
It is expected that our HEC system will enter exa-scale era in decade, which is one
thousand times of performance as today’s system (tera-scale). At the mean time,
many challenges also have been noticed and pointed out, as the size of HEC system
increased without some dispensable improving on architecture of today’s HEC sys-
tem, the systems could collapse at exascale, due to functionalities would not be able
to complete their duties successfully and down the whole system. One potential prob-
lem is that MTTF(mean time to failure) of a HEC system will decrease linearly as the
system size increase. We will probably have to face the serious situation that our HEC
system might be very un-reliable and no works could be done successfully, due to too
frequent failures. The situation could be worse for HEC with parallel file system, even
armed with checkpointing to guarantee reliability. In this project, we will study and
explore application efficiency toward exa-scale, the results shows that DFS offer a
quite better performance by taking its advantage in stable storage speed. The work of
this project will measure the application efficiency in both parallel and distributed
file system, scale from a small system size to exascale with or without checkpointing,
observe the differences between three different workloads: uniform workload with
only one job running at anytime, uniform workload with ten jobs running concur-
rently at anytime, intrepid system’s 8 month workload from Argonne National Lab.
Exa-scale computing is not yet exist, we were using our Java simulator for our re-
search.

Ioan Raicu,Ian T. Foster, Pete Beckman. “Making a Case for Distributed File Sytems at Exascale”, LSAP’11, June 8, 2011.
E,N. (Mootaz) Elnozahy, et al. “System Resilience at Extreme Scale” Defense Advanced Reserch Project Agency(DARPA), 2007.
V. Sarkar, et al.”Exascale Software Study: Software Challenges in Extreme Scale System”, Exascale Computing Study, DARPA IPTO, 2009.
Workload Log from BG/P at Argonne National Laboratory:
 http://www.cs.huji.ac.il/labs/parallel/workload/l_anl_int/index.html
John Daly. “A Model for Predicting the Optimum Checkpoint Interval for Restart Dumps”, ICCS 2003, LNCS 2660, pp.3-12, 2003.

 AppUptime is time an application spending on valuable computing
 AppDowntime is time an application spending on any things else

Checkpointing is art of the state technic for fault tolerance, guarantees our
system’s reliability, and help to recover from a failure. However, it introduces
additional overhead, consumes an application’s valuable computing time.

Model for op- timal check-

pointing interval: . t is the optimum checkpointing

interval; is checkpointing time; M is system MTTF; R is the job’s restart
time.

Checkpointing works greatly now. However, as our system size grow, system
MTTF decreases linearly, and checkpointing overhead is also increasing.
Once MTTF is becoming so small like hours, even checkpointing might not
longer guarantee our system reliability.

0.001

0.01

0.1

1

10

100

1000

T
im

e
 (

h
o

u
rs

)

Scale (# of nodes)

Distributed File System with
checkpointing

MTTF Check+Interval Check

0.1

1

10

100

1000

T
im

e
 (

h
o

u
rs

)

Scale (# of nodes)

Parallel File System with checkpointing

MTTF

Checkpointing Overhead+Optimal Interval

Checkpointing Overhead

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
p

p
lic

at
io

n
 U

p
ti

m
e

 %

Scale (# of nodes)

FS without Checkpointing PFS with checkpointing DFS with checkpointing

Workload 2:
In multiple jobs run concurrently case, any time, there were ten jobs running, whose size is 1/10 of the system size. In this
workload, we keep walltime for each job to be 7 days.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

T
im

e
 P

e
rc

e
n

ta
g

e
%

Scale (# of nodes)

PFS with checkpointing

Uptime% Check% Boot% Lost%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ti
m

e
 P

e
rc

e
n

ta
ge

%

Scale(# of nodes)

DFS with checkpointing

Uptime% Check% Boot% Lost%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ti
m

e
 P

e
rc

e
n

ta
ge

%

Scale(# of nodes)

FS without checkpointing

Uptime% Boot% Lost%

Workload 3:
The workload is Intrepid’s 8 month log. Intrepid is the 557TF, 40-rack Blue Gene/P system deployed at Argonne leadership Com-
puting Facility (ALCF) at ANL, comprises 40960 quad-core nodes, with 163840 cores, associated I/O nodes, storage servers, and
an I/O network. The log contains Intrepid’s 8 month workload, from Jan 2009 to Sept 2009, includes 68936 jobs. In the experi-
ment, we used allocated number of nodes and real running time as request number of nodes and walltime for each job, which may
be more than a job’s real request. As the system size scale from a small size (1024 nodes) to exa-scale size (2097152 nodes), job
size=(current system size)/(Intrepid system size)×job′ s original size. Walltime of each job isn’t changed.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ti
m

e
 P

e
rc

e
n

ta
ge

%

Scale(# of nodes)

PFS with checkpointing,

Uptime% Check% Boot% Lost%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ti
m

e
 P

e
rc

e
n

ta
ge

 %

Scale(# of nodes)

DFS with checkpointing

Uptime% Check% Boot% Lost%

Da Zhang
Department of Computer Science

Illinois Institute of Technology
dzhang32@hawk.iit.edu

Ioan Raicu
Department of Computer Science, Illinois Institute of Technology

Mathematics and Computer Science Division, Argonne National Laboratory
iraicu@cs.iit.edu

Workload 1:
In the worst case, any time, there was only one big job running, whose size is the same as the system size. In this workload,
we keep walltime for each job to be 7 days.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ti
m

e
Pe

rc
en

ta
ge

%

Scale(# of nodes)

PFS with checkpointing

Uptime% Check% Boot% Lost%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ti
m

e
 P

e
rc

e
n

ta
ge

%

Scale(# of nodes)

DFS with checkpointing

Uptime% Check% Boot% Lost%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ti
m

e
 P

e
rc

e
n

ta
ge

%

Scale(# of nodes)

FS without checkpointing

Uptime% Boot% Lost%

http://www.cs.huji.ac.il/labs/parallel/workload/l_anl_int/index.html

