
I/O Throttling and Coordination for MapReduce 

Siyuan Ma, Xian-He Sun, Ioan Raicu 

Department of Computer Science 

Illinois Institute of Technology 

Chicago, IL 60616, USA 

{sma9, sun, iraicu}@iit.edu

  

 

 
Abstract— As a leading framework for data intensive computing, 

MapReduce has gained enormous popularity in large-scale data 

analysis. With the increasing adoption of multi/many core 

platform, more and more MapReduce tasks are now running on 

the same node and sharing the same storage resources. The 

concurrency of tasks raises the issue of I/O stream congestion. 

We have observed significant throughput drops and task delays 

caused by I/O stream congestion in the MapReduce framework.  

In this paper, we propose two techniques to address the I/O 

stream congestion in MapReduce tasks. First, I/O stream 

throttling is presented to limit the number of concurrent I/O 

streams, and avoid throughput drops. Furthermore, to alleviate 

the I/O contention among multiple MapReduce jobs, I/O 

coordination orders the I/O streams in accordance to job priority. 

By exclusively granting I/O resources to streams with higher 

priorities, the coordination effectively shortens the average job 

completion time. Experimental results from Hadoop confirm that 

the proposed techniques improve the average job completion time 

by up to 33.74%. In addition, the proposed techniques greatly 

accelerate the execution of high priority jobs; thereby, showing it 

is capable of fostering QoS in the MapReduce framework. 

Keywords- I/O stream; MapReduce; I/O scheduling; throttling; 

coordination 

I.  INTRODUCTION 

MapReduce [1] is an emerging programming model for 
large data processing, which gained popularity due to its 
merits of easy programming, ad-hoc parallel processing, and 
fault tolerance. A MapReduce job consists of a group of map 
tasks (mapper) and reduce tasks (reducer). One mapper deals 
with one fixed-size block. Then, its output is collected and 
further processed by a reducer [2]. To scale up a job, one 
generally needs to simply add computing resources. There 
are two ways to increase the computing capabilities: add 
more computing nodes, or add more computing power per 
node. The latter is achieved via adopting many-core 
processors. The ever-growing concern in energy efficiency 
calls for the adoption of many-core systems in data centers 
and commercial clouds [3], which signifies the dominance of 
many-core platforms in future.  

 
The evolution toward many core systems inevitably 

results in resource contention, a major factor which 
ultimately enlarges the execution time of applications. I/O 
systems, often the bottleneck of data intensive applications, 
are a key factor in these slowdowns. Since MapReduce tasks 

often start and finish in waves [17], multiple tasks tend to 
compete for limited I/O resources even when the total 
utilization of the resources is low.  

 
This group competition raises two problems. One is a 

throughput drop on mechanical storage like hard disks. To 
enhance data locality, MapReduce adopts a large block size; 
this causes large sequential I/O streams. When multiple I/O 
streams execute on the same node concurrently, it is 
observed that the aggregate throughput fluctuates with a 
differing number of concurrent streams. These fluctuations 
generally cause a drop in total throughput. Another problem 
is I/O resource competition between jobs. As shown in 
Figure 1, tasks are first scheduled to the nodes holding their 
task-related data. For this reason, many jobs may be started 
on the same node. Therefore, each job will have to fight for 
resources amongst its peers. This competition greatly slows 
all the jobs involved. Our experiments show that even in a 
single 8 core node, I/O contention can quadruple the average 
completion time for map tasks, thereby greatly increasing the 
job response time. 

 

 

Figure 1.    I/O Resource Competition among Jobs 

By borrowing our experience from parallel file systems, 
this study applies I/O scheduling to the MapReduce 
Framework in order to improve average job completion time.  
The basic idea is that I/O Throttling reduces contention on a 
single node and I/O Coordination reduces average job 
completion time [12]. Combining the two techniques reduces 
the overall job execution time considerably. The solution is 



tested out on Hadoop. Experimental testing on popular 
MapReduce benchmarks affirms the strength and potential of 
our solution in reducing I/O contention related job delay.  

 
The rest of this paper is organized as follows. Section II 

provides the motivation of our work. In Section III, we 
analyze the influence of our design on job response time. 
Meanwhile, Section IV presents the design and 
implementation of our I/O throttling and coordination 
method. Section V evaluates the experimental results. 
Section VI reviews the related work. At the end, Section VII 
concludes this study and proposes our future work. 

II. MOTIVATION AND SOLUTION 

In this section, we first present the two observations 
about I/O congestions in MapReduce tasks that motivate our 
work. The observations suggest that I/O congestion can 
strikingly delay MapReduce job completion. To address this 
issue, we present our solution, I/O throttling and I/O 
coordination. The relationship of these two techniques is 
discussed at the end of the section. 

