own dynamic provision 

which takes care of launching new worker instances in case 

of resource shortage. The application checks the queue 

length of the global request queue periodically and 

compares the queue length with its previous size. If the 

increase rate is more than the allowed threshold, it launches 

a new worker. As soon as being launched, the worker 

automatically joins the system. Both checking interval and 

the size threshold are configurable by the user. 

In order to use provide a solution for dynamically 

decreasing the system scale to keep the costs low, we have 

added a program to the workers that is able to terminate the 



instance if two conditions hold. That only happens if the 

worker goes to the idle state for a while and also if the 

instance is getting close to its lease renewal. The instances 

in Amazon EC2 are charged on hourly basis and will get 

renewed every hour of the user don’t shut them down. This 

mechanism helps our system scale down automatically 

without the need to get any request from a component. 

Using these mechanisms, the system is able to dynamically 

scale up and down. 

D.Monitoring 

Monitoring is useful for many purposes such as utilization 

monitoring and debugging in job management systems. 

CloudKon uses DynamoDB to provide monitoring. There is 

a monitoring thread running on each worker that 

periodically reports utilization of each worker to the key 

value store. The key value store in DynamoDB keeps track 

of all of the workers. The monitoring component reads the 

specific data it needs from the store in a real time fashion. 

Here we have only one monitoring thread per instance 

irrespective of number of worker threads running on the 

instance .So that we could reduce a lot of contention as all 

the monitor threads writes an update to the DynamoDB 

every second. 

E.Implementation Details 

We have implemented all of the CloudKon components in 

Java. Our implementation is multithreaded and has two 

levels of threading in both Client and Worker component 

codes. Many of the features in both of these systems such 

as monitoring,  consistency,  number of threads and the task 

bundling size is configurable as a program input 

argument.Taking advantage of AWS service building 

blocks, our system has a short and simple code base. The 

code base of CloudKon is significantly shorter than other 

common task execution systems like Falkon, Sparrow or 

MATRIX. CloudKon code has about 1000 lines of code, 

while Falkon has 33000+ lines, Sparrow has 24000+ lines 

of code, and MATRIX has 10500++ lines of code. This can 

highlight the potential benefits of the public cloud services. 

We were able to create a fairly complicated and scalable 

system by re-using scalable building blocks in the cloud. 

III. Evaluation 

A. Testbed 

We deployed and ran CloudKon on Amazon EC2 

instances. We have used m1.large instances on Amazon 

EC2. We have run all of our experiments on us.east.1 

datacenter of Amazon. We have scaled the experiments up 

to 1024 nodes. In order to make the experiments efficient, 

client and worker nodes both run on same node. All of the 

instances had Linux Operating Systems. Our framework 

works on any OS that has a JRE 1.7. We have used Bash 

scripting language for calculating throughput, latency, file 

transfer from EC2 instances, Parallel-SSH for parallel 

execution of client and server code on EC2 instances , EC2 

CLI (Command Line Interface) for EC2 instance startup, 

termination, get EC2 IP address, etc, and AWS CLI 

(Command Line Interface) for SQS operations and EC2 

dynamic instance startup in Dynamic Provisioning. 

B. Throughput 

In order to measure the throughput of our system we run 

sleep 0 tasks. There are 2 client threads and 4 worker 

threads running on each instance. Each instance submits 

16000 tasks.  

Figure 4provides the throughput of CloudKon on different 

scales. Each instance submits 16000 tasks aggregating to 

16.38 million tasks on the largest scale. CloudKon achieves 

almost linear throughput starting from 238 tasks per second 

on 1 instance to 119K tasks per second on 1024 instances. 

CloudKon is not done by these instances. Since the job 

management is handled by SQS, the performance of the 

system is mainly dependent of this service. We predict that 

the throughput continue to scale until it reaches the SQS 

performance limits. Due to the budget limitation and AWS 

policies for normal users, we were not able to expand our 

scale more than 1024 instances. 

