
I/O Throttling and Coordination for MapReduce

Siyuan Ma, Xian-He Sun, Ioan Raicu

Department of Computer Science

Illinois Institute of Technology

Chicago, IL 60616, USA

{sma9, sun, iraicu}@iit.edu

Abstract— As a leading framework for data intensive computing,

MapReduce has gained enormous popularity in large-scale data

analysis. With the increasing adoption of multi/many core

platform, more and more MapReduce tasks are now running on

the same node and sharing the same storage resources. The

concurrency of tasks raises the issue of I/O stream congestion.

We have observed significant throughput drops and task delays

caused by I/O stream congestion in the MapReduce framework.

In this paper, we propose two techniques to address the I/O

stream congestion in MapReduce tasks. First, I/O stream

throttling is presented to limit the number of concurrent I/O

streams, and avoid throughput drops. Furthermore, to alleviate

the I/O contention among multiple MapReduce jobs, I/O

coordination orders the I/O streams in accordance to job priority.

By exclusively granting I/O resources to streams with higher

priorities, the coordination effectively shortens the average job

completion time. Experimental results from Hadoop confirm that

the proposed techniques improve the average job completion time

by up to 33.74%. In addition, the proposed techniques greatly

accelerate the execution of high priority jobs; thereby, showing it

is capable of fostering QoS in the MapReduce framework.

Keywords- I/O stream; MapReduce; I/O scheduling; throttling;

coordination

I. INTRODUCTION

MapReduce [1] is an emerging programming model for
large data processing, which gained popularity due to its
merits of easy programming, ad-hoc parallel processing, and
fault tolerance. A MapReduce job consists of a group of map
tasks (mapper) and reduce tasks (reducer). One mapper deals
with one fixed-size block. Then, its output is collected and
further processed by a reducer [2]. To scale up a job, one
generally needs to simply add computing resources. There
are two ways to increase the computing capabilities: add
more computing nodes, or add more computing power per
node. The latter is achieved via adopting many-core
processors. The ever-growing concern in energy efficiency
calls for the adoption of many-core systems in data centers
and commercial clouds [3], which signifies the dominance of
many-core platforms in future.

The evolution toward many core systems inevitably

results in resource contention, a major factor which
ultimately enlarges the execution time of applications. I/O
systems, often the bottleneck of data intensive applications,
are a key factor in these slowdowns. Since MapReduce tasks

often start and finish in waves [17], multiple tasks tend to
compete for limited I/O resources even when the total
utilization of the resources is low.

This group competition raises two problems. One is a

throughput drop on mechanical storage like hard disks. To
enhance data locality, MapReduce adopts a large block size;
this causes large sequential I/O streams. When multiple I/O
streams execute on the same node concurrently, it is
observed that the aggregate throughput fluctuates with a
differing number of concurrent streams. These fluctuations
generally cause a drop in total throughput. Another problem
is I/O resource competition between jobs. As shown in
Figure 1, tasks are first scheduled to the nodes holding their
task-related data. For this reason, many jobs may be started
on the same node. Therefore, each job will have to fight for
resources amongst its peers. This competition greatly slows
all the jobs involved. Our experiments show that even in a
single 8 core node, I/O contention can quadruple the average
completion time for map tasks, thereby greatly increasing the
job response time.

Figure 1. I/O Resource Competition among Jobs

By borrowing our experience from parallel file systems,
this study applies I/O scheduling to the MapReduce
Framework in order to improve average job completion time.
The basic idea is that I/O Throttling reduces contention on a
single node and I/O Coordination reduces average job
completion time [12]. Combining the two techniques reduces
the overall job execution time considerably. The solution is

tested out on Hadoop. Experimental testing on popular
MapReduce benchmarks affirms the strength and potential of
our solution in reducing I/O contention related job delay.

The rest of this paper is organized as follows. Section II

provides the motivation of our work. In Section III, we
analyze the influence of our design on job response time.
Meanwhile, Section IV presents the design and
implementation of our I/O throttling and coordination
method. Section V evaluates the experimental results.
Section VI reviews the related work. At the end, Section VII
concludes this study and proposes our future work.

II. MOTIVATION AND SOLUTION

In this section, we first present the two observations
about I/O congestions in MapReduce tasks that motivate our
work. The observations suggest that I/O congestion can
strikingly delay MapReduce job completion. To address this
issue, we present our solution, I/O throttling and I/O
coordination. The relationship of these two techniques is
discussed at the end of the section.

OBSERVATION 1 I/O Throughput Drop

In MapReduce, almost all the non-trivial I/O streams read
or write entire blocks. Benefiting from the large block size,
I/O system is able to serve such streams efficiently.
However, when the system serves multiple streams in
parallel, an aggregate throughput fluctuation is observed.
Figure 2 presents the results of a MapReduce benchmark
tested on HDD (Hard Disk Drive). Each I/O stream in the
benchmark will read or write one block. For read I/O
streams, the increase in concurrent stream leads to a drop of
total throughput.

Figure 2. Throughput Improvement with I/O throttling on TestDFSIO –

read Benchmark

SOLUTION I/O Stream Throttling

In above results, a relationship between the throughput
and the number of concurrent I/O streams is observed. The
throughput drop can be attributed to the mechanical structure
of hard disks. The concurrent I/O streams cause non-
sequential I/O accesses which reduce disk performance.
Therefore, by controlling the number of concurrent I/O
streams, throttling is able to avoid throughput drops caused

by contention. According to the example in Figure 2, I/O
throttling effectively boosts the total throughput up to 60%.