 

OBSERVATION 1 I/O Throughput Drop  

In MapReduce, almost all the non-trivial I/O streams read 
or write entire blocks. Benefiting from the large block size, 
I/O system is able to serve such streams efficiently. 
However, when the system serves multiple streams in 
parallel, an aggregate throughput fluctuation is observed. 
Figure 2 presents the results of a MapReduce benchmark 
tested on HDD (Hard Disk Drive). Each I/O stream in the 
benchmark will read or write one block. For read I/O 
streams, the increase in concurrent stream leads to a drop of 
total throughput.  

 

 

Figure 2.  Throughput  Improvement with I/O throttling on TestDFSIO –

read Benchmark 

SOLUTION I/O Stream Throttling  

In above results, a relationship between the throughput 
and the number of concurrent I/O streams is observed. The 
throughput drop can be attributed to the mechanical structure 
of hard disks. The concurrent I/O streams cause non-
sequential I/O accesses which reduce disk performance. 
Therefore, by controlling the number of concurrent I/O 
streams, throttling is able to avoid throughput drops caused 

by contention. According to the example in Figure 2, I/O 
throttling effectively boosts the total throughput up to 60%. 

  
Another reason for using throttling is that a few long 

sequential I/O streams create almost all of the I/O in 
MapReduce jobs. These streams read or write an entire 
MapReduce block. Figure 3 gives statistics of three 
benchmarks handling 5 GB data. Since sequential streams 
maintain locality, throughput becomes more predictable.  

 

 

Figure 3.  Percentage of Data Processed by Long Sequential I/O Streams 

OBSERVATION 2 MapReduce Task Delay  

Contention is not rare in multi/many core systems, where 
memory, persistent storage, bus and network capacity are 
shared by all the cores. The many/multi-core systems 
running the MapReduce framework also suffer from the 
aforementioned contention. Figure 4 demonstrates such 
contention on an eight-core computing node running one 
Hadoop Terasort job. The node is equipped with 8G memory 
and one 7200RPM SATA hard drive.  

 
In the graph, the red line shapes the change of average 

mapper completion time, which parallels the rise of task 
concurrency. Since each map task performs sorting upon a 
128MB block, each task should take the same amount of 
time if there is no contention. The huge map task delay 
clearly indicates that contention is present in the system.  In 
the worst case where 7 cores are in use, the task concurrency 
reaches above 6, quadruples the map task length, and 
prolongs the Map Phase by 3 times. The Map Phase is the 
time period from the start of the first Map task to the end of 
the last Map task. The Mapper delay indicates that the 
Mapper completion time increases from one core to multiple 
cores. In order to focus on the effect of contention, the 
Reduce tasks are intentionally neglected due to their 
dependency on Map tasks.  

 

 

Figure 4.  One Terasort Job Running upon a Single DataNode with 

128MB blocks (HDD) 
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Though there are many resources shared among tasks, the 
I/O system has the largest contribution to task delay. To 
underpin this point, the above test was repeated using a PCI-
E X4 SSD (Solid State Disk). As shown in Figure 5, the 
average task completion time fluctuated slightly, hereby 
permitting great scalability duo to the removal of the 
bottleneck in the I/O system. On the other hand, the task 
concurrency suggests low compute resource utilization. This 
is because the overhead of MapReduce framework becomes 
significant when task execution time is reduced. An increase 
of block size could reduce the proportion of framework 
overhead within the task length. So, the core utilization could 
be improved by setting a larger block size.  

 
Figure 5.  One Terasort Job Running upon a Single DataNode with 

128MB blocks (SSD)  

To further clarify this point, the TestDFSIO benchmark 
was used to solely test the I/O degradation brought by 
contention. In Figure 6, the benchmark starts a MapReduce 
job with little computation but significant I/O in each task. 
For the read test, 128MB was initially chosen as the file size 
read for a task. In the test, the task shows no obvious 
completion time difference as the number of jobs per node is 
increased. This is due to the task completing too fast to 
maintain enough concurrency. Therefore, a larger file was 
chosen. In this test, a similar performance was observed. As 
predicted, the higher the concurrency, the longer the task 
execution time. Depending on the amount of concurrency 
that can be achieved, the write test experiences task delays 
up to 267% due to I/O system contention. 

 

 

Figure 6.  TestDFSIO –write benchmark 

SOLUTION I/O Stream Coordination 

The above observations suggest that by controlling 
contention, limiting the number of concurrent I/O streams, 
the ability to accelerate certain tasks at the expense of others 
is gained. If we can accelerate tasks belonging to one job on 
all the nodes, then the response time of the job will be 
improved.   