 
Figure 4 Throughput of CloudKonupto 1024 instances (MTC tasks) 

C. Comparison with Matrix and Sparrow 

We also got oppurtunity  to work on CCGrid 2014 paper, 

where  we published our throughput results. In the process, 

we also got to compare our results with 2 other job 

managements systems: Sparrow and MATRIX. Figure 5 

compares the throughput of CloudKon with Sparrow and 

MATRIX on different scales. Each instance submits 16000 

tasks aggregating to 16.38 million tasks on the largest 

scale. 

The throughput of MATRIX is significantly higher than the 

MATRIX and Sparrow on 1 instances scale. The reason is 

that MATRIX runs locally without adding any scheduling 

or network overhead. But on CloudKon the tasks go 

through the network even if there is one node running on 

the system. The gap between the throughputs of the 



systems gets smaller as the network overhead adds up to 

the other two systems.  

The throughput of MATRIX starts to decrease on larger 

scales. MATRIX schedulers synchronize with each other 

using all to all synchronization method. Having too many 

open TCP connections by workers and schedulers on 256 

instances scale leads MATRIX to crash. We were not able 

to run MATRIX on 256 instances. The network 

performance on EC2 cloud is much lower than then HPC 

clusters.  

Sparrow is the slowest among the three systems in terms of 

throughput. It shows a stable throughput with almost linear 

speedup up to 64 instances. As the number of instances 

increases more than 64, the list of instances to choose from 

for each scheduler on Sparrow increases. Therefore, many 

workers remain idle and the throughput will not increase as 

expected. According to your suggestions we should try 

making some configuration changes in Sparrow to make it 

suitable to run on scales greater than 100. 

 

Figure 5. Throughput of CloudKon, Sparrow and MATRIX (MTC tasks) 

D)  Efficiency: 

We tested the system efficiency in case of homogeneous 

tasks. The homogeneous tasks have a certain task duration 

length. Therefore it is easier distribute them since the 

scheduler assumes it takes the same time to run them. This 

could give us a good feedback about the efficiency of the 

system in case of running different task types with different 

granularity. We can also assess the ability of the system to 

run the very shot length tasks.  

In this section we evaluate the efficiency of CloudKon sub 

second tasks. It is important for sub-second task. Figure 8 

shows the efficiency of 16 and 128 ms tasks on the 

systems. On sleep 16 ms tasks, the efficiency of CloudKon 

is around 40% which is low but is stable as the scale 

increases. That shows that CloudKon achieves a better 

scalability. On sleep 128 ms tasks, the efficiency of 

CloudKon is as high as 88%as shown in Fig. 6. 

 

 
Figure 6. Efficiency of CloudKon running homogenous workloads 

E) Consistency Overhead: 

In this section we evaluate effect of tasks execution 

consistency on CloudKon. Figure 7 shows the system run-

time for sleep 16 ms with the duplication controller enabled 

and disabled. The overhead for other sleep tasks were 

similar to this experiment. So we have only included one of 

the experiments in this paper.   

The results show that the overhead increases with the scale. 

The inconsistency on different scales comes from the fact 

that the number of the duplicate messages on each 

experiment could be different. That results in more random 

system performance of the system on different experiments. 

In general the overhead on scale of less than 10 is less than 

%15. This overhead is mostly for the successful write 

operations on DynamoDB. As the number of instances 

increase, the probability of getting duplicate tasks becomes 

more. Therefore there will be more exceptions. That leads 

to a higher overhead. The overhead on larger scales goes up 

to %35 but it appears  to be stable and not increasing. 

 

Figure 7. Consistency Overhead in CloudKon 

Figure 8 also shows the throughput graph for forCloudKon 

with duplication and without duplication check. Both the 

throughput graphs are linear and increases with scale. The 

difference in gap between the duplication and without 



duplication graph is increasing at lower scales but is 

constant at higher scales.    

