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1 Introduction

Large datasets are being produced at a very fastipahe astronomy domain. In principle, thesesizts are most
valuable if and only if they are made availablethe entire community, which may have tens to thondsaof
members. The astronomy community will generallyitta perform various analyses on these datasdts &ble to
extract new science and knowledge that will bostify the investment in the original acquisitiontb& datasets as
well as provide a building block for other scietsisnd communities to build upon to further theegahquest for
knowledge.

Grid Computing has emerged as an important nevd fietusing on large-scale resource sharing and-high
performance orientation. The Globus Toolkit, tlie ‘facto standard” in Grid Computing, offers us maé the
needed middleware infrastructure that is requiceckalize large scale distributed systems. Weqgweg to develop

a collection of Web Services-based systems thatguisk computing to federate large computing andagte
resources for dynamic analysis of large dataséts. proposed to build a Globus Toolkit 4 based pyp® named
the “AstroPortal” that would support the “stackingfialysis on the Sloan Digital Sky Survey (SDSH)e stacking
analysis is the summing of multiple regions of kg, a function that can help both identify varalburces and
detect faint objects. We proposed to deploy theo®&ortal on the TeraGrid distributed infrastruetand apply the
stacking function to the SDSS DR5 dataset, whicmmises more than 320 million objects dispersedr dvé
million files, a total of 9 terabytes of data.

We claimed that our work with the AstroPortal wolddd to interesting and innovative research worthiee main
areas: 1resource managemefefficient task dispatch, dynamic resource prawigig); 2.data managemer{tiata
diffusion, data-aware scheduling); andapplications(performance and scalability). We have produceerésting
and useful results at both the theoretical andtipadevel, and have even generalized our reslitgeneralizing

our results, we have come to define a new paradigitgd Many-Task Computing (MTC2()].

Many-task computing aims to bridge the gap betwtgencomputing paradigms, high throughput computimgl
high performance computing. Many-task computingades high-performance computations comprising ipielti
distinct activities, coupled via file system op@as. The aggregate number of tasks, quantity afpeding, and
volumes of data may be extremely large. Traditidaehniques found in production systems found edtientific
community to support many-task computing do notest@today’s largest systems, due to local reunanager
scalability and granularity, efficient utilizatiasf the raw hardware, long wait queue times, andestiparallel file
system contention and scalability. To address thastations, we adopted a “top-down” approach tolding the
middleware — FalkonZ, 4, 22] — to support the most demanding many-task comgudipplications at the largest
scales.

Falkon, the Fast and Light-weight tasK executiOldnfework, integrates (1) multi-level scheduling tmalgle
dynamic resource provisioning and minimize wait wpi¢imes, (2) a streamlined task dispatcher ablactoeve
order-of-magnitude higher task dispatch rates tt@ventional schedulers, and (3) data diffusionciiperforms
data caching and uses a data-aware schedulerltzat® computational and storage resources. Mier@bmarks
have shown Falkon to achieve over 15K+ tasks/seitfnputs, scale to millions of queued tasks, eteebillions
of tasks per day, and scale to hundreds of thogsahgrocessors. Data diffusion has also shownmprove
applications scalability and performance, with atsility to achieve hundreds of Gb/s I/O rates orde®b sized
clusters, with Tb/s 1/O rates on the horizon. Falkas shown orders of magnitude improvements ifopaance
and scalability than traditional approaches to ues® management across many diverse workloadspplitations
(astronomy, physics, astrophysics, pharmaceutidz@tinformatics, biometrics, neuroscience, medirahging,



chemistry, climate modeling, economics, and datdyaios) at scales of billions of tasks on hundrefithousands
of processors across clusters, specialized systeénds, and supercomputers. Falkon’s performancesaalability
have enabled a new class of applications calledyMask Computing to operate at previously believapgossible
scales with high efficiency. We are grateful foe thenerous support of NASA GSRP program, whichdtelpnd
this research for three years, and helped prod8gauBlications and proposals [1, 2, 3, 4, 5, 8,1, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

Over the past year and a half, Falkon [2, 4] has séde deployment and usage across a varietystérag, from the
TeraGrid [35], the SiCortex [36], the IBM Blue Gé#Rd37], and the Sun Constellation [35]. Figurehbves plot of