 
Admittedly, I/O Coordination is not useful for systems 

dedicated to one job. The reason is the absence of job 
contentions. However, a shared environment is a different 
story. When multiple jobs are executing concurrently, the 
contention can be devastating to execution time. The I/O 
system treats tasks from various jobs as "one job", and slows 
them equally. As shown in Figure 7, where a task consists of 
5 seconds of I/O and 10 seconds of computation, the number 
of slots caps is equal to the number of concurrent tasks. 
Therefore at most four tasks can be executed simultaneously 
on each node. The graph depicts three jobs, A, B, and C, 
each has a varying number of tasks, running upon the four 
nodes.  Due to the sharing of I/O resources, the I/O time for 
all tasks is increased by three times and doubles the job 
execution time to 30 seconds. In this scenario, all tasks start 
at the same time, and I/O operations are performed at the end 
of each task.  

 
In the example above, though each task is able to grab a 

fair share of I/O resources by default, a general slowdown is 
unnecessary. Through I/O stream coordination, we are able 
to reduce the task delay caused by contention. By 
coordination, tasks with a higher priority can exclusively 
access I/O resources before other low priority tasks. In this 
case, Job A will first process the I/O resource exclusively, 
before releasing it to other jobs. So, the resource competition 
only doubles the I/O time of tasks in Job A. Coordination 
saves 10 seconds for Job A without delaying the other jobs. 
Similarly, B1 saves 5 seconds by blocking tasks of Job C 
during its I/O. On average, I/O Coordination reduces the 
average job completion time by 1/6.  

 

Relationship of I/O Throttling and I/O Coordination  

On one hand, these two techniques work for different 
purposes. I/O Throttling tries to avoid throughput drops due 
to I/O stream contention; I/O coordination is used to reduce 
job delay caused by contention. On the other hand, these two 
techniques are complementary. I/O throttling suggests the 
number of I/O streams that optimizes system throughput. I/O 
coordination enforces orders to select streams by priority. By 
combining the two techniques, we are able to: 

• Reduce the average job completion time.  

• Shorten the response time for high priority jobs. 
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Figure 7.  An example of I/O Coordination

III. ANALYSIS ON I/O COORDINATION AND THROTTLING 

In this section, we begin by analyzing the components 
that determine the job completion time and task completion 
time. Next we discuss how I/O coordination and throttling 
take effect. Finally, factors and techniques related to the 
proposed method are investigated. To begin the analysis, we 
define the following terminologies: 

 

a) System state S involves the runtime state, static 

resource characteristics, and submitted jobs. It is a shared 

variable between all the tasks. Any change on task 

scheduling and resource usage policy will yield a different 

system state. For convenience, let �� be the system without 

resource contention.  

b) An uppercase letter is used to represent a job, and a 

letter with a number to stand for a task. For instance, A and 

B are two jobs, and A1, A2, A3 are tasks of job A. 

c) ���,  �� is the expected number of concurrent tasks 

in job A running on system S.  

d) 	
�� is the number of tasks forming job A. 

e) �
�
 , �� indicates the completion time of task �
 on 

system � ;  �����
�, ��  is the average completion time of 

tasks belonging to job A on system S; �
�, �� represents 

the the completion time of job A. 
 

When all terms in one formula refer to the same system, 
the system variable is neglected for neatness.  

 

A. Anatomy of MapReduce Job Completion Time  

By definition, job A's completion time is 

�
�, �� =  �����
�, �� × �
��
 �
�,��                         (1) 

Apparently, the larger the concurrency, the faster the job 
will finish. Unfortunately, coordination and throttling has 
almost nothing to do with this factor. The task scheduler and 
the job structure mostly determine the expected task 
concurrency of a job.  

 
The default task scheduler works in a first-come-first-

serve manner, and dedicates the system to at most one job at 
any time. Hence if system S has enough resource, 

C��,  �� = N
�� . While other schedulers may raise the 

resource utilization by running multiple jobs simultaneously. 

Therefore, C
�,  �� is generally smaller than N
��.  
 
Job structure describes the dependency between map and 

reduce tasks. The dependencies are caused by the fact that 
reduce task can only be launched after certain percentage of 
map tasks (e.g. 90%) have completed. In Hadoop, 
mapred.reduce.slowstart.completed.maps can be set to adjust 
this percentage. When the value is small, more map tasks 
and reduce tasks can be launched at the same time, which 

implies a larger C
�,  ��. Because the execution of reduce 
tasks requires the output data from map tasks, if only a few 
map tasks have finished, some reducers cannot proceed. The 
reducer will still occupy certain amount of resources and 
possibly prolonging the average task length. For simplicity, 



we assume both the task concurrency and structure of a job 
are unchanged in our analysis. 