 

Figure 8. Throughput plot for Duplication and without Duplication 

F) Utilization: 

This section we evaluate the utilization of the worker 

threads for the intended task. The overall utilization is 

recorded and updated by Monitoring thread in Dynamo DB 

for every sec.  We have evaluated using sleep 100  taskson 

2 scales i.e. 4 and 8 nodes as shown if Fig. 9 and Fig. 10 

respectively. The total no. of worker thread for 4 nodes = 4 

* 4 i.e 16 worker threads. and for 8 nodes = 8 * 4 i.e. 32 

worker threads. 

 
Figure 9. Average Utilization for sleep 100 on  4 node scale 

 

Figure 10. Average Utilization for sleep 100 on  8 node scale 

The average utilization of the number of threads is around 

13-14 threads/sec and 29-30 threads/sec respectively for 4 

and 8 nodes  as inferred  from the Fig. 9 and 10. This shows 

that all the worker threads are effectively utilized   during 

the system execution time. 

G) Latency: 

In order to measure latency accurately, the system has to 

record the request and respond timestamps of each task. 

Figure 11 shows the latency of CloudKon for sleep 0 ms 

scaling from 1 to 1024 instances. Each instance is running 

2 client thread and 4 worker threads and sending 16000 

tasks per instance. The latency of the system at 1 node is 

relatively high showing 3s overhead added by the system. 

But this will be acceptable when the scale increase. The 

latency is not too low because of the response bundling. 

The latency can be further reduced by adjusting the  sleep 

time and bundling size on the server. The fact that the 

latency doesn’t increase more than 5 s while increasing the 

scale from 1 instance to 1024 instance shows that 

CloudKon is stable. The main reason for that is that SQS as 

the task pool is a highly scalable service being backed up 

with multiple servers keeping the service very scalable. 

Therefore scaling up the system by adding threads and 

increasing the number of tasks doesn’t affect the SQS 

performance. The client and worker nodes always handle 

the same number of tasks on different scales. Therefore 

scaling up doesn’t affect the instances 

 

Figure 11. Latency of CloudKonsleep 0 ms tasks 

IV. Related Work  

The job schedulers could be centralized, where a single 

dispatcher manages the job submission, and job execution 

state updates; or hierarchical, where several dispatchers are 

organized in a tree-based topology; or distributed, where 

each computing node maintains its own job execution 

framework. In this section, we study commonly used 

examples of each type and point out their benefits and 

weaknesses compared to CloudKon [15]. 

Condor [3] was implemented to harness the unused CPU 

cycles on workstations for long-running batch jobs. Slurm 

[2] is a resource manager designed for Linux clusters of all 

sizes. It allocates exclusive and/or non-exclusive access to 

resources to users for some duration of time so they can 



perform work, and provides a framework for starting, 

executing, and monitoring work on a set of allocated nodes. 

Portable Batch System (PBS) [5] was originally developed 

at NASA Ames to address the needs of HPC, which is a 

highly configurable product that manages batch and inter-

active jobs, and adds the ability to signal, rerun and alter 

jobs. LSF Batch [20] is the load-sharing and batch-queuing 

component of a set of workload management tools.  

All these systems target as the HPC or HTC applications, 

and lack the granularity of scheduling jobs at finer levels 

making them hard to be applied to the MTC applications. 

What’s more, the centralized dispatcher in these systems 

suffers scalability and reliability issues. In 2007, a light-

weight task execution framework, called Falkon [9] was 

developed. Falkon also has a centralized architecture, and 

although it scaled and performed magnitude orders better 

than the state of the art, its centralized architecture will not 

even scale to petascale systems [8]. A hierarchical 

implementation of Falkon was shown to scale to a petascale 

system in [8], the approach taken by Falkon suffered from 

poor load balancing under failures or unpredictable task 

execution times.  

Although distributed load balancing at extreme scales is 

likely a more scalable and resilient solution, there are many 

challenges that must be addressed (e.g. utilization, 

partitioning). Fully distributed strategies have been 

proposed, including neighborhood averaging scheme 

(ACWN) [21][22][23][24]. In [24], several distributed and 

hierarchical load balancing strategies are studied, such as 

Sender/Receiver Initiated Diffusion (SID/RID), Gradient 

Model (GM) and a Hierarchical Balancing Method (HBM). 