Falkon across these various systems from Decenfiogr-2 April 2009. Each blue dot represents a 60rgkaverage of
allocated processors, and the black line denotesitimber of completed tasks. In summary, there w6305 peak
concurrent processors, with 2 million CPU hoursscomed and 173 million tasks for an average tastutina time of 64

seconds and a standard deviation of 486 seconds; dMdhe results presented here are representédune 1, although
some applications were run prior to the historyriegpsitory being instantiated in late 2007.
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Figure 1: December 2007 — April 2009 plot of Falkoacross various systems (ANL/UC TG 316 processouster, SiCortex 5832
processor machine, IBM Blue Gene/P 4K and 160K pr@ssor machines, and the Sun Constellation with 62tocessors)
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The rest of this report is organized as follows. ¥gger each of the three years of the fellowshiith the proposal
for each year, as well as the results for thatiqaddar year. For the third year of the proposal,went in more depth
with the results, including results from other apgions not specifically from astronomy, that hdenefited from
the research work generated by this fellowship tiedAstroPortal to be exact. We finally conclude tkeport by
outlining our contributions.

2 Yearl

The term “the Grid” denotes a distributed computinfyastructure for advanced science and engingeriGrid
computing has emerged as an important new fieltindjuished from conventional distributed computngits
focus on large-scale resource sharing, innovatiydi@ations, and high-performance orientation. [24]

The astronomy community has an abundance of imeadpitg (i.e. SDSS [57], GSC-II [60], 2MASS [61], P®&8
[62], etc) at its disposal which are essentially torown jewels”; however the terabytes of data esathe analysis
of these datasets a very difficult process traditity. Large astronomy datasets are generally lage (terabytes
+) and contain many objects (100 million +) sepadlahto many files (100,000+).

We propose to use grid computing as the main méstmato enable the dynamic analysis of large astrgno
datasets. There are five reasons why analyzirgptlegge datasets is not trivial:large size of the datase{$B+

in size, 100M+ objects); 2arge number of userél,000s); 3large amount of resourcaseeded to have adequate
performance (potentially 1,000s of processors @ttt ITB of rotating storage); dispersed geographic distribution
of the users and resourcesnd 5.heterogeneity of the resources

The key question we will answer by the successhglémentation of this proposal igH6w can the analysis of
large astronomy datasets be made a reality forasteonomy community using Grid resourceQur answer is the
“AstroPortal”, a science gateway to grid resoulttes is specifically tailored for the astronomy comity.



Some of the interesting and innovative researchkwat will be the building blocks of the AstroPairtvill be: 1.
resource provisioningadvanced resource reservations, resource allmgatésource de-allocation, and resource
migration); 2.data managemenfdata location, data replication, and data caghiagd 3.distributed resource
managementcoupling data and processing resources togetffieieatly, and distributed resource management for
scalability).

The AstroPortal is a real implemented system thagsgthe astronomy community a new tool to advahedr
research and to open new doors to opportunitiesrrigsfore possible. At the same time, the builditogks of the
AstroPortal have uncovered new approaches to resand data management that are specifically ¢aifléor the
efficient and successful dynamic analysis of lagentific datasets.

2.1 AstroPortal Implementation & Evaluation

The AstroPortal implementation will be based oniaias components of the Globus Toolkit version 4 4EBR25],
and it will be deployed in the TeraGrid [35]. Soofehe GT4 components are: WS GRAM [25], MDS4 [2BFT
[25], GridFTP [27], RLS [25], DRS [25], and WS [25The implementation will be done in two versidasusing
on different objectives: 1) AstroPortal functiomglias a science gateway, along with the neededureso
management support for astronomy analysis codeetefficiently run on large datasets; 2) it will fcon a
distributed resource management design that wilhaoe scalability and performance of the AstroRorta

The rest of Section 3 will assume the use of th&€SIDR4 [28] dataset as it will be the first suppdrtiataset in our
prototype to be deployed on the ANL/UC TeraGridlied.

2.1.1  AstroPortal Architecture

There are several components that make the buildogks of the AstroPortal (AP): 1) the AstroPoitétb Service
(AP WS), 2) the AstroData Manager (AD), 3) the Adfilients (AC) running on the compute nodes, anthd)Jser

Clients (UC). The communication between all thes@ponents would be using Web Services (WS). Eurtbre,

we will leverage GT4 functionality which offers gestent state storage for WS; the persistent stidtenake the

AP WS more robust to failures as it will offer thkkernative to continue execution of unfinishedgatfter a system
restart.

The AP WS and the AD are the two main componenthefsystem where the resource management innavatio
needs to occur; furthermore, both of these comptsnam rather generic, and with minor tuning, cdugdused in
the analysis of other large non-astronomy relatathskts. The AC and UC are specific to the astngno
community, and will offer the analysis and visuatisn functionality needed make the AP system ustfu
astronomers.