 

B.  Task Completion Time and Stretch Factor 

Let's shift our focus onto �����
��. Certainly, we have 

�����
�, �� = ∑ � !"#
�$,��$
�
��   

The motivation section has showed that the contention on 
a single node mostly lies in its local I/O system.  This fact 
suggests a division of completion time based on I/O. 
Therefore, when task j is running without contention, 

�������%� can be dissected into two parts, non-I/O and the 

I/O parts.  

�������% , ��� =  �&'&()/+��% , ��� +  �)/+
�% , ��� 

  

�&'&()/+��%� involves normal computation and network 

communication, which is immune to the influence of local 

I/O contention. Let ST��% , �� = �//0��1,��
 �//0
�1,�2�  stands for the 

I/O stretch factor for the task �%  running on system � . 

Apparently, ST��% , ��� = 1. The above formula simplifies 

into 

T��% , �� =  �&'&()/+��% , �� +  �)/+��% , ��� ×  ��
�% , �� 

 

C. An Example for I/O Coordination 

Assume throughput is constant in Figure 7 and job 
priorities satisfyPriority
A� > <=>?=>�@
B� > <=>?=>�@
C�. 

All tasks then have STB/CDEFG
task� = 4  before coordination. 

After coordination, the stretch factor of task A1 − A8 drops 
to 2. Furthermore to measure the stretch factor change for 
other tasks, the blocked time is considered as part of the I/O 

time, hence STB/CDEFG
B1� declines to 3. The stretch factors for 

other tasks remain unchanged. Note that if the blocking time 

becomes large, STB/CDEFG
task� can exceed its original value. 

This phenomenon has three prerequisites:  
 
1) The task scheduler keeps launching high priority tasks  
2) The node always has free slots to hold the new task  
3) The data used by the new task exists on the current 

node. The extra delay is warranted because it allows system 
to sacrifice the low priority tasks to accelerate other high 
priority tasks.  

 

D. How does I/O Throttling Work 

Given I/O throughput is constant and computing slots are 
fully utilized, then 

size
data accessed�
∑ TB/C�t, SRSTU�D RV �RWX

=  size
data accessed�
∑ TB/C
t, SYRRSW�D RV �RWX 

 

SRSTU  and SYRRSW  stand for the system before and after 

coordination. By replacing TB/C with the I/O stretch factor, 

then 

∑ ���t, �'Z
[� =  ∑ ��
t, �\''Z]�                   (2) 

This implies that the total time tasks are blocked for 
coordination is equal to the time saved in precedent tasks. In 
such cases, I/O coordination cannot decrease the average 
task completion time.  

 
I/O throttling works when throughput is not a constant. 

The motivation section states that a different number of 
concurrent I/O streams may yield different throughput. 
Therefore, I/O stream throttling, is necessary to avoid 
possible throughput drops by coordination. And by throttling 
in extreme contention cases, the increases of throughput can 
further reduce the stretch factor for all tasks. With expected 
I/O throttling, formula (2) would evolve into 

^ ���t, SRSTU� ≥  ^ ���t, SYRRSW`DaSRDDbTVU�  
 

E. How does I/O Coordination Work  

The purpose of I/O coordination is to reduce the I/O 
stretch factor for tasks of high priority jobs. By cutting down 

the stretch factor from  ����, �'Z
[�  to  ��
�, �\''Z]� , the 

time saved for a given task is  
     

T�����, �'Z
[� − T
����, �\''Z]�
= �)/+
����, ���  
�������, �'Z
[�
− ��
����, �\''Z]�� 

 

PF�task, SRSTU, SYRRSW� =
PB/C
task�
STB/CDEFG�task, SRSTU�-STB/CDEFG
task, SYRRSW�� 

To analyze the acceleration for one job, we introduce  

1) I/O portion of the task  

<)/+
����� =  �)/+
����, ���/�
����, ��� 

2) Average drop of I/O stretch factor for tasks in job � 

∆ST�A, SRSTU,  SYRRSW� =
∑ 
ST�j, SRSTU� − ST
j, SYRRSW��f∈h /N
A�  

3) Average task slowdown in job A 

SLOWDOWN�A, SRSTU� =  TDEFG
A, S��/TDEFG
A, SRSTU�  
 

Assume all tasks in job � have the same amount of I/O 

�)/+
�, ��� ≡ �)/+
����, ���  and the same proportion of 

I/O PB/C
A� ≡ PB/C
task� . Since task concurrency and 

structure of a job won’t be changed by above assumptions, 
coordination would reduce the average task execution time 
by the following percentage: 

PF�A, SRSTU, SYRRSW� = ∑ 
n�f,opqrs�(n
f,otppqu��v∈w
�xyz{
h�×n
h,opqrs� = PB/C
A� ×

∆ST�A, SRSTU,  SYRRSW� × SLOWDOWN�A, SRSTU�              (3) 

According to formula (1), PF�A, SRSTU, SYRRSW� is also the 

percentage of time saved for the entire job �. 
 

