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I. INTRODUCTION

Today’s science is generating datasets that are increasing
exponentially in both complexity and volume, making their
analysis, archival, and sharing one of the grand challenges
of the 21st century. Exascale computing, i.e. 10'® FLOPS, is
predicted to emerge by 2019 with current trends. Millions of
nodes and billions of threads of execution, producing similarly
large concurrent data accesses, are expected with the exascale.

Current state-of-the-art yet decades long storage architecture
of high-performance computing (HPC) systems would unlikely
provide the support for the expected level of concurrent data
access. The main critique comes from the topological alloca-
tion of compute and storage resources that are interconnected
as two cliques. Even though the network between compute
and storage has high bandwidth and is sufficient for compute
intensive petascale applications, it would not be adequate for
data-intensive petascale computing or the emerging exascale
computing (regardless if it is compute or data intensive).

We introduce FusionFS, a distributed filesystem particularly
crafted for extreme scale HPC systems. FusionFS leverages
FUSE [1] to work in user space and provides a POSIX
interface, so that neither the OS kernel nor applications
need any changes. Non-Volatile Memory(NVM) has proven
to offer large gains for high-performance I/O-intensive appli-
cations [3], and FusionFS complies with Gordon [4] archi-
tecture by taking local NVM as local storage coexisting with
processors. FusionFS has a completely distributed metadata
management based on an implementation of distributed hash
table (i.e. ZHT [7]) to achieve a scalable metadata throughput.
FusionFS also delivers a scalable high I/O throughput based on
maximizing the data locality in typical read/write data access
patterns.

II. DESIGN AND IMPLEMENTATION

Figure 1 illustrates the allocation of different node types
in a typical supercomputer setup, i.e. IBM BlueGene/P. The
traditional parallel filesystem (e.g. GPFS) is mounted on
the storage nodes. The fact that compute nodes need to
access the remotely connected storage nodes was not an issue
for compute-intensive applications. However this architecture
would seriously jeopardize large scale data-intensive appli-
cations. Burst Buffer [8] alleviates the issue in the sense of

elevating data from storage nodes to I/O nodes as a persistent
cache. This architecture clearly has at least two advantages: (1)
the network latency is improved by reducing the hops from 2
to 1, conceptually; (2) the data concurrency is increased from
0O(100) to O(1K). Nevertheless, Burst Buffer is still a “remote”
storage from the perspective of compute nodes. We propose
that each compute node should actively participate into both
the computation and the data I/O, which is illustrated as the
green layer. This would fully exploit the high speed bandwidth
(e.g. 3D-torus) between compute nodes, and make data locality
explicit for computation.
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Fig. 1.

FusionFS is implemented with C/C++ and Shell scripts,
excluding two third-party libraries: the Google Protocol
Buffers [2] and UDT [5]. The software stack of FusionFS
is shown in Figure 2. Three services (metadata, data transfer,
and provenance) are on top of the stack, that are supported
by FusionFS Core and FusionFS Ultilities interacting with the
kernel FUSE module.
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Fig. 2. FusionFS software stack
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III. EVALUATION

All experiments in this section were conducted on an IBM
BlueGene/P supercomputer Intrepid [6] at Argonne National
Laboratory, unless otherwise mentioned.

For metadata performance, as shown in Figure 3, when
each node creates 10K files in its private directory at 1K-
node scale, FusionFS has nearly two orders of magnitude
higher performance over GPFS. The gap between GPFS and
FusionFS metadata access cost will continue to grow as 8
nodes seem to be enough to saturate the metadata servers of
GPFS.

1,000,000
- —+—FusionFs
g
5 100000 — " GPFS 4
f; PVFS
£
= 10000
m
_E, /
§ 1,000 / —— =
~
P
o
© 100
10 k—
1 2 4 8 16 32 64 128 256 512 1024
Number of Nodes
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For throughput, Figure 4 shows that FusionFS is only
slightly better than GPFS and PVES on a single node. Fu-
sionFS shows linear scalability from 1 to 1K nodes. PVES
shows its limitation on scalability: the throughput starts to drop
down at 1K nodes. Up to 64 nodes, GPFS is flattened because
every 64 compute nodes share one I/O node on Intrepid,
forming a PSET. This is the reason why GPFS does not seem
to scale up to 64 nodes, but does beyond that.
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Fig. 4. Read Throughput (block size 128KB)

We show how real applications perform on FusionFS.
BLAST (the Basic Local Alignment Search Tool) searches
one or more nucleotide or protein sequences against a se-
quence database and calculates similarities. It has been imple-
mented with different parallelized frameworks, e.g. Parallel-
BLAST [9]. We carried out a weak scaling experiment with
ParallelBLAST with 4GB database on every 64-nodes (i.e.
PSET), and increased the database size proportionally to the
number of nodes.

As shown in Figure 5, there is a huge (more than 1 order
of magnitude) performance gap between GPFS and FusionFS
at all scales (except for the trivial 1-node case). FusionFS
has up to 32X speedup (i.e. at 512 nodes), and an average
of 23X improvement between 64-nodes and 1024-nodes. At 1
node scale, we believe the GPFS kernel module to be more
effective in accessing an idle parallel filesystem.
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IV. CONCLUSION AND FUTURE WORK

This work proposes to break the accepted practice of
segregating storage resource from computational resources,
and to leverage the abundance of processing power, bisection
bandwidth, and local I/O commonly found in today’s and
future high-end computing systems. We believe the radical
storage architecture changes proposed by FusionFS will make
future exascale computing more tractable.
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