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ABSTRACT 
ZHT is a zero-hop distributed hash table, which has been tuned 
for the requirements of high-end computing systems. ZHT aims to 
be a building block for future distributed systems. The goals of 
ZHT are delivering high availability, good fault tolerance, high 
throughput, and low latencies, at extreme scales of millions of 
nodes. ZHT has some important properties, such as being light-
weight, dynamically allowing nodes to join and leave, fault 
tolerant through replications, persistent, scalable, and supporting 
unconventional operations such as append. ZHT scaled up to 
32K-cores with latencies of 1.1ms and 18M operations/sec 
throughput on IBM Blue Gene/P supercomputer, and 96 nodes on 
Amazon EC2 cloud with 800ns latency and 1.2M ops/s 
throughput. In previous work we proved ZHT’s excellent 
performance and scalability on supercomputers, and in this work 
we show that it also works great on cloud environment from both 
performance and cost perspective. 
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1. INTRODUCTION 
This work presents a zero-hop distributed hash table (ZHT), 

which has been tuned for the specific requirements of high-end 
computing (e.g. trustworthy/reliable hardware, fast networks, non-
existent “churn”, low latencies, and scientific computing data-
access patterns). ZHT aims to be a building block for future 
distributed systems, with the goal of delivering excellent 
availability, fault tolerance, high throughput, scalability, 
persistence, and low latencies. ZHT has several important features 
making it a better candidate than other distributed hash tables and 
key-value stores, such as being light-weight, dynamically allowing 
nodes join and leave, fault tolerant through replication and by 
handling failures gracefully and efficiently propagating events 
throughout the system, a customizable consistent hashing 
function, supporting persistence for better recoverability in case of 
faults, scalable, and supporting unconventional operations such as 
append (providing lock-free concurrent key/value modifications) 
in addition to insert/lookup/remove. To provide ZHT a persistent 
back end, we also created a fast persistent key-value store that 
could be easily integrated and operated in lightweight Linux OS 
typically found on today’s supercomputers.  

We have evaluated ZHT's performance under a variety of 
systems, ranging from a Linux cluster with 512-cores, to an IBM 
Blue Gene/P supercomputer with 160K-cores. Using micro-
benchmarks, we scaled ZHT up to 32K-cores with latencies of 
only 1.1ms and 18M operations/sec throughput. We compared 
ZHT against two other systems, Cassandra and Memcached and 

found it to offer superior performance for the features and 
portability it supports, at large scales up to 16K-nodes. We also 
conducted experiments on Amazon EC2 cloud to compare ZHT 
against Amazon DynamoDB on up to 96-nodes scale, in both 
performance and economical perspective. 

2. Design and Implementation 
The primary goal of ZHT is to get all the benefits of DHTs, 
namely excellent availability and fault tolerance, but concurrently 
achieve the benefits minimal latencies normally associated with 
idle centralized indexes. The data-structure is kept as simple as 
possible for ease of analysis and efficient implementation.  
The application programming interface (API) of ZHT is kept 
simple and follows similar interfaces for hash tables. The four 
operations ZHT supports are 1. int insert(key, value); 2. value 
lookup(key); 3. int remove(key), and 4. int append(key, value). 
Keys are typically a variable length ASCII text string. Values can 
be complex objects, with varying size, number of elements, and 
types of elements. Integer return values return 0 for a successful 
operation, or a non-zero return code that includes information 
about the error that occurred. 
In static membership, every node at bootstrap time has all 
information about how to contact every other node in ZHT. In a 
dynamic environment, nodes may join (for system performance 
enhancement) and leave (node failure or scheduled maintenance) 
any time, although in HEC systems this “churn” occurs much less 
frequently than in traditional DHTs. ID Space and Membership 
Table are put in a ring-shaped key name space. The node ids in 
ZHT can be randomly distributed throughout the network, or they 
can be closely correlated with the network distance between 
nodes. The correlation can generally be computed from 
information such as MPI rank or IP address. The random 
distribution of the ID space has worked well up to 32K-cores, but 
we will explore a network aware topology in future work. 
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The hash function maps an arbitrarily long string to an index 
value, which can then be used to efficiently retrieve the 
communication address (e.g. host name, IP address, MPI-rank) 
from a membership table (a local in-memory vector). Depending 



