Enabling Dynamic Memory Management Support
for MTC on NVIDIA GPUs

Benjamin Grimmer, Scott Krieder, loan Raicu

Dat a S S Dept. of Computer Science ﬁ,//'
y lllinois Institute of Technology ILLINOIS INSTITUTE
Data-Intensive Distrbuted {bgrimmer, skrieder}@hawk.iit.edu, iraicu@cs.iit.edu OF TECHNOLOGY

Systems Laboratory

Overview Sub-Allocator Design

MTC workloads are poorly supported
on current NVIDIA GPUs.

Data Structures Usage: | Allocating Memory: Freeing Memory:

* Aim to meet the dynamic memory . Maintain a circular linked list | ° Uses First Fit. * Read header
management needs of MTC of free memory on GPU . cudaMalloc() if no chunks information
applications on GPUs. - List is ordered by device are large enough. * Find correct list

* Achieve this by allocating GPU address of memory chunk . Writes a header location
memory through CUDA then sub- preceding result * Add to list and coalesce

this memory with
adjacent chunks

allocate it to tasks as needed.

Many-Task Computing

Bridges the gap between High
Performance Computing (HPC) and
High Throughput Computing (HTC)
* Many resources over short time

* Many computational tasks

GPU

* Tasks both dependent or independent e | ey | They

 Tasks workloads are organized as
Directed Acyclic Graphs (DAG) s ‘ |

* Primary Metrics are measured in Fig 1. —Linked list of pointers to chunks of free | Fig. 2 — malloc operation, reducing the size of a
seconds GPU memory waiting to be sub-allocated chunk and writing a header into GPU memory.

: l‘

Proposed Work Sub-Allocator Preliminary Results

This work aims to enable efficient

allocate parameters for each task, to run
efficiently on GPUs.

with free

w
o

230 L

0 10000 20000 30000 40000 0 20000 40000 60000 380000

Number of Mallocs

dyna miIcC memory ma nagement on Cuda Memory Management Benchmark GPU Memory Management Comparison
NVIDIA GPUs by utilizing a sub-allocator B B cuoa 3 M Cuda
between CUDA and the programmer. < 1o wio Free S 120 with free
: : = M CUDA = ﬁ‘ M GEMTC
This work enables ManY'TaSk COmpUtlng < 750 Malloc < 90 malloc w/o
. - - - - with Free A~ free
applications, which need to dynamically 2 S W GEMTC
g oue & 60 malloc
= =
D D
= o
s
I I

o

g
#

Conclusions SR

Fig 3. —CUDA memory management execution
times, non-constant scaling after many mallocs

Number of Mallocs
S —
Improves CUDA’s memory management

Fig. 4 — Sub-Allocator can do memory allocations
and frees in ~14usec (10x faster than CUDA)
for highly dynamic workloads.

* Constant scaling of allocation times after Futu re Work

many calls to malloc.

 8x speedup over CUDA in workloads
with large number of malloc/free pairs.

* 30x speedup over CUDA after 10,000
calls to malloc.

 100x speedup over CUDA after 30,000

calls to malloc.

Improve the worst case time complexity of malloc and free operations. Currently both are O(n),
where n is the number of memory fragments in our list.

 Change data structure from linked list to something providing O(log n) insertion and deletion.

* Evaluate and optimize the sub-allocator on K20 GPUs (currently tested on GTX670)

Evaluate and optimize the sub-allocator for CUDA 5.0 (currently tested on CUDA 4.2)
T

References

GeMTC — http://datasys.cs.iit.edu/projects/GeMTC
NVIDIA - nvidia.com/object/cuda_home_new.html