F. Influential Factors  

1) The number of concurrent tasks on each node: Since 

MapReduce tasks perform synchronized I/O, the number of 

concurrent tasks is the expected upper bound of 

�������, �?=>|�. 



2) The priority of the job: Tasks in high priority job tend 

to have smaller ��
�����  after throttling and coordination. 

3) The I/O portion of a task measured in a contention 

free environment, <)/+
�� : Formula (3) suggests that  

<)/+
�� is linear to ���, �'Z
[� − �
�, �\''Z]�. This fact 

meets our intuition that the proposed method works under 

I/O intensive scenarios. 

4) The number of active jobs: When fewer jobs are 

active, chances will rise that tasks running upon the same 

node belong to the same job. In this case, the coordination 

may become less effective due to less contention among 

jobs.  

5) Storage Hardware: The speed of the storage system 

directly affects the I/O portion of any MapReduce task. An 

upgrade from a single HDD to RAID or SSD can decrease 

the <)/+
��  in proportion to the bandwidth increase. 

Furthermore, with the reduction of task completion time, the 

task concurrency will also drop accordingly. This was 

witnessed in the motivation section. Since the expected I/O 

concurrency of a task cannot exceed the task concurrency, 

the rise of storage speed will also cause an adverse effect 

upon the �������, �?=>|�. Generally speaking, the adoption 

of faster storage can reduce the I/O contention; hence 

making I/O coordination less effective for MapReduce. 

Because the usage of I/O throttling strongly relies on the 

characteristics of the storage hardware and non-mechanical 

storages like SSD are less sensitive to I/O stream 

concurrency than HDD, I/O throttling will be rendered less 

useful. 

6) CPU Speed: In opposition to the increased speed of 

storage, a faster slot (core) will shorten the computation time 

in a task, hence increasing the <)/+ . Under intensive 

workload, rise of <)/+  will lead to higher �������, �?=>|�. 

Therefore, fast computation renders the I/O coordination 

more effective by introducing more contention.  

7) Block Compression: As stated in [14], block 

compression shifts the bottleneck from I/O to CPU. It can 

reduce both <)/+
��  and �������, �?=>|� . But it has two 

major drawbacks. One is that the compression only works 

for compressible data. Another is the computation overhead 

it introduces. Therefore, the adoption of block compression 

is somewhat limited. Meanwhile, our method works without 

such a limitation and it will work along with the block 

compression since the technique won't remove all I/O 

contention on platforms with increasing number of cores.  

8) Network Satuation: the load imbalance and data 

transfer between mappers and reducers can saturate the 

network bandwidth. In this case, �������, �?=>|�  will be 

enlarged since the flows of I/O streams are blocked on the 

network. Throttling down the number of concurrent I/O 

streams can alleviate the situation. In the future work, we 

prepare to distinguish local I/O streams and remote I/O 

streams to further address this issue. 

IV. DESIGN AND IMPLEMENTATION 

A. I/O Coordination 

As mentioned in the motivation, the coordination grants 
MapReduce tasks with higher priority exclusive access to 
I/O resources, and blocks accesses from the lower priority 
tasks. So, the first work of coordination is to order the I/O 
streams. The stream priority is determined by the priority of 
corresponding jobs set by the user. For instance, if Job A has 
a higher priority than Job B, then the I/O streams of A will 
be able to access I/O resources easier than Job B. For jobs 
with the same priority, the streams, whose job started 
earliest, will have higher priority during coordination. 
Therefore, the priority of a stream � can be set as a triple: 

priority
��  
=  
�. �=�������, �. Task. Job. priority, �. Task. Job. startTime � 
 

In reference to Figure 7, each active I/O stream can only 
stay at one of three states. These are IDLE (Computation), 
BLOCKED, and Being Served (I/O). The work of 
coordination includes: 

1) Maintain two lists of active I/O streams {�
}  and 

{�
}, ordered by priority. 

2) Guarantee the rule: In either stream list {�
} , if 

�=>?=>�@
�
� <  �=>?=>�@
�%�, then �% is BLOCKED implies 

�
 is BLOCKED. 

 
�. �=�������  is false by default. To avoid job 

starvation, �. �=�������  is set true when the stream has 
been BLOCKED for too long. 

 

B. I/O Throttling 

Observations of throughput fluctuations motivated the 
idea of I/O Throttling. The complexity of real MapReduce 
workloads invalidates the throughput control by directly 
manipulating the number of streams. As presented in Figure 
8, an I/O stream could stall at waiting for data to write, or 
waiting for buffers to be empty. In either case, the stream 
will enter the IDLE state. The duration of IDLE is normally 
short for write streams since programmers tend to let 
reducers do less, and mappers do more, because it increases 
the scalability.  