Another reason for using throttling is that a few long

sequential I/O streams create almost all of the I/O in
MapReduce jobs. These streams read or write an entire
MapReduce block. Figure 3 gives statistics of three
benchmarks handling 5 GB data. Since sequential streams
maintain locality, throughput becomes more predictable.

Figure 3. Percentage of Data Processed by Long Sequential I/O Streams

OBSERVATION 2 MapReduce Task Delay

Contention is not rare in multi/many core systems, where
memory, persistent storage, bus and network capacity are
shared by all the cores. The many/multi-core systems
running the MapReduce framework also suffer from the
aforementioned contention. Figure 4 demonstrates such
contention on an eight-core computing node running one
Hadoop Terasort job. The node is equipped with 8G memory
and one 7200RPM SATA hard drive.

In the graph, the red line shapes the change of average

mapper completion time, which parallels the rise of task
concurrency. Since each map task performs sorting upon a
128MB block, each task should take the same amount of
time if there is no contention. The huge map task delay
clearly indicates that contention is present in the system. In
the worst case where 7 cores are in use, the task concurrency
reaches above 6, quadruples the map task length, and
prolongs the Map Phase by 3 times. The Map Phase is the
time period from the start of the first Map task to the end of
the last Map task. The Mapper delay indicates that the
Mapper completion time increases from one core to multiple
cores. In order to focus on the effect of contention, the
Reduce tasks are intentionally neglected due to their
dependency on Map tasks.

Figure 4. One Terasort Job Running upon a Single DataNode with

128MB blocks (HDD)

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

0

20

40

60

80

100

120

1 2 3 4 5 6 7

T
h

ro
u

g
h

p
u

t(
M

B
/S

)

Number of concurrent I/O streams

Percentage of Throughput Difference

Throughput with I/O Throttling

Original Throughput

0.96
0.97
0.98
0.99

1
1.01

TestDFSIO -read TestDFSIO -
write

wordcount terasort

P
e
rc

e
n

ta
g

e

Benchmarks

27.60%
57.14%

121.65%

195.83%

267.48%
310.00%

32.24% 63.16%
133.55%

198.68%
274.34%

328.29%

0

20

40

60

80

100

1 2 3 4 5 6 7 8

T
im

e
(s

)

Number of concurrent tasks

Average Mapper Task Delay Map Phase Completion Delay

Average Mapper Completion Time

Though there are many resources shared among tasks, the
I/O system has the largest contribution to task delay. To
underpin this point, the above test was repeated using a PCI-
E X4 SSD (Solid State Disk). As shown in Figure 5, the
average task completion time fluctuated slightly, hereby
permitting great scalability duo to the removal of the
bottleneck in the I/O system. On the other hand, the task
concurrency suggests low compute resource utilization. This
is because the overhead of MapReduce framework becomes
significant when task execution time is reduced. An increase
of block size could reduce the proportion of framework
overhead within the task length. So, the core utilization could
be improved by setting a larger block size.

Figure 5. One Terasort Job Running upon a Single DataNode with

128MB blocks (SSD)

To further clarify this point, the TestDFSIO benchmark
was used to solely test the I/O degradation brought by
contention. In Figure 6, the benchmark starts a MapReduce
job with little computation but significant I/O in each task.
For the read test, 128MB was initially chosen as the file size
read for a task. In the test, the task shows no obvious
completion time difference as the number of jobs per node is
increased. This is due to the task completing too fast to
maintain enough concurrency. Therefore, a larger file was
chosen. In this test, a similar performance was observed. As
predicted, the higher the concurrency, the longer the task
execution time. Depending on the amount of concurrency
that can be achieved, the write test experiences task delays
up to 267% due to I/O system contention.

Figure 6. TestDFSIO –write benchmark

SOLUTION I/O Stream Coordination

The above observations suggest that by controlling
contention, limiting the number of concurrent I/O streams,
the ability to accelerate certain tasks at the expense of others
is gained. If we can accelerate tasks belonging to one job on
all the nodes, then the response time of the job will be
improved.

Admittedly, I/O Coordination is not useful for systems

dedicated to one job. The reason is the absence of job
contentions. However, a shared environment is a different
story. When multiple jobs are executing concurrently, the
contention can be devastating to execution time. The I/O
system treats tasks from various jobs as "one job", and slows
them equally. As shown in Figure 7, where a task consists of
5 seconds of I/O and 10 seconds of computation, the number
of slots caps is equal to the number of concurrent tasks.
Therefore at most four tasks can be executed simultaneously
on each node. The graph depicts three jobs, A, B, and C,
each has a varying number of tasks, running upon the four
nodes. Due to the sharing of I/O resources, the I/O time for
all tasks is increased by three times and doubles the job
execution time to 30 seconds. In this scenario, all tasks start
at the same time, and I/O operations are performed at the end
of each task.

In the example above, though each task is able to grab a

fair share of I/O resources by default, a general slowdown is
unnecessary. Through I/O stream coordination, we are able
to reduce the task delay caused by contention. By
coordination, tasks with a higher priority can exclusively
access I/O resources before other low priority tasks. In this
case, Job A will first process the I/O resource exclusively,
before releasing it to other jobs. So, the resource competition
only doubles the I/O time of tasks in Job A. Coordination
saves 10 seconds for Job A without delaying the other jobs.
Similarly, B1 saves 5 seconds by blocking tasks of Job C
during its I/O. On average, I/O Coordination reduces the
average job completion time by 1/6.

Relationship of I/O Throttling and I/O Coordination

On one hand, these two techniques work for different
purposes. I/O Throttling tries to avoid throughput drops due
to I/O stream contention; I/O coordination is used to reduce
job delay caused by contention. On the other hand, these two
techniques are complementary. I/O throttling suggests the
number of I/O streams that optimizes system throughput. I/O
coordination enforces orders to select streams by priority. By
combining the two techniques, we are able to:

• Reduce the average job completion time.

