
Towards Efficient Many-Task Computing on Accelerators in
High-End Computing Systems

Scott J. Krieder, Benjamin Grimmer, Dustin Shahidehpour, Jeffrey Johnson
Justin M. Wozniak**, Michael Wilde**, Ioan Raicu*

Department of Computer Science - Illinois Institute of Technology, Chicago, IL, USA
*Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA

**Computation Institute – University of Chicago, Chicago, IL, USA Abstract
Current software and hardware limitations prevent
Many-Task Computing (MTC) workloads from
leveraging hardware accelerators boasting Many-
Core Computing architectures. This work aims to
address the programmability gap between MTC and
accelerators, through the innovative CUDA
middleware GeMTC. By working at the warp level,
GeMTC enables heterogeneous task scheduling and
10x number of workers compared to CUDA. In
order to span multiple accelerators across nodes, we
have adopted the Swift parallel programming
system, which can both support fine grained
millisecond tasks and extreme scale supercomputers
at 100K-cores.	

GeMTC

Swift/T

•  Abstract for other Accelerators	

•  Evaluate Real Applications	

•  Improve Current Performance	

Preliminary Results
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Conclusions

Future Work

References
GeMTC - http://datasys.cs.iit.edu/projects/GeMTC/
Swift – http://www.mcs.anl.gov/exm/local/guides/swift.html
CUDA - http://www.nvidia.com/object/cuda_home_new.html

•  Designed GeMTC Framework	

•  Improved Memory Management	

•  Integrated GeMTC + Swift/T	

•  Evaluated Synthetic Benchmarks	

Fig 8: Overview of Swift/T	

•  Implicitly Parallel Scripting Language	

•  Data-flow driven scheduling of parallel

tasks	

•  Distributed executor eliminates

centralized bottlenecks	

•  Optimizing compiler detects errors,

improves efficiency	

•  Scales to 100k cores	

•  Portable to most MPI-based clusters	

•  Syntax similar to C, Java	

Fig 1: Flow of a task in GeMTC	

Fig 2: Worker interaction with Queues	

Fig 7: GK110
Block Diagram	

•  15 SMX	

•  O(100) Warps	

•  O(1000)Cores	

Fig 6: GeMTC + Swift/T 1 to 4 Cray 	

 XK7 K20 Nodes	

Fig 5: GeMTC + Swift/T efficiency	

Fig 3: GeMTC efficiency 1 GPU worker	

 Fig 4: Efficiency 84 Workers	