on the level of information that is stored (e.g. IP - 4 bytes, name - 
<100 bytes, socket - depends on buffer size), storing the entire 
membership table should consume only a small (less than 1%) 
portion of available memory of each node. On 1K-nodes scale, 
one ZHT instance has a memory footprint of only 10MB (from an 
available 2GB memory), achieving our desired sub 1% memory 
footprint. The memory footprint consists of ZHT server binary in 
memory, entries in hash table, membership table and ZHT server 
side socket connection buffers. Among them, only membership 
table and socket buffers will increase with the scale of nodes. 
Entries in hash table will be flushed to disk finally. But 
membership is very small, it takes 32 bytes per entry (for each 
node), 1million nodes only need 32MB memory. By tuning the 
number of KeyValue pairs that are allowed stay in memory, users 
can achieve the balance between performance and memory 
consumption. 

3. Evaluation 
3.1 Performance and running cost 
We conduct micro benchmark on Amazon EC2 cloud as well to 
compare against Amazon DynamoDB. The EC2 instance type we 
used are m1.medium and cc2.8xlarge, the details are below. 
Since the interference between m1.medium instances, ZHT shows 
mild fluctuation in throughput. On 2cc.8xlarge instances, the 
fluctuation closes to disappear and the throughput close to be 
linear. Although DynamoDB seems to stay with a linear growth, 
the absolute throughput is quite low. Comparing with ZHT, 
DynamoDB was more than 20 times slower at all scales.  
For different EC2 instance types, we tried with various numbers 
of ZHT servers and clients on each instance so as to explore the 
aggregated throughput. In our experiments, on larger instance 
type such 2cc.8xlarge, running multiple ZHT server/client won’t 
influence latency. Thus the aggregated throughput may have a 
linear growth as long as there is still CPU and network bandwidth 
resource. On 96 nodes scale with 2cc.8xlarge instance type, ZHT 
offers 1215.0 K ops/s while DynamoDB failed the test since it 
saturated the capacity. The measured maximum throughput of 
DynamoDB is 11.5K ops/s which is found at 64 node scale. For a 
fair comparison, both DynamoDB and ZHT have 8 clients per 
node. 

 
It’s worth noting that DynamoDB has a maximum throughput 
which is provisioned (namely capacity) by the users. When the 
throughput is beyond provisioned capacity, DyndmoDB will 
saturate and give errors, requests start to fail. 

When discussing cloud, the cost is always a big concern. We 
calculated hourly cost for both ZHT and DynamoDB on different 
scales. Since DynamoDB has a fixed cost, the average cost 

reduces with the client increasing. On 2-node scale DynamoDB 
cost 423 times more than ZHT; on largest scale that DynamoDB 
can support, it still cost 9 times more than ZHT for a same 
throughput. Note the cost for DynamoDB doesn’t include the EC2 
instances for running clients, it will cost even more if include the 
client cost. 

3.2 Latency distribution 
As expected, DynamoDB has much longer latency on all scales. 
On 4-node (32 clients) scale it is 22 times slower than ZHT. In the 
CDF comparison DynamoDB shows that its 90% latencies fall 
into a 20x wider time window than ZHT. When we ran 8 clients 
on 64 nodes, DynamoDB started to give errors which complain 
that we used too much throughput so we can’t continue to run the 
benchmarks on larger scales. The slowest 5% requests latency 
increased by 3 times.  
It is worth noting that DynamoDB latencies don’t vary much with 
the system scales. It seems to show an excellent scalability and a 
better aggregated throughput. However considering that Amazon 
only guarantees the maximum throughput, instead of latency, 
users won’t get faster response when they only use low 
throughput. In other words, DynamoDB with more clients doesn’t 
work as fast as it with fewer clients; instead, with fewer clients it 
works as slow as with many clients. This characteristic prevents 
the users from reaching the provisioned capacity by lowering 
down the latency when they only have fewer clients. 

 

4. Conclusion 
ZHT has shown excellent performance and scalability. It’s been 
used as building blocks of several distributed systems. Beside 
being highly effective on HPC environment, it also shows 
versatility on commercial cloud. ZHT is more than 20 times faster 
than Amazon DynamoDB while costing less than 1/10 of the 
premium (spent on running VMs), which make it a great 
candidate for both a building block of  distributed HPC systems 
and a general-purpose key-value store on cloud. 
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