The AP WS is the centralized gateway for all UGubmit their analysis work into the grid. Once & WS is up
through a basic bootstrapping mechanism, the APWYdd register itself with a well known MDS4 Indesg UC
could dynamically find the location of the AP WShe UC could use many existing tools offered by $fizSS /
SkyServer [63] to find the location (the sky cooates — {ra dec band}) of the interesting objentguestion. The
UC then packages the list of locations along with &nalysis to be performed, and it is sent toAReWS for
processing as a job. Initially, the AP WS wouldkenaome advanced reservations (via GRAM) of soraedgdined
set of resources for a predefined duration. Newoueces could be reserved dynamically to incre&ise t
performance of the AP under heavy loads, and ressucould be de-allocated to a minimum under lights.
Upon the AP WS receiving the work from the UC,lages the list of locations in a user queue anevspanultiple
threads to find (via RLS) the necessary data withi& storage hierarchy. ACs use this data to parfthe
appropriate operation, and sends the results athet AP WS. When the AP WS received the resutisi fan
entire job, it packages or aggregates them depgratirthe particular analysis performed, and selnelsdsults back
to the UC. For relatively large results, only theation of the results will be returned via WSddhe actual results
will be retrievable via GridFTP for better efficign

The storage hierarchy is one of the key designcglsothat differentiates the AstroPortal from othedated work.
The storage hierarchy consists of 4 layers: rerdata repository (REMOTE), TeraGrid GPFS (WAN), ANIC
GPFS (LAN), and local storage (LOCAL). Each sterdayer gets the data closer and closer to the atatipnal
resources making the analysis run faster. The AR abuld use RLS to maintain a coherent state betwlee
replica location among the different layers (LOCAIAN, WAN, REMOTE). Ideally, as the data gradudfigws
in (from REMOTE, to WAN, to LAN, to LOCAL) as AC aess the data, jobs would run faster over timeis Th
would be true if the set of resources was statieydver we are targeting a dynamic system whichahaariable
pool of resources. The REMOTE layer will offer @istent storage, the WAN GPFS and local GPFS (Lsthuld



offer relatively persistent storage, but the LOCdisk storage will be fairly dynamic, as worker restes will start-
up and terminate regularly.

In order for the AP to reach that best case scerggiformance, there would be a need for a worésource to
efficiently transfer its state (work queues andalbccached data) from one resource (i.e. nod@ntther. As the
system is used, it is possible that this transfgrof state take longer due to a growing local eamhdata. This is
high cost of transferring state is OK as long aois not occur too often, but that means thasystem will not be
very dynamic and will not be able to respond tot*$ymots” of large number of queries for a shoriqakeof time

without wasting resources. We believe some innesatesource migration mechanisms could help kdwp
LOCAL layer available for longer periods, and hemegroving the likelihood that data is read frone tfastest
layer (LOCAL) during the analysis.

We envision that a natural evolution to the AP Wil distribute the resource management decisiotteecAP WS,
offering a more scalable architecture! The majooit the intra-site communication remains unchangeth the

exception that the MDS4 Index need not be spetlifieesociated with any particular site. Each AR ¥kbm each
site would register with the MDS4 Index; when ussould query the MDS4 Index, users could pick asfide AP

WS at random, or based on some simple metricsAPeWS load, latency from the AP WS to the user) #iat
MDS4 exposes to the users about each AP WS. Thtokée enhanced performance is the ability toéss all the
resources across various sites in the TG; theddtien between the various AP WS from each of #méous sites is
critical. Each AP WS would get some work from Uahd it would have a choice of completing it locadiy
forwarding the work to another site that might offaster performance due to data locality, moreilabke

resources, faster hardware, etc.

2.1.2 Large Dataset Analysis Support

There are many different analysis/operations thatastronomy community can apply to astronomy étasOne
simple operation would be the GET operation, inalthihe input would be a list of locations that ndedbe
retrieved, and the output would be the images spmeding to the input locations. The GET operationld be
used if the user wanted to run some custom anahatioffered by the AP on a subset of the origitalaset.
Another operation could be MONTAGE, in which th@um would be the coordinates to a rectangular @teset of
coordinates), and the output would be an imagergaiesented the entire rectangular area stitabgethier from
smaller images. The MONTAGE operation could befulsior the visualization of the sky at differergviels of
detail. We will focus on the STACKING operation, which the input would consist of a list of locats, and the
output would be a single image corresponding todfiaeked images. Stacking could be used to enhfairte
objects that would otherwise have not been detect@dour initial prototype, we plan on supportitite GET
operation and the STACKING operation. To the lsbur knowledge, there is no system out thererivifea
STACKING like service for astronomy datasets. Wenbt plan to implement the MONTAGE operation since
there currently exists a system (Montage [58]) thifitbe