• Shorten the response time for high priority jobs.

15.12%
19.38%

22.09% 20.47%
15.50% 17.61%

18.75%

25.78%
30.47% 30.47% 28.91%

44.53%

0

5

10

15

20

25

1 2 3 4 5 6 7 8

T
im

e
(s

)

Number of concurrent tasks

Average Mapper Delay Map Phase Completion Delay

Average Mapper Completion Time

0.00%

51.04%

122.92%

189.84%

247.71%

341.67%

509.82%

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7

T
im

e
 (

s
)

Number of Concurrent Tasks

Average Task Delay Average Task Completion Time

Figure 7. An example of I/O Coordination

III. ANALYSIS ON I/O COORDINATION AND THROTTLING

In this section, we begin by analyzing the components
that determine the job completion time and task completion
time. Next we discuss how I/O coordination and throttling
take effect. Finally, factors and techniques related to the
proposed method are investigated. To begin the analysis, we
define the following terminologies:

a) System state S involves the runtime state, static

resource characteristics, and submitted jobs. It is a shared

variable between all the tasks. Any change on task

scheduling and resource usage policy will yield a different

system state. For convenience, let �� be the system without

resource contention.

b) An uppercase letter is used to represent a job, and a

letter with a number to stand for a task. For instance, A and

B are two jobs, and A1, A2, A3 are tasks of job A.

c) ���, �� is the expected number of concurrent tasks

in job A running on system S.

d) 	
�� is the number of tasks forming job A.

e) �
�
 , �� indicates the completion time of task �
 on

system � ; �����
�, �� is the average completion time of

tasks belonging to job A on system S; �
�, �� represents

the the completion time of job A.

When all terms in one formula refer to the same system,
the system variable is neglected for neatness.

A. Anatomy of MapReduce Job Completion Time

By definition, job A's completion time is

�
�, �� = �����
�, �� × �
��
 �
�,�� (1)

Apparently, the larger the concurrency, the faster the job
will finish. Unfortunately, coordination and throttling has
almost nothing to do with this factor. The task scheduler and
the job structure mostly determine the expected task
concurrency of a job.

The default task scheduler works in a first-come-first-

serve manner, and dedicates the system to at most one job at
any time. Hence if system S has enough resource,

C��, �� = N
�� . While other schedulers may raise the

resource utilization by running multiple jobs simultaneously.

Therefore, C
�, �� is generally smaller than N
��.

Job structure describes the dependency between map and

reduce tasks. The dependencies are caused by the fact that
reduce task can only be launched after certain percentage of
map tasks (e.g. 90%) have completed. In Hadoop,
mapred.reduce.slowstart.completed.maps can be set to adjust
this percentage. When the value is small, more map tasks
and reduce tasks can be launched at the same time, which

implies a larger C
�, ��. Because the execution of reduce
tasks requires the output data from map tasks, if only a few
map tasks have finished, some reducers cannot proceed. The
reducer will still occupy certain amount of resources and
possibly prolonging the average task length. For simplicity,

we assume both the task concurrency and structure of a job
are unchanged in our analysis.

B. Task Completion Time and Stretch Factor

Let's shift our focus onto �����
��. Certainly, we have

�����
�, �� = ∑ � !"#
�$,��$
�
��

The motivation section has showed that the contention on
a single node mostly lies in its local I/O system. This fact
suggests a division of completion time based on I/O.
Therefore, when task j is running without contention,

�������%� can be dissected into two parts, non-I/O and the

I/O parts.

�������% , ��� = �&'&()/+��% , ��� + �)/+
�% , ���

�&'&()/+��%� involves normal computation and network

communication, which is immune to the influence of local

I/O contention. Let ST��% , �� = �//0��1,��
 �//0
�1,�2� stands for the

I/O stretch factor for the task �% running on system � .

Apparently, ST��% , ��� = 1. The above formula simplifies

into

T��% , �� = �&'&()/+��% , �� + �)/+��% , ��� × ��
�% , ��

C. An Example for I/O Coordination

Assume throughput is constant in Figure 7 and job
priorities satisfyPriority
A� > <=>?=>�@
B� > <=>?=>�@
C�.

All tasks then have STB/CDEFG
task� = 4 before coordination.

After coordination, the stretch factor of task A1 − A8 drops
to 2. Furthermore to measure the stretch factor change for
other tasks, the blocked time is considered as part of the I/O

time, hence STB/CDEFG
B1� declines to 3. The stretch factors for

other tasks remain unchanged. Note that if the blocking time

becomes large, STB/CDEFG
task� can exceed its original value.

This phenomenon has three prerequisites:

1) The task scheduler keeps launching high priority tasks
2) The node always has free slots to hold the new task
3) The data used by the new task exists on the current

node. The extra delay is warranted because it allows system
to sacrifice the low priority tasks to accelerate other high
priority tasks.

D. How does I/O Throttling Work

Given I/O throughput is constant and computing slots are
fully utilized, then

size
data accessed�
∑ TB/C�t, SRSTU�D RV �RWX

= size
data accessed�
∑ TB/C
t, SYRRSW�D RV �RWX

SRSTU and SYRRSW stand for the system before and after

coordination. By replacing TB/C with the I/O stretch factor,

then

∑ ���t, �'Z
[� = ∑ ��
t, �\''Z]� (2)

This implies that the total time tasks are blocked for
coordination is equal to the time saved in precedent tasks. In
such cases, I/O coordination cannot decrease the average
task completion time.

I/O throttling works when throughput is not a constant.