 
Figure 8.  I/O stream dissection 



To perform throttling, the following calculations are 
required: 

1) For any active stream �
, keep a queue of the lengths 

of the last ten time intervals that are depicted in Figure 8. 

2) Calculate the average value of the elements in the 

queue �
&�
�
�. The throughput contributed by �
 then equals 

�
&�
�
�(� × �����. �>��. 

 

C. Algorithm 

 

 

D. Implementation 

Our implementation in Hadoop only involves 
modifications to the code of DataNode. As presented in 
Figure 9, we mainly deal with three classes, DataXceiver, 
BlockSender and BlockReceiver. 

 

Figure 9.  Modification in Hadoop 

 The DataXceiver contains two methods, readBlock() and 
writeBlock(), to read and write a block respectively. The 
readBlock method then hinges on a BlockSender instance to 
perform the read operation. Finally, calling the sendBlock 
method, the BlockSender instance reads the block to an 
output stream chunk-by-chunk. The sendBlock method is 
basically a loop of sendChunks(). The maximum data 

performed by sendChunks() is capped by io.file.buffer.size, 
64KB by default.  

 
In our implementation, we perform coordination before 

every sendChunks call to determine whether the current task 
owns proper priority to make the call, or if it should step 
aside for higher priority I/O streams. A similar modification 
is made in writeBlock(), which will create a BlockReceiver 
instance to perform the write operation.  

 
The coordination procedure itself is a critical section. 

Assuming n  concurrent streams and m  chunks for each 
stream, the coordination time complexity is O
n�  . Each 
stream calls it O
mn�  times. Therefore, the total time 

overhead is �
�3��. Consider that n is proportional to the 
number of cores per node, which is small, thereby the 
overhead is linear to the size of data to be accessed. 

 

V. EXPERIMENTS  

We conduct our experiments upon a 65-node SUN Fire 
Linux based cluster. It involves one head node and 64 
computing nodes. All nodes are equipped with Gigabit 
Ethernet interconnection. The head node's model is Sun Fire 
X4240. It is equipped with dual 2.7 GHz Opteron quad-core 
processors, 8GB memory, and 12 500GB 7200RPM SATA 
II disk drives configured as RAID5 disk array. The 
computing nodes are Sun Fire X2200 servers. Each has dual 
2.3GHz Opteron quad-core processors, 8GB memory, and a 
250GB 7200RPM SATA hard drive. All 65 nodes are 
connected with Gigabit Ethernet, and run Ubuntu 9.04 
(Linux kernel 2.6.28.10) operating system.  

 

A. Hadoop Configuration 

The implementation is based on Hadoop 0.20.204.0. To 
investigate the I/O resource competition among jobs, we 
adopt the FAIR scheduler as the task scheduler. The runtime 
system has one NameNode and one Secondary NameNode 
working on a dedicated node. Each computing node holds 
one TaskTracker and one DataNode. Assuming n is the 
number of cores available, each experimental workload 
launches 4n mappers in order to test with enough load 
intensity. Meanwhile to immediately start the reducers once 
a mapper finishes, we set the number of reducers in one job 

as min 
#Computing Nodes,  #map tasks� . Since the 
throttling and coordination will block some I/O operations 
and cause a timeout using the default Hadoop configuration, 
we disabled the timeout in our experiments. 

TABLE I.  BENCHMARK SUMMARY 

Benchmark Description I/O Intensity 

TestDFSIO Benchmark that tests HDFS throughput Pure I/O  

Terasort Benchmark that sorts large set of data High 

wordcount Benchmark that counts the occurrences of 

any words in a given text file 

Low 



 

 
Figure 10.  Terasort Benchmark

B. Experiments Setup 

The experiments are performed at three different scales: 
8, 16 and 32 nodes. Therefore, each scale setting has 64, 128, 
and 256 cores, respectively. Three benchmarks, TestDFSIO, 
Terasort and wordcount were used to measure the 
performance. In analyzing the experiments, we compare the 
results between two sets of experiments. One disables the 
coordination and throttling (W.O. TC); the other enables 
them (W. TC). Both adopt the same configuration. 
Performance metrics include average job completion time, 
average task completion time, deviation of task length, and 
job completion time distribution. The comparison gives a 
positive feedback to the proposed method. In all the 
experiments,  N�(fR� equals 2 and  e is set to 30%. 

C. Average Job Response Time 

One major purpose of our work is to reduce the average 
response time of MapReduce jobs. So we tested our design 
with the Terasort benchmark in three different platform 
scales. Each of the test sets is solely identifiable by the job 
size and the number of jobs. Figure 10 shows that the 
improvement on average job response time ranges from 
5.43% to 33.74%.  

