
Towards Efficient Many-Task Computing on
Accelerators in High-End Computing Systems

Scott J. Krieder∗, Benjamin Grimmer∗, Dustin Shahidehpour∗, Jeffrey Johnson∗

Justin M. Wozniak†, Michael Wilde†‡, Ioan Raicu∗†
∗Department of Computer Science, Illinois Institute of Technology

†MCS Division, Argonne National Laboratory
‡Computation Institute, University of Chicago

Abstract—Current software and hardware limitations prevent
Many-Task Computing (MTC) workloads from leveraging hard-
ware accelerators boasting Many Core Computing architectures.
This work aims to address the programmability gap between
MTC and accelerators, through the innovative CUDA middle-
ware GeMTC. By working at the warp level, GeMTC enables
heterogeneous task scheduling and 10x number of workers
compared to CUDA. In order to span multiple accelerators
across nodes, we have adopted the Swift parallel programming
system, which can both support fine grained millisecond tasks
and extreme scale supercomputers at 100K-cores.

Keywords-Many-Task Computing, Swift, GPGPU, CUDA

I. INTRODUCTION

This work aims to provide an integration between data-flow
driven parallel programming systems (e.g. Many-Task Com-
puting - MTC) and hardware accelerators [1] (e.g. NVIDIA
GPUs, AMD GPUs, and the Intel MIC). MTC aims to bridge
the gap between two computing paradigms, high throughput
computing (HTC) and high-performance computing (HPC).
MTC emphasizes using many computing resources over short
periods of time to accomplish many computational tasks
(i.e. including both dependent and independent tasks), where
the primary metrics are measured in seconds.[2] Swift is a
particular implementation of the MTC paradigm, and is a
parallel programming system that has been successfully used
in many large-scale computing applications. [3] The scientific
community has adopted Swift as a great way to increase
productivity in running complex applications via a dataflow
driven programming model, which intrinsically allows implicit
parallelism to be harnessed based on data access patterns and
dependencies. Swift is a parallel programming system that fits
the MTC model, and has been shown to run well on tens of
thousands of nodes with task graphs in the range of hundreds
of thousands of tasks. This work aims to enable Swift to
efficiently use accelerators (such as NVIDIA GPUs and Intel
MIC) to further accelerate a wide range of applications, on a
growing portion of high-end systems.

II. GEMTC

Currently CUDA developers may only have a maximum
of 16 kernels running concurrently, one kernel per streaming
multiprocessor (SM). The problem is that all kernels have to
start and end at the same time, causing extreme inefficiencies

in heterogeneous workloads. By working at the warp level
we trade local memory for concurrency and we are able
to run up to 84 concurrent kernels. [4] This middleware
allow independent kernels (MIMD style) to be launched and
managed on many-core architectures that traditionally only
support SIMD. [5] In Figure 1 Swift/T is calling the GeMTC
API and passing tasks into memory on the device. Warp
workers pick up those tasks, execute with the given parameters
and place results on an outgoing result queue. This execution
model is shown in further detail in Figure 2. Finally, Swift/T
will poll the device return results from the result queue back
to the appropriate task in the swift script. Figure 3 is a
GK110 block diagram as presented by NVIDIA. [6] This
diagram demonstrates how the current generation GPUs have
O(10) Streaming Multiprocessors (SMX), O(100) Warps, and
O(1000) cores.

Fig. 1. Flow of a task through Swift/T and GeMTC.

Fig. 2. Worker interaction with incoming work queue.



Fig. 3. Kepler GK110 full chip block diagram.

III. SWIFT/T

Swift is an implicitly parallel scripting language. By oper-
ating on data-flow driven scheduling of parallel tasks Swift
is capable of extracting parallelism out of an application.
The distributed executor eliminates centralized bottlenecks and
an optimized compiler detects errors ahead of runtime for
improved efficiency. Swift has been shown to scale over 100k
cores and is portable to most MPI-based clusters. Finally, it’s
familiar C/Java like syntax makes it easy for developers to
quickly understand language constructs. The diagram in Figure
4 demonstrates the 4 portions of the Swift stack which contains
(1)A high level Swift Script, (2)A compiler, namely STC,
to generate (3)An intermediate code and (4)Execution of the
intermediate code. The most recent version of Swift, namely
Swift/T, supports function calls.[7] This work also presents a
novel API to allow interaction between GeMTC and Swift/T.
By integrating the GeMTC middleware into the Swift/T stack
Swift is capable of calling C wrapper functions to CUDA
kernels/applications directly.

Fig. 4. Overview of the Swift/T tool chain.

IV. PRELIMINARY RESULTS

In this section we present preliminary results from the in-
tegration of GeMTC and Swift/T. In Figure 5 we demonstrate
the efficiency of Swift/T and GeMTC on 4 Cray XK7 nodes.
Swift/T is launching 50k system wide tasks for which there are
known completion times. Efficiency is set to actual run time
/ expected runtime. Evaluation takes place on 1 to 4 nodes of

Cray XK7 machines with 156 GPU workers (the maximum)
on each NVIDIA K20 GPU. Tasks lasting longer that 400ms
are shown to have good efficiency and at 4-node scale we are
capable of maintaining 4k tasks per second system wide.

Fig. 5. GeMTC + Swift/T efficiency on 4 XK7 nodes.

V. CONCLUSIONS AND FUTURE WORK

In this work we designed and implemented the GeMTC
framework. A sub-allocator provides improved memory man-
agement for dynamic tasks. Integration between GeMTC +
Swift/T provides application support, data-flow parallelism,
and multi-node scalability. Finally, we evaluated synthetic
benchmarks and demonstrated improved performance. Future
work aims to abstract for additional accelerator support, eval-
uate real applications such as the Open Protein Simulator
(OOPS) [8], and improve current framework performance.

REFERENCES

[1] S. J. Krieder and I. Raicu, “An overview of current and future computing
accelerator architectures,” 1st Greater Chicago Area System Research
Workshop Poster Session, 2012.

[2] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K. Iskra, and
B. Clifford, “Toward loosely coupled programming on petascale systems,”
in Proceedings of the 2008 ACM/IEEE conference on Supercomputing.
IEEE Press, 2008, p. 22.

[3] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. Von Laszewski, V. Nefe-
dova, I. Raicu, T. Stef-Praun, and M. Wilde, “Swift: Fast, reliable, loosely
coupled parallel computation,” in Services, 2007 IEEE Congress on.
IEEE, 2007, pp. 199–206.

[4] S. J. Krieder and I. Raicu, “Towards the support for many-task computing
on many-core computing platforms,” Doctoral Showcase, IEEE/ACM
Supercomputing/SC, 2012.

[5] S. J. Krieder, B. Grimmer, and I. Raicu, “Early experiences in running
many-task computing workloads on gpgpus,” XSEDE Poster Session,
2012.

[6] NVIDIA, “Nvidia kepler gk110 architecture whitepaper,”
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-
Architecture-Whitepaper.pdf, 2012.

[7] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk, and
I. T. Foster, “Swift/t: Large-scale application composition via distribut-
edmemory data flow processing,” in Proc. CCGrid, vol. 13.

[8] A. N. Adhikari, J. Peng, M. Wilde, J. Xu, K. F. Freed, and T. R. Sosnick,
“Modeling large regions in proteins: Applications to loops, termini, and
folding,” Protein Science, vol. 21, no. 1, pp. 107–121, 2012.