The motivation section states that a different number of
concurrent I/O streams may yield different throughput.
Therefore, I/O stream throttling, is necessary to avoid
possible throughput drops by coordination. And by throttling
in extreme contention cases, the increases of throughput can
further reduce the stretch factor for all tasks. With expected
I/O throttling, formula (2) would evolve into

^ ���t, SRSTU� ≥ ^ ���t, SYRRSW`DaSRDDbTVU�

E. How does I/O Coordination Work

The purpose of I/O coordination is to reduce the I/O
stretch factor for tasks of high priority jobs. By cutting down

the stretch factor from ����, �'Z
[� to ��
�, �\''Z]� , the

time saved for a given task is

T�����, �'Z
[� − T
����, �\''Z]�
= �)/+
����, ���
�������, �'Z
[�
− ��
����, �\''Z]��

PF�task, SRSTU, SYRRSW� =
PB/C
task�
STB/CDEFG�task, SRSTU�-STB/CDEFG
task, SYRRSW��

To analyze the acceleration for one job, we introduce

1) I/O portion of the task

<)/+
����� = �)/+
����, ���/�
����, ���

2) Average drop of I/O stretch factor for tasks in job �

∆ST�A, SRSTU, SYRRSW� =
∑
ST�j, SRSTU� − ST
j, SYRRSW��f∈h /N
A�

3) Average task slowdown in job A

SLOWDOWN�A, SRSTU� = TDEFG
A, S��/TDEFG
A, SRSTU�

Assume all tasks in job � have the same amount of I/O

�)/+
�, ��� ≡ �)/+
����, ��� and the same proportion of

I/O PB/C
A� ≡ PB/C
task� . Since task concurrency and

structure of a job won’t be changed by above assumptions,
coordination would reduce the average task execution time
by the following percentage:

PF�A, SRSTU, SYRRSW� = ∑
n�f,opqrs�(n
f,otppqu��v∈w
�xyz{
h�×n
h,opqrs� = PB/C
A� ×

∆ST�A, SRSTU, SYRRSW� × SLOWDOWN�A, SRSTU� (3)

According to formula (1), PF�A, SRSTU, SYRRSW� is also the

percentage of time saved for the entire job �.

F. Influential Factors

1) The number of concurrent tasks on each node: Since

MapReduce tasks perform synchronized I/O, the number of

concurrent tasks is the expected upper bound of

�������, �?=>|�.

2) The priority of the job: Tasks in high priority job tend

to have smaller ��
����� after throttling and coordination.

3) The I/O portion of a task measured in a contention

free environment, <)/+
�� : Formula (3) suggests that

<)/+
�� is linear to ���, �'Z
[� − �
�, �\''Z]�. This fact

meets our intuition that the proposed method works under

I/O intensive scenarios.

4) The number of active jobs: When fewer jobs are

active, chances will rise that tasks running upon the same

node belong to the same job. In this case, the coordination

may become less effective due to less contention among

jobs.

5) Storage Hardware: The speed of the storage system

directly affects the I/O portion of any MapReduce task. An

upgrade from a single HDD to RAID or SSD can decrease

the <)/+
�� in proportion to the bandwidth increase.

Furthermore, with the reduction of task completion time, the

task concurrency will also drop accordingly. This was

witnessed in the motivation section. Since the expected I/O

concurrency of a task cannot exceed the task concurrency,

the rise of storage speed will also cause an adverse effect

upon the �������, �?=>|�. Generally speaking, the adoption

of faster storage can reduce the I/O contention; hence

making I/O coordination less effective for MapReduce.

Because the usage of I/O throttling strongly relies on the

characteristics of the storage hardware and non-mechanical

storages like SSD are less sensitive to I/O stream

concurrency than HDD, I/O throttling will be rendered less

useful.

6) CPU Speed: In opposition to the increased speed of

storage, a faster slot (core) will shorten the computation time

in a task, hence increasing the <)/+ . Under intensive

workload, rise of <)/+ will lead to higher �������, �?=>|�.

Therefore, fast computation renders the I/O coordination

more effective by introducing more contention.

7) Block Compression: As stated in [14], block

compression shifts the bottleneck from I/O to CPU. It can

reduce both <)/+
�� and �������, �?=>|� . But it has two

major drawbacks. One is that the compression only works

for compressible data. Another is the computation overhead

it introduces. Therefore, the adoption of block compression

is somewhat limited. Meanwhile, our method works without

such a limitation and it will work along with the block

compression since the technique won't remove all I/O

contention on platforms with increasing number of cores.

8) Network Satuation: the load imbalance and data

transfer between mappers and reducers can saturate the

network bandwidth. In this case, �������, �?=>|� will be

enlarged since the flows of I/O streams are blocked on the

network. Throttling down the number of concurrent I/O

streams can alleviate the situation. In the future work, we

prepare to distinguish local I/O streams and remote I/O

streams to further address this issue.

IV. DESIGN AND IMPLEMENTATION

A. I/O Coordination

As mentioned in the motivation, the coordination grants
MapReduce tasks with higher priority exclusive access to
I/O resources, and blocks accesses from the lower priority
tasks. So, the first work of coordination is to order the I/O
streams. The stream priority is determined by the priority of
corresponding jobs set by the user. For instance, if Job A has
a higher priority than Job B, then the I/O streams of A will
be able to access I/O resources easier than Job B. For jobs
with the same priority, the streams, whose job started
earliest, will have higher priority during coordination.
Therefore, the priority of a stream � can be set as a triple:

priority
��
=
�. �=�������, �. Task. Job. priority, �. Task. Job. startTime �

In reference to Figure 7, each active I/O stream can only
stay at one of three states. These are IDLE (Computation),
BLOCKED, and Being Served (I/O). The work of
coordination includes:

1) Maintain two lists of active I/O streams {�
} and

{�
}, ordered by priority.