 

Figure 11.  Terasort Test with 128 Jobs of Size 1024M 

The smallest improvement comes from the scenario 
involving the most jobs. As presented in Figure 11, the I/O 
competition from concurrent jobs drastically increases the 
execution time of the task. Due to serious contention, the 
time saved for one job will immediately cause the delay of 
others, and throughput becomes hard to control since jobs are 
relatively small compared to their scale. Although the 
savings on average job response times are trivial, jobs 
submitted earlier in time do suffer much less from delay, and 
the distribution of job completion time is flattened. The 
largest improvements are witnessed in the case of the 32-
nodes scale.  The time savings can be attributed to the 
acceleration of reduce tasks, which cut almost one third of 
average task completion time. Since reduce tasks in Terasort 
involve large amounts of data output, the coordination 
becomes most effective when reducers of different jobs are 
competing on the same node. Within these tests, I/O 
throttling and coordination favors jobs of medium size and 
job sets of moderate scale. Jobs of medium size can yield 
long execution reducers for better I/O throttling, and a 
medium amount of jobs could provide enough competition 
for I/O coordination.  

 
Figure 12.  TestDFSIO -write running on 16 computing nodes 
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Figure 13.  Wordcount benchmark with small output

 
Next we test the benchmark TestDFSIO where 

PB/C
task� ≡ 1. In Figure 12, each test set is characterized 

by the number of jobs involved, the data size handled by 
each mapper (512M) and the number of mappers in each job. 
In this case, the proposed optimizations are able to reduce 
the average job response time by approximately 20% for the 
TestDFSIO benchmark. Due to the decrease in the number of 
tasks (512 reduce tasks to 128 map tasks), it shows a smaller 
improvement in performance compared to the Terasort 
benchmark. 

 
The wordcount benchmark is also tested in all three 

scales. The input file is generated by repeatedly duplicating a 
70MB dictionary. For this reason, the output of the 
wordcount benchmark is quite limited. Due to the low I/O 
intensity, especially the low intensity of write operations, I/O 
throttling and coordination does not improve average 
response time greatly.  

 

  

Figure 14.  Job Response Time Distribution  [Test Set: 

Benchmark=Terasort; #Nodes = 8; Job Size = 4096M] [smaller Job ID 

implies higher priority] 

D. Response Time and Job Priority 

The scheme of I/O coordination emphasizes high priority 
jobs; hence, the response time of each job should reflect its 
priority. Figure 14 gives a typical distribution of job response 
time after coordination. Since original HDFS has no 

preference for tasks from any job, the job completion time 

tends to be even when 
�
fR��
#%'��

  is large. At the same time, I/O 

coordination makes job response time uneven since 
prioritized jobs now complete much faster. Consistent with 
the example in Figure 14, the acceleration of high priority 
jobs is accompanied with delay of low priority jobs. The 
total job response time is 20% less after coordination. 
 

VI. RELATED WORK  

In this section, the related works are presented in three 
categories: task scheduling in MapReduce, contention 
handling on multi/many-core systems, and I/O scheduling in 
parallel file systems. The discussion compares these works 
with our research, and highlights the differences and our 
contribution.  

 

A. Task Scheduling in MapReduce 

In the MapReduce paradigm, task schedulers have a huge 
impact on MapReduce jobs. For this reason, most work 
concerning performance and QoS in MapReduce 
demonstrate new scheduling algorithms. To fairly share the 
resources among jobs, Facebook and Yahoo proposes the 
FAIR scheduler [15] and the CAPACITY scheduler 
respectively. Noticing the lack of concern for general 
metrics, [16] describes an add-on for the FAIR scheduler, 
which takes into account standard scheduling metrics like 
response time, makespan, stretch and SLAs (Service Level 
Agreements).  In addition, [17] introduces the LATE 
scheduling scheme to launch speculative execution for tasks 
that is critical to job completion time. Meanwhile, [18] 
presents a task scheduler using estimated job completion 
time to enforce QoS. 

 
Although schedulers can directly affect the performance 

and QoS of MapReduce jobs, their influence is limited once 
the scheduling completes. When a task starts on a computing 
slot, no scheduler decision can interrupt its execution. 
Furthermore, task schedulers in MapReduce are unaware of 
any runtime contention and generally only consider 
computing slot and memory usage. Such decisions using 
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minimal information help the system scale up, but at the 
same time fail to avoid the slowdowns caused by contention. 
While speculative execution can save time on slow task by 
redundant computing, its effects are not positive in a busy 
system, where slowdowns are common and free computing 
slots are rare.  

  
To our best knowledge, this is the first work that tried to 

improve MapReduce performance from the perspective of 
the I/O system. By controlling I/O accesses of MapReduce 
tasks, the I/O contention is reduced during the runtime; 
thereby, improving the performance and QoS. Since I/O 
throttling and coordination are only made after task 
scheduling, our research makes a good complement to any 
MapReduce task scheduler.  

