

NoVoHT: a Lightweight Dynamic Persistent NoSQL Key/Value Store
Kevin Brandstatter1, Tonglin Li1, Xiaobing Zhou1, Ioan Raicu1,2

1Department of Computer Science, Illinois Institute of Technology, Chicago IL
2Mathematics and Computer Science Division, Argonne National Laboratory, Argonne IL

 With the increased scale of systems in use and the need to quickly store and retrieve information, key/

value stores are becoming an important element in the design of large-scale storage systems. Key/

value stores are well known for their simplistic interfaces, persistent nature, and excellent operational

efficiency – they are also known as NoSQL databases. This paper presents the design and implementa-

tion of a non-volatile hash table (NoVoHT). NoVoHT was designed from the ground up to be light-

weight, fast, and dependency-free. Our goal was to create a fast persistent key/value store that could

be easily integrated and operated in lightweight Linux OS typically found on today’s supercomputers.

We also aimed to develop a system that performed as close as possible to an in-memory hash map, but

with the added benefit of being persistent. We also extended the traditional key/value store interface

(e.g. insert, lookup, remove) to include a novel operation (e.g. append) that has allowed NoVoHT to

efficiently support lock-free concurrent write operations. NoVoHT is also dynamic, supporting live mi-

gration across node boundaries. We have run comparisons at significant scales against some of the

more commonly used key value stores and have shown that NoVoHT can perform similarly or better

than other systems such as Kyoto Cabinet, and BerkeleyDB. We observed up to 165K+ operations per

second, up to 32X better performance than competing systems. We have evaluated NoVoHT with both

traditional mechanical disks (HDD) as well as with solid state disks (SSD), and have deployed NoVoHT

as the persistent back-end of a distributed hash table (ZHT) on an IBM BlueGene/P supercomputer at

up to 32K-cores.

Testbed

 AMD Opteron 6168

 48 Cores

 256 GB Ram

 SUSE Linux OS

Compared projects
 NoVoHT

 KyotoCabinet

 BerkeleyDB

 LevelDB

Experiment

For each Key/Value store, we wrote a program that gener-
ates some number of key value pairs of a pre specified
length. In our tests we used a key length of 48 bytes and
values of 24 bytes. Then our program timed the cost of in-
serting, looking up, and deleting all of the pairs. From that,
we calculated the operation latency.

 Lock-Free: Support for unconventional operation such as append, allow-

ing the efficiently support of lock-free concurrent modification operations

 Dynamic: Support live migration across physical nodes

 Lightweight: Micro-benchmarks delivering over 165K+ operations/second

on single-node deployment up to 32X faster than existing systems

 Persistent: Combines memory mapped

and disk mapped approaches to deliver

both fast data access and high data resil-

ience at the same time

 Real-System: Adopted by ZHT and de-

ployed on IBM BlueGene/P supercom-

puter at 32K-core scales

Crash Recovery: Currently NoVoHT supports recovery from an unexpected
shutdown, however this feature is still in testing and more work needs to be
done to ensure reliability.

Limited Memory Usage: NoVoHT is currently entirely in memory, this means
the memory usage grows with the amount of data. We would like to imple-
ment a mechanism to conserve memory and allow for a memory limit to allow
for larger data sets.

 NoVoHT is a persistent key/value storage system designed for fast access to

data, while ensuring consistency and reliability. It is free from many extra de-

pendencies, which allows it to be easily deployable on specialized systems where

those dependencies may be difficult to satisfy.

 In our tests we were able to maintain constant throughput at larger scales and

sustain a throughput of 100K operations per second, which is more than 10X

over its competition.

 We have successfully deployed NoVoHT as the persistent storage mechanism

in ZHT, a distributed hash table at more than 32K core scales.

 We believe that NoVoHT is a prime solution to fast persistent data access and

0

2

4

6

8

1 0

1 2

1 0 00 0 0 5 0 00 0 0 1 0 00 0 0 0 5 0 00 0 0 0 1 0 00 0 0 00 5 0 00 0 0 00 1 0 00 0 0 00 0

L
a
t
e
n
c
y
 (
u
s
)

O p e r a t io n s

N o V o H T w ith a n d w ith o u t p e r s is te n c e

N o V o H T

N o V o H T (n o n p e rs is te n t)

0

5 0 00 0 0

1 0 00 0 0 0

1 5 00 0 0 0

2 0 00 0 0 0

2 5 00 0 0 0

3 0 00 0 0 0

0 2 0 00 0 0 4 0 00 0 0 6 0 00 0 0 8 0 00 0 0 1 0 00 0 0 0 1 2 00 0 0 0

L
a
t
e
n
c
y
 (
m
il
li
s
e
c
o
n
d
s
)

O p e r a t io n s

A p p e n d L is t s

R e w r it e r e co r d

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

L
a
t
e
n
c
y
 (
m
il
li
s
e
c
o
n
d
s
)

O p e r a t io n s

C o m p a r is o n o f K e y / V a lu e s to r e s

K y o to C a b in e t

B e r k e le y D B

N o V o H T

L e v e lD B

u n o r d e r e d _ m a p

By using lists we show that we can achieve a constant
time append operation that is independent of the
number of operations.

NoVoHT maintains lower latency even for larger
scales, whereas many of the alternatives begin
to slow down significantly.

We compared NoVoHT without persistence to
the standard in memory hash table and found
that NoVoHT performs as well if not better than
the standard implementation.

Tonglin Li, Xiaobing Zhou, Kevin Brandstatter, Dong fang Zhao, Ke Wang, Anupam Rajendran, Zhao Zhang, and Ioan Raicu. ZHT: A Light-weight Reliable Persistent Dynamic

Scalable Zero-hop Distributed Hash Table. IEEE IPDPS, Boston, MA, 2013.

KyotoCabinet HashDB http://fallabs.com/kyotocabinet/api/classkyotocabinet_1_1HashDB.html, 2013

Margo Seltzer, Keith Bostic. “Berkeley DB”, http://www.aosabook.org/en/bdb.html, 2013

LevelDB, https://code.google.com/p/leveldb/, 2013

FusionFS: Fusion distributed File System, http://datasys.cs.iit.edu/projects/FusionFS/index.html, 2013

MATRIX http://datasys.cs.iit.edu/projects/MATRIX/index.html, 2013