2) Guarantee the rule: In either stream list {�
} , if

�=>?=>�@
�
� < �=>?=>�@
�%�, then �% is BLOCKED implies

�
 is BLOCKED.

�. �=������� is false by default. To avoid job

starvation, �. �=������� is set true when the stream has
been BLOCKED for too long.

B. I/O Throttling

Observations of throughput fluctuations motivated the
idea of I/O Throttling. The complexity of real MapReduce
workloads invalidates the throughput control by directly
manipulating the number of streams. As presented in Figure
8, an I/O stream could stall at waiting for data to write, or
waiting for buffers to be empty. In either case, the stream
will enter the IDLE state. The duration of IDLE is normally
short for write streams since programmers tend to let
reducers do less, and mappers do more, because it increases
the scalability.

Figure 8. I/O stream dissection

To perform throttling, the following calculations are
required:

1) For any active stream �
, keep a queue of the lengths

of the last ten time intervals that are depicted in Figure 8.

2) Calculate the average value of the elements in the

queue �
&�
�
�. The throughput contributed by �
 then equals

�
&�
�
�(� × �����. �>��.

C. Algorithm

D. Implementation

Our implementation in Hadoop only involves
modifications to the code of DataNode. As presented in
Figure 9, we mainly deal with three classes, DataXceiver,
BlockSender and BlockReceiver.

Figure 9. Modification in Hadoop

 The DataXceiver contains two methods, readBlock() and
writeBlock(), to read and write a block respectively. The
readBlock method then hinges on a BlockSender instance to
perform the read operation. Finally, calling the sendBlock
method, the BlockSender instance reads the block to an
output stream chunk-by-chunk. The sendBlock method is
basically a loop of sendChunks(). The maximum data

performed by sendChunks() is capped by io.file.buffer.size,
64KB by default.

In our implementation, we perform coordination before

every sendChunks call to determine whether the current task
owns proper priority to make the call, or if it should step
aside for higher priority I/O streams. A similar modification
is made in writeBlock(), which will create a BlockReceiver
instance to perform the write operation.

The coordination procedure itself is a critical section.

Assuming n concurrent streams and m chunks for each
stream, the coordination time complexity is O
n� . Each
stream calls it O
mn� times. Therefore, the total time

overhead is �
�3��. Consider that n is proportional to the
number of cores per node, which is small, thereby the
overhead is linear to the size of data to be accessed.

V. EXPERIMENTS

We conduct our experiments upon a 65-node SUN Fire
Linux based cluster. It involves one head node and 64
computing nodes. All nodes are equipped with Gigabit
Ethernet interconnection. The head node's model is Sun Fire
X4240. It is equipped with dual 2.7 GHz Opteron quad-core
processors, 8GB memory, and 12 500GB 7200RPM SATA
II disk drives configured as RAID5 disk array. The
computing nodes are Sun Fire X2200 servers. Each has dual
2.3GHz Opteron quad-core processors, 8GB memory, and a
250GB 7200RPM SATA hard drive. All 65 nodes are
connected with Gigabit Ethernet, and run Ubuntu 9.04
(Linux kernel 2.6.28.10) operating system.

A. Hadoop Configuration

The implementation is based on Hadoop 0.20.204.0. To
investigate the I/O resource competition among jobs, we
adopt the FAIR scheduler as the task scheduler. The runtime
system has one NameNode and one Secondary NameNode
working on a dedicated node. Each computing node holds
one TaskTracker and one DataNode. Assuming n is the
number of cores available, each experimental workload
launches 4n mappers in order to test with enough load
intensity. Meanwhile to immediately start the reducers once
a mapper finishes, we set the number of reducers in one job

as min
#Computing Nodes, #map tasks� . Since the
throttling and coordination will block some I/O operations
and cause a timeout using the default Hadoop configuration,
we disabled the timeout in our experiments.

TABLE I. BENCHMARK SUMMARY

Benchmark Description I/O Intensity

TestDFSIO Benchmark that tests HDFS throughput Pure I/O

Terasort Benchmark that sorts large set of data High

wordcount Benchmark that counts the occurrences of

any words in a given text file

Low

Figure 10. Terasort Benchmark

B. Experiments Setup

The experiments are performed at three different scales:
8, 16 and 32 nodes. Therefore, each scale setting has 64, 128,
and 256 cores, respectively. Three benchmarks, TestDFSIO,
Terasort and wordcount were used to measure the
performance. In analyzing the experiments, we compare the
results between two sets of experiments. One disables the
coordination and throttling (W.O. TC); the other enables
them (W. TC). Both adopt the same configuration.
Performance metrics include average job completion time,
average task completion time, deviation of task length, and
job completion time distribution. The comparison gives a
positive feedback to the proposed method. In all the
experiments, N�(fR� equals 2 and e is set to 30%.

C. Average Job Response Time

One major purpose of our work is to reduce the average
response time of MapReduce jobs. So we tested our design
with the Terasort benchmark in three different platform
scales. Each of the test sets is solely identifiable by the job
size and the number of jobs. Figure 10 shows that the
improvement on average job response time ranges from
5.43% to 33.74%.