 

B. Contention Handling on Multi/Many-Core System 

The popularity of multi/many-core system has inspired 
additional research into the contention issue. [4] and [5] 
summarize the contention impact upon multicore system 
performance. Its scope covers L2 cache, front-side bus and 
memory controllers. In [6], researchers handle the cache 
contention with cache partitioning and page coloring. [8] 
presents scheduling algorithms to reduce the memory 
controller contention and memory bus contention. Moreover, 
effort has been made on the integration of MapReduce 
framework into many/multi-core systems. [9] describes the 
Phoenix, an implementation of MapReduce for shared 
memory systems. Another research in [10] depicts a 
MapReduce framework on GPUs. In addition, asymmetric 
multi-core processors are considered in [11].  

  
In multi/many core system, I/O contention fails to draw 

as much attention as cache and memory. One reason is that 
the underlying storage stack works well for general I/O 
requests. There are memory cache to make write 
consecutive, read ahead mechanism to reduce disk accesses, 
and optimized arm movement to cut down seeking time. 
Also, SSDs render the system insensitive to non-contiguous 
I/O streams. More importantly, the complexity of the I/O 
system and randomness of I/O requests make performance 
hard to predict. 

  
Our research focuses on the I/O contention issue in 

multi/many-core systems for two reasons. One is that I/O is 
significant in MapReduce tasks and the numbers of cores 
determines the number of maximum concurrent MapReduce 
tasks. Therefore, the system has many concurrent I/O 
streams, which leads to strong I/O contention. Secondly, the 
I/O streams are long in MapReduce tasks and long I/O 
streams generally make the I/O performance more 
predictable. By applying I/O throttling, we are able to limit 
the I/O throughput drop caused by contention. 

 

C. I/O Scheduling  

With the rising importance of resource sharing 
environments like grids and clouds, the QoS in reference to 
I/O has drawn numerous research attentions. [19,20] address 

this issue with respect to virtualized platform. Solutions in 
[21] and [22] adopt deadline-driven strategies to schedule 
I/O requests in large batches and [23] applies I/O throttling 
to guarantee the interests of resource owners in a Condor-
like system. All these works address QoS of I/O under the 
MapReduce file system, while our solution strengthens the 
I/O guarantee within the MapReduce framework. 

  
To achieve high throughput in PFS (Parallel File 

System), many I/O scheduling techniques have been 
proposed to improve server-side I/O efficiency. Techniques 
like disk-directed I/O [24], server-directed I/O [26], and 
stream-based I/O [25], [27] have optimized either the disk 
access or network traffic. Most of them schedule I/O requests 
in groups to further exploit spatial locality of data on the 
disk. While [12] and [13] address the resource competition 
among I/O requests, they schedule I/O requests with inter-
server coordination either to serve requests or in order to 
improve the spatial locality.  

  
We noticed similarities between PFS and MapReduce 

File System. For this reason, the I/O coordination technique 
is applied into MapReduce. The method, complemented with 
I/O throttling, improves the average job response time, and 
accelerates the execution of high priority jobs. 

VII.  CONCLUSION AND FUTURE WORK 

Due to data locality and the increasing adoption of multi-
core processors, I/O resource contention has become a 
common phenomenon in MapReduce applications. 
Borrowing some recent results from parallel file systems, we 
proposed a combined method that throttles and coordinates 
I/O streams to reduce job completion time of MapReduce 
applications. Experimental results show that I/O throttling 
and coordination can reduce average job response time by up 
to 33.74% for I/O intensive applications. Even for less data 
intensive applications, the method is able to find its 
usefulness in improving the response time of prioritized jobs. 
In addition, a detailed analysis is presented to illustrate and 
guide the design of the coordination and throttling method. 
Our implementation in Hadoop yields a code patch that 
reinforces the system when working under heavy I/O load.  

 
One short term future work is to make the design more 

effective for cloud environments where multiple MapReduce 
clusters run on the same physical machine. [19] presents 
work that modifies the VMM scheduler to avoid 
performance degradation when hosting multiple MapReduce 
clusters. Inspired by their work, migrating our work to the 
cloud will need the support of the VMM scheduler. The 
reason is that I/O throttling and coordination can only work 
knowing all concurrent I/O streams. Another future task is to 
extend our method to handle network contention. Although 
MapReduce emphasizes the locality by pushing computation 
closer to data, it also tries to access remote blocks when free 
computing slots are available. This behavior improves the 
performance in most cases. However, reduce phases always 
consume large amount of network bandwidth. So sharing 



network bandwidth among multiple jobs will lead to the 
similar contention problem s as those addressed in this paper.  
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