
 

Using Simulation to Explore Distributed Key-Value Stores for Exascale System Services (SC13 Submission) 

Ke Wang 

Illinois Institute of Technology 

kwang22@hawk.iit.edu 

Abhishek Kulkarni  

Indiana University 

adkulkar@cs.indiana.edu 

Xiaobing Zhou  

Illinois Institute of Technology 

xzhou40@hawk.iit.edu 

Ioan Raicu 

Illinois Institute of Technology 

iraicu@cs.iit.edu 

Michael Lang 

Los Alamos National Laboratory 

mlang@lanl.gov 

Abstract: Owing to the extreme high rate of component failures at exascale, systemservices will 

need to be failure-resistant, adaptive and self-healing. A majority of HPC services are still designed 

around a centralized server paradigm and hence are susceptible to scaling issues and single-point-

of- failure. Peer-to-peer services have proved themselves at scale for wide- area internet work-

loads. Distributed key-value stores (KVS)  are widely used as a common  building block for these 

services, but they are not prevalent in system services deployed on high performance computing 

systems. In this paper, we simulate a key-value store for various service architectures and examine 

the design trade-offs as applied to multiple HPC service workloads in support of an exascale class 

system. The simulator is validated against existing distributed KVS-based services. Via simulation, 

we demonstrate how the communication intensity of failure, replication, and consistency models af-

fect performance at scale. Finally, real workloads obtained from three representative HPC services 

are fed into the simulator to emphasize the general use of KVS. 

KVS and HPC services 

Services: system booting, system monitoring, hardware or software configuration and manage-

ment, I/O forwarding and run-time systems for programming models and communication libraries 

KVS use cases: For resource management, KVS can be used to maintain necessary job and node 

status information. For monitoring, KVS can be used to maintain system activity logs. For I/O for-

warding in distributed file systems, KVS can be used to maintain file metadata, including access au-

thority and modification sequences. In job start-up, KVS can be used to disseminate configuration 

and initialization data amongst composite tool or application processes, this is under development 

for MRNet. Application developers from Sandia National Laboratory are targeting KVS to support lo-

cal check-point restart . Additionally, we have used KVS to implement several real system, such as 

a many task computing execution fabric – MATRIXwhere KVS is used for task submission, depend-

ency, and progress information; and the fusion distributed file system, FusionFS, where the KVS is 

used in tracking file-system metadata. 

KVS taxonomy 
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Components 

Data Model: defines how a service distributes and manages its data.  

Network Model: dictates the interconnection topology of a service’s com-

ponents.  

Recovery Model: specifies how a service deals with component failures.  

Consistency Model: pertains to how rapidly data modifications propa-

gate across the components of a system or, in other words, how coherent 

and consistent different views of the same data objects are. 

 

Descrip-

tion 

Data Model Network 

Model 

Failure Model Con-

sistency 

Service 

KVS Distributed DFC N-way Replica-

tion 

Eventual Voldemort 

KVS Distributed DFC N-way Replica-

tion 

Both Cassandra 

KVS Distributed DFC N-way Replica-

tion 

String D1HT 

KVS Distributed DCHORD N-way Replica-

tion 

String Pastry 

KVS Distributed DFC Replicas weak ZHT 

Simulation 

1. Millions of clients , thousands of shared servers 

2. each client does a stream of PUTs and GETs. 

At simulation start, we model unsynchronized clients by having 

each 

3. Servers are modeled by two queues: a communication queue 

and a processing queue The two queues are processed concur-

rently, however the requests within one queue are processed se-

quentially. 

4. Data and Network Models: csing, ctree, dfc, dchod 

5. Recovery Model: how a node recovers its state and how it 

rejoins the system after a failure. The first replica of a failed server is notified by the external mecha-

nism (EM) Then, it sends all the replicated data (including the data of the recovering server, and oth-

er servers. 

6. Consistency Model 

Strong Consistency: Ensure only the primary server handles the “put” requests 

Eventual Consistency: Using Version clock, ensuring that W+R > N, in which R is the number of rep-

licas that must participate in a successful “get” request, W is the number of replicas that must partic-

ipate in a successful “put” request, and N is the number of replicas. 
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dfc vs dchord (basic case) 

Replication and Failure Overhead                                       Consistency Overhead Replication Overhead 

Real Application Workload 
Conclusion 

when the client requests dominate the communication (up to 

billions at exascale), dfc actually scales very well under mod-

erate MTTF, with different replication and consistency mod-

els, though it is relatively expensive to do a broadcast to up-

date everyone’s membership list when a failure happens; 

while dchord scales moderately with less expensive over-

head under failure events. When the communication is domi-

nated by server messages, (due to fail/recover, replication or 

consistency) rather than client request messages, then 

dchord would have an advantage. Different consistency mod-

els (strong and eventual) have different application domains, 

strong consistency is more suitable for running read-intensive 

applications, while eventual consistency is preferable for ap-

plications that require high availability and fast response 

times 

Future Work 

extending the simulator to cover more of the taxono-

my, adding network models, and recovery models 

such as log based replay. Additionally using the simu-

lator to model other system services and validate 

these at small scale then simulate at much larger 

scales. This work is guiding the development of a 

building block library that can be then used to com-

pose distributed resilient system services for large-

scale systems. We are currently developing a distrib-

uted job launch service using SLURMand ZHT. Other 

service building block implementations will be devel-

oped to support csingle, ctree, and dchordwith various 

properties from the taxonomy.  
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