Figure 11. Terasort Test with 128 Jobs of Size 1024M

The smallest improvement comes from the scenario
involving the most jobs. As presented in Figure 11, the I/O
competition from concurrent jobs drastically increases the
execution time of the task. Due to serious contention, the
time saved for one job will immediately cause the delay of
others, and throughput becomes hard to control since jobs are
relatively small compared to their scale. Although the
savings on average job response times are trivial, jobs
submitted earlier in time do suffer much less from delay, and
the distribution of job completion time is flattened. The
largest improvements are witnessed in the case of the 32-
nodes scale. The time savings can be attributed to the
acceleration of reduce tasks, which cut almost one third of
average task completion time. Since reduce tasks in Terasort
involve large amounts of data output, the coordination
becomes most effective when reducers of different jobs are
competing on the same node. Within these tests, I/O
throttling and coordination favors jobs of medium size and
job sets of moderate scale. Jobs of medium size can yield
long execution reducers for better I/O throttling, and a
medium amount of jobs could provide enough competition
for I/O coordination.

Figure 12. TestDFSIO -write running on 16 computing nodes

20.46%

15.98%
18.25%

8.93%

22.07% 23.31%

30.71%

24.99%

5.43%

33.74%

7.33%
5.46%

0

500

1000

1500

2000

2500

1024M 2048M 4096M 8192M 1024M 2048M 4096M 8192M 1024M 2048M 4096M 8192M

32JOBS 16JOBS 8JOBS 4JOBS 64JOBS 32JOBS 16JOBS 8JOBS 128JOBS 64JOBS 32JOBS 16JOBS

8 NODES 8 NODES 8 NODES 8 NODES 16 NODES 16 NODES 16 NODES 16 NODES 32 NODES 32 NODES 32 NODES 32 NODES

A
v

e
ra

g
e

 J
o

b
 R

e
s

p
o

n
s
e

 T
im

e
(s

)

Test Sets

Percentage of Difference W.O. TC W. TC

0

1000

2000

3000

4000

5000

6000

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

J
o

b
 R

e
s
p

o
n

s
e
 T

im
e
(s

)

Jobs Ordered by Submission Time

W.O. TC W. TC 23.71% 24.48%
26.78%

19.91%

0

100

200

300

400

500

600

700

32 JOBS 16 JOBS 8 JOBS 4 JOBS

8 TASKS 16 TASKS 32 TASKS 64 TASKS

512M/TASK 512M/TASK 512M/TASK 512M/TASK

A
v

e
ra

g
e
 J

o
b

 R
e
s
p

o
n

s
e
 T

im
e

(s
)

Test Sets

Percentage of Difference W.O. TC W. TC

Figure 13. Wordcount benchmark with small output

Next we test the benchmark TestDFSIO where

PB/C
task� ≡ 1. In Figure 12, each test set is characterized

by the number of jobs involved, the data size handled by
each mapper (512M) and the number of mappers in each job.
In this case, the proposed optimizations are able to reduce
the average job response time by approximately 20% for the
TestDFSIO benchmark. Due to the decrease in the number of
tasks (512 reduce tasks to 128 map tasks), it shows a smaller
improvement in performance compared to the Terasort
benchmark.

The wordcount benchmark is also tested in all three

scales. The input file is generated by repeatedly duplicating a
70MB dictionary. For this reason, the output of the
wordcount benchmark is quite limited. Due to the low I/O
intensity, especially the low intensity of write operations, I/O
throttling and coordination does not improve average
response time greatly.

Figure 14. Job Response Time Distribution [Test Set:

Benchmark=Terasort; #Nodes = 8; Job Size = 4096M] [smaller Job ID

implies higher priority]

D. Response Time and Job Priority

The scheme of I/O coordination emphasizes high priority
jobs; hence, the response time of each job should reflect its
priority. Figure 14 gives a typical distribution of job response
time after coordination. Since original HDFS has no

preference for tasks from any job, the job completion time

tends to be even when
�
fR��
#%'��

 is large. At the same time, I/O

coordination makes job response time uneven since
prioritized jobs now complete much faster. Consistent with
the example in Figure 14, the acceleration of high priority
jobs is accompanied with delay of low priority jobs. The
total job response time is 20% less after coordination.

VI. RELATED WORK

In this section, the related works are presented in three
categories: task scheduling in MapReduce, contention
handling on multi/many-core systems, and I/O scheduling in
parallel file systems. The discussion compares these works
with our research, and highlights the differences and our
contribution.

A. Task Scheduling in MapReduce

In the MapReduce paradigm, task schedulers have a huge
impact on MapReduce jobs. For this reason, most work
concerning performance and QoS in MapReduce
demonstrate new scheduling algorithms. To fairly share the
resources among jobs, Facebook and Yahoo proposes the
FAIR scheduler [15] and the CAPACITY scheduler
respectively. Noticing the lack of concern for general
metrics, [16] describes an add-on for the FAIR scheduler,
which takes into account standard scheduling metrics like
response time, makespan, stretch and SLAs (Service Level
Agreements). In addition, [17] introduces the LATE
scheduling scheme to launch speculative execution for tasks
that is critical to job completion time. Meanwhile, [18]
presents a task scheduler using estimated job completion
time to enforce QoS.

Although schedulers can directly affect the performance

and QoS of MapReduce jobs, their influence is limited once
the scheduling completes. When a task starts on a computing
slot, no scheduler decision can interrupt its execution.
Furthermore, task schedulers in MapReduce are unaware of
any runtime contention and generally only consider
computing slot and memory usage. Such decisions using

0

200

400

600

800

1000

1200

1024M 2048M 4096M 1024M 2048M 4096M 1024M 2048M 4096M

32 JOBS 16 JOBS 8 JOBS 64 JOBS 32 JOBS 16 JOBS 128 JOBS 64 JOBS 32 JOBS

8 NODES 8 NODES 8 NODES 16 NODES 16 NODES 16 NODES 32 NODES 32 NODES 32 NODES

A
v

e
ra

g
e

 J
o

b
 R

e
s

p
o

n
s

e
 T

im
e

 (
s
)

Test Sets

W.O. TC W. TC

0

100

200

300

400

500

600

700

800

900

J1 J2 J3 J4 J5 J6 J7 J8

J
o

b
 R

e
s

p
o

n
s
e

 T
im

e
(s

)

Jobs Sorted by Priority

W. TC W.O. TC

minimal information help the system scale up, but at the
same time fail to avoid the slowdowns caused by contention.
While speculative execution can save time on slow task by
redundant computing, its effects are not positive in a busy
system, where slowdowns are common and free computing
slots are rare.