Other hierarchical strategies are explored in [23]. Charm++ 

[25] supports centralized, hierarchical and distributed load 

balancing. In [25], the authors present an automatic 

dynamic hierarchical load balancing method for Charm++, 

which scales up to 16K-cores on a Sun Constellation 

supercomputer for a synthetic benchmark.  

Sparrow is another scheduling system that focuses on 

scheduling very short jobs that complete within hundreds of 

milliseconds [26]. It has a decentralized architecture that 

makes it highly scalable. It also claims to have a good load 

balancing strategy with near optimal performance using a 

randomized sampling approach. It has been used as a 

building block of other systems.    

Work stealing is another approach that has been used at 

small scales successfully in parallel languages such as Cilk 

[27], to load balance threads on shared memory parallel 

machines [28][29][31]. However, the scalability of work 

stealing has not been well explored on modern large-scale 

systems. In particular, concerns exist that the randomized 

nature of work stealing can lead to long idle times and poor 

scalability on large-scale clusters [31]. The largest studies 

to date of work stealing have been at thousands of cores 

scales, showing good to excellent efficiency depending on 

the workloads [31]. 

To our knowledge CloudKon [15] is the only job 

management system along with Slurm++ that is able to 

support distributed HPC scheduling. It is able to run 

workloads of MTC, HPC or even workloads with 

combination those two. Moreover, CloudKon [15] is the 

only distributed task scheduler that is designed and 

optimized to  run on public cloud environment. Slurm++ is 

a distributed job launch prototype, built on top of Slurm 

and ZHT (a distributed key value store) [32][33]. It 

supports job both HPC and MTC workloads. Slurm++ has 

been compared to SLURM up to 500 nodes and has shown 

10X speedup. 

This work aims to leverage existing distributed and scalable 

building blocks to deliver an extremely compact distributed 

task execution framework while maintaining the same level 

of performance as the best of breed systems. Moreover, 

CloudKon [15] is the only distributed task scheduler that is 

designed and optimized to run on public cloud 

environment. CloudKon-Reloaded makes the maximum 

utilization of the processor with high level of concurrency, 

less network overhead and high efficiency. 

V. Conclusion 

We learned a lot of concepts about distributed system from 

this project. We were able to apply many theoretical 

concepts that we had learned in distributed system field. 

We became familiar with the Cloud computing building 

blocks (Amazon EC2, SQS, and DynamoDB) , problems in 

distributed system, multithreading, thread pool in 

java,developing a scalable and efficient code suitable for 

distributed system, debugging a highly distributed and 

multithreaded code,  benchmarking at high scales, shell 

scripting, shell commands. 

It is important for the scheduling system to provide high 

throughput and low latency on the larger scales and add 

minimal overhead to the workflow.Our benchmarking 

results prove that the reloaded Cloudkon is highly scalable 

and provides high throughput, which also proves that the 

scalability of the system is only dependent on the 

scalability of the Global Queue and it will not put extra 

load on workers on larger scales. The comparison of 

CloudKon with other similar systems clearly shows that 

CloudKon was able to outperform other systems like 

Sparrow and MATRIX on scales of 128 instances or more 

in terms of throughput. From the Efficiency plot we can say 

that the code is about 87% efficient and the utilization of 

the system for the intended task is also very high as you can 

see from the utilization plot. 

Future work can be done in many directions . One of the 

works would be to build a similar architecture outside 

cloud with same reliability, scalability and efficiency. With 

help from other systems such as ZHT Distributed Hash 

Table [32] [33] we will implement a SQS like queue in a 

way that can guarantee exactly once delivery. Another 

future direction of this work is to implement a more tightly 

coupled version of CloudKon and test it on supercomputers 



and HPC environments while running HPC jobs in a 

distributed fashion.  
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