

Using Simulation to Explore Distributed Key-Value Stores for Exascale System Services (SC13 Submission)

Ke Wang

Illinois Institute of Technology

kwang22@hawk.iit.edu

Abhishek Kulkarni

Indiana University

adkulkar@cs.indiana.edu

Xiaobing Zhou

Illinois Institute of Technology

xzhou40@hawk.iit.edu

Ioan Raicu

Illinois Institute of Technology

iraicu@cs.iit.edu

Michael Lang

Los Alamos National Laboratory

mlang@lanl.gov

Abstract: Owing to the extreme high rate of component failures at exascale, systemservices will

need to be failure-resistant, adaptive and self-healing. A majority of HPC services are still designed

around a centralized server paradigm and hence are susceptible to scaling issues and single-point-

of- failure. Peer-to-peer services have proved themselves at scale for wide- area internet work-

loads. Distributed key-value stores (KVS) are widely used as a common building block for these

services, but they are not prevalent in system services deployed on high performance computing

systems. In this paper, we simulate a key-value store for various service architectures and examine

the design trade-offs as applied to multiple HPC service workloads in support of an exascale class

system. The simulator is validated against existing distributed KVS-based services. Via simulation,

we demonstrate how the communication intensity of failure, replication, and consistency models af-

fect performance at scale. Finally, real workloads obtained from three representative HPC services

are fed into the simulator to emphasize the general use of KVS.

KVS and HPC services

Services: system booting, system monitoring, hardware or software configuration and manage-

ment, I/O forwarding and run-time systems for programming models and communication libraries

KVS use cases: For resource management, KVS can be used to maintain necessary job and node

status information. For monitoring, KVS can be used to maintain system activity logs. For I/O for-

warding in distributed file systems, KVS can be used to maintain file metadata, including access au-

thority and modification sequences. In job start-up, KVS can be used to disseminate configuration

and initialization data amongst composite tool or application processes, this is under development

for MRNet. Application developers from Sandia National Laboratory are targeting KVS to support lo-

cal check-point restart . Additionally, we have used KVS to implement several real system, such as

a many task computing execution fabric – MATRIXwhere KVS is used for task submission, depend-

ency, and progress information; and the fusion distributed file system, FusionFS, where the KVS is

used in tracking file-system metadata.

KVS taxonomy

 Architecture

csingle csingle with fail over

Ctree

dfc

dchord drandom

Components

Data Model: defines how a service distributes and manages its data.

Network Model: dictates the interconnection topology of a service’s com-

ponents.

Recovery Model: specifies how a service deals with component failures.

Consistency Model: pertains to how rapidly data modifications propa-

gate across the components of a system or, in other words, how coherent

and consistent different views of the same data objects are.

Descrip-

tion

Data Model Network

Model

Failure Model Con-

sistency

Service

KVS Distributed DFC N-way Replica-

tion

Eventual Voldemort

KVS Distributed DFC N-way Replica-

tion

Both Cassandra

KVS Distributed DFC N-way Replica-

tion

String D1HT

KVS Distributed DCHORD N-way Replica-

tion

String Pastry

KVS Distributed DFC Replicas weak ZHT

Simulation

1. Millions of clients , thousands of shared servers

2. each client does a stream of PUTs and GETs.

At simulation start, we model unsynchronized clients by having

each

3. Servers are modeled by two queues: a communication queue

and a processing queue The two queues are processed concur-

rently, however the requests within one queue are processed se-

quentially.

4. Data and Network Models: csing, ctree, dfc, dchod

5. Recovery Model: how a node recovers its state and how it

rejoins the system after a failure. The first replica of a failed server is notified by the external mecha-

nism (EM) Then, it sends all the replicated data (including the data of the recovering server, and oth-

er servers.

6. Consistency Model

Strong Consistency: Ensure only the primary server handles the “put” requests

Eventual Consistency: Using Version clock, ensuring that W+R > N, in which R is the number of rep-

licas that must participate in a successful “get” request, W is the number of replicas that must partic-

ipate in a successful “put” request, and N is the number of replicas.

Validation

dfc vs dchord (basic case)

Replication and Failure Overhead Consistency Overhead Replication Overhead

Real Application Workload
Conclusion

when the client requests dominate the communication (up to

billions at exascale), dfc actually scales very well under mod-

erate MTTF, with different replication and consistency mod-

els, though it is relatively expensive to do a broadcast to up-

date everyone’s membership list when a failure happens;

while dchord scales moderately with less expensive over-

head under failure events. When the communication is domi-

nated by server messages, (due to fail/recover, replication or

consistency) rather than client request messages, then

dchord would have an advantage. Different consistency mod-

els (strong and eventual) have different application domains,

strong consistency is more suitable for running read-intensive

applications, while eventual consistency is preferable for ap-

plications that require high availability and fast response

times

Future Work

extending the simulator to cover more of the taxono-

my, adding network models, and recovery models

such as log based replay. Additionally using the simu-

lator to model other system services and validate

these at small scale then simulate at much larger

scales. This work is guiding the development of a

building block library that can be then used to com-

pose distributed resilient system services for large-

scale systems. We are currently developing a distrib-

uted job launch service using SLURMand ZHT. Other

service building block implementations will be devel-

oped to support csingle, ctree, and dchordwith various

properties from the taxonomy.

References:

[1] I. Stoica, R. Morris, D. Karger,M. Frans Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet applications. SIGCOMM Comput. Commun. Rev., 31(4):149–160, August 2001. ISSN: 0146-4833.

[2] I. Diane, I. Niang, and B. Gueye. A Hierarchical DHT for Fault Tolerant Management in P2P-SIP Networks. In Proceedings of the 2010 IEEE 16th , ICPADS ’10, pages 788–793,Washington, DC, USA, 2010.

[3] I. Raicu, I. T. Foster, P. Beckman. Making a case for distributed file systems at exascale. In Proceedings of the 2011 workshop Large-scale system and application performance, LSAP’11 pages 11–18, San Jose, California, USA 2011

[4] K.Wang, A. Rajendranl, and I. Raicu. "MATRIX: Many-task computing execution fabric at exascale". 2013. Available from http: //datasys.cs.iit.edu/projects/MATRIX/index.html

KVS examples