To our best knowledge, this is the first work that tried to

improve MapReduce performance from the perspective of
the I/O system. By controlling I/O accesses of MapReduce
tasks, the I/O contention is reduced during the runtime;
thereby, improving the performance and QoS. Since I/O
throttling and coordination are only made after task
scheduling, our research makes a good complement to any
MapReduce task scheduler.

B. Contention Handling on Multi/Many-Core System

The popularity of multi/many-core system has inspired
additional research into the contention issue. [4] and [5]
summarize the contention impact upon multicore system
performance. Its scope covers L2 cache, front-side bus and
memory controllers. In [6], researchers handle the cache
contention with cache partitioning and page coloring. [8]
presents scheduling algorithms to reduce the memory
controller contention and memory bus contention. Moreover,
effort has been made on the integration of MapReduce
framework into many/multi-core systems. [9] describes the
Phoenix, an implementation of MapReduce for shared
memory systems. Another research in [10] depicts a
MapReduce framework on GPUs. In addition, asymmetric
multi-core processors are considered in [11].

In multi/many core system, I/O contention fails to draw

as much attention as cache and memory. One reason is that
the underlying storage stack works well for general I/O
requests. There are memory cache to make write
consecutive, read ahead mechanism to reduce disk accesses,
and optimized arm movement to cut down seeking time.
Also, SSDs render the system insensitive to non-contiguous
I/O streams. More importantly, the complexity of the I/O
system and randomness of I/O requests make performance
hard to predict.

Our research focuses on the I/O contention issue in

multi/many-core systems for two reasons. One is that I/O is
significant in MapReduce tasks and the numbers of cores
determines the number of maximum concurrent MapReduce
tasks. Therefore, the system has many concurrent I/O
streams, which leads to strong I/O contention. Secondly, the
I/O streams are long in MapReduce tasks and long I/O
streams generally make the I/O performance more
predictable. By applying I/O throttling, we are able to limit
the I/O throughput drop caused by contention.

C. I/O Scheduling

With the rising importance of resource sharing
environments like grids and clouds, the QoS in reference to
I/O has drawn numerous research attentions. [19,20] address

this issue with respect to virtualized platform. Solutions in
[21] and [22] adopt deadline-driven strategies to schedule
I/O requests in large batches and [23] applies I/O throttling
to guarantee the interests of resource owners in a Condor-
like system. All these works address QoS of I/O under the
MapReduce file system, while our solution strengthens the
I/O guarantee within the MapReduce framework.

To achieve high throughput in PFS (Parallel File

System), many I/O scheduling techniques have been
proposed to improve server-side I/O efficiency. Techniques
like disk-directed I/O [24], server-directed I/O [26], and
stream-based I/O [25], [27] have optimized either the disk
access or network traffic. Most of them schedule I/O requests
in groups to further exploit spatial locality of data on the
disk. While [12] and [13] address the resource competition
among I/O requests, they schedule I/O requests with inter-
server coordination either to serve requests or in order to
improve the spatial locality.

We noticed similarities between PFS and MapReduce

File System. For this reason, the I/O coordination technique
is applied into MapReduce. The method, complemented with
I/O throttling, improves the average job response time, and
accelerates the execution of high priority jobs.

VII. CONCLUSION AND FUTURE WORK

Due to data locality and the increasing adoption of multi-
core processors, I/O resource contention has become a
common phenomenon in MapReduce applications.
Borrowing some recent results from parallel file systems, we
proposed a combined method that throttles and coordinates
I/O streams to reduce job completion time of MapReduce
applications. Experimental results show that I/O throttling
and coordination can reduce average job response time by up
to 33.74% for I/O intensive applications. Even for less data
intensive applications, the method is able to find its
usefulness in improving the response time of prioritized jobs.
In addition, a detailed analysis is presented to illustrate and
guide the design of the coordination and throttling method.
Our implementation in Hadoop yields a code patch that
reinforces the system when working under heavy I/O load.

One short term future work is to make the design more

effective for cloud environments where multiple MapReduce
clusters run on the same physical machine. [19] presents
work that modifies the VMM scheduler to avoid
performance degradation when hosting multiple MapReduce
clusters. Inspired by their work, migrating our work to the
cloud will need the support of the VMM scheduler. The
reason is that I/O throttling and coordination can only work
knowing all concurrent I/O streams. Another future task is to
extend our method to handle network contention. Although
MapReduce emphasizes the locality by pushing computation
closer to data, it also tries to access remote blocks when free
computing slots are available. This behavior improves the
performance in most cases. However, reduce phases always
consume large amount of network bandwidth. So sharing

network bandwidth among multiple jobs will lead to the
similar contention problem s as those addressed in this paper.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: simplified data processing
on large clusters,” in Proceedings of the 6th conference on

Symposium on Opearting Systems Design & Implementation - Volume
6, Berkeley, CA, USA, 2004, pp. 10–10.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file
system,” in Proceedings of the nineteenth ACM symposium on
Operating systems principles, New York, NY, USA, 2003, pp. 29–43.

[3] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya, “A Taxonomy
and Survey of Energy-Efficient Data Centers and Cloud Computing
Systems,” arXiv:1007.0066, Jul. 2010.

[4] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared
resource contention in multicore processors via scheduling,” in
Proceedings of the fifteenth edition of ASPLOS on Architectural
support for programming languages and operating systems, New
York, NY, USA, 2010, pp. 129–142.

[5] R. Hood et al., “Performance impact of resource contention in
multicore systems,” in 2010 IEEE International Symposium on
Parallel & Distributed Processing (IPDPS), 2010, pp. 1-12.

[6] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm, “RapidMRC:
approximating L2 miss rate curves on commodity systems for online
optimizations,” in Proceeding of the 14th international conference on
Architectural support for programming languages and operating
systems, New York, NY, USA, 2009, pp. 121–132.

[7] X. Zhang, S. Dwarkadas, and K. Shen, “Towards practical page
coloring-based multicore cache management,” in Proceedings of the
4th ACM European conference on Computer systems, New York,
NY, USA, 2009, pp. 89–102.

[8] S. Blagodurov, S. Zhuravlev, and A. Fedorova, “Contention-Aware
Scheduling on Multicore Systems,” ACM Transactions on Computer
Systems, vol. 28, pp. 1-45, Dec. 2010.

[9] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C.
Kozyrakis, “Evaluating MapReduce for multi-core and
multiprocessor systems,” In HPCA ’07: Proceedings of the 13th
International Symposium on High-Performance Computer
Architecture, p. 13--24, 2007.

[10] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: a
MapReduce framework on graphics processors,” in Proceedings of
the 17th international conference on Parallel architectures and
compilation techniques, New York, NY, USA, 2008, pp. 260–269.

[11] M. M. Rafique, B. Rose, A. R. Butt, and D. S. Nikolopoulos,
“Supporting MapReduce on large-scale asymmetric multi-core
clusters,” ACM SIGOPS Operating Systems Review, vol. 43, p. 25,
Apr. 2009.

[12] Huaiming Song, Yanlong Yin, Xian-He Sun, Rajeev Thakur, Sam
Lang. "Server-Side I/O Coordination for Parallel File Systems." In the
Proc. of the ACM/IEEE SuperComputing Conference (SC'11), Nov.
2011.

[13] Xuechen Zhang, K. Davis, and Song Jiang, “IOrchestrator: Improving
the Performance of Multi-node I/O Systems via Inter-Server
Coordination,” in High Performance Computing, Networking,

Storage and Analysis (SC), 2010 International Conference for, 2010,
pp. 1-11.

[14] Y. Chen, A. Ganapathi, and R. H. Katz, “To compress or not to
compress - compute vs. IO tradeoffs for mapreduce energy
efficiency,” 2010, p. 23.

[15] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Job Scheduling for Multi-User MapReduce Clusters,”
EECS Department, University of California, Berkeley, UCB/EECS-
2009-55, Apr. 2009.

[16] J. Wolf et al., “FLEX: A Slot Allocation Scheduling Optimizer for
MapReduce Workloads,” in Middleware 2010, vol. 6452, I. Gupta
and C. Mascolo, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 1-20.

[17] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous
environments,” in Proceedings of the 8th USENIX conference on
Operating systems design and implementation, Berkeley, CA, USA,
2008, pp. 29–42.

[18] J. Polo et al., “Performance-driven task co-scheduling for MapReduce
environments,” in 2010 IEEE Network Operations and Management
Symposium (NOMS), 2010, pp. 373-380.

[19] H. Kang, Y. Chen, J. L. Wong, R. Sion, and J. Wu, “Enhancement of
Xen’s scheduler for MapReduce workloads,” in Proceedings of the
20th international symposium on High performance distributed
computing, New York, NY, USA, 2011, pp. 251–262.

[20] A. Gulati, I. Ahmad, and C. A. Waldspurger, “PARDA: proportional
allocation of resources for distributed storage access,” in Proccedings
of the 7th conference on File and storage technologies, Berkeley, CA,
USA, 2009, pp. 85–98.

[21] A. Povzner, D. Sawyer, and S. Brandt, “Horizon: efficient deadline-
driven disk I/O management for distributed storage systems,” in
Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing, New York, NY, USA, 2010, pp.
1–12.

[22] M. Karlsson, C. Karamanolis, and X. Zhu, “Triage: Performance
differentiation for storage systems using adaptive control,” Trans.
Storage, vol. 1, no. 4, pp. 457–480, Nov. 2005.

[23] K. D. Ryu, J. K. Hollingsworth, and P. J. Keleher, “Efficient network
and I/O throttling for fine-grain cycle stealing,” in Proceedings of the

2001 ACM/IEEE conference on Supercomputing (CDROM), New
York, NY, USA, 2001, pp. 3–3.

[24] D. Kotz, “Disk-directed I/O for MIMD multiprocessors,” ACM
Trans. Comput. Syst., vol. 15, no. 1, pp. 41–74, Feb. 1997.

[25] . I. Ligon, W. B. and R. B. Ross, “Implementation and performance
of a parallel file system for high performance distributed
applications,” in Proceedings of the 5th IEEE International
Symposium on High Performance Distributed Computing,
Washington, DC, USA, 1996, p. 471–.

[26] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett,
“Server-Directed Collective I/O in Panda,” in Supercomputing, 1995.
Proceedings of the IEEE/ACM SC95 Conference, 1995, pp. 57- 57.

[27] R. B. Ross and W. B. L. Iii, “Server-Side Scheduling in Cluster
Parallel I/O Systems,” Calculateurs Parallèles Journal Special Issue
on Parallel I/O for Cluster Computing, 2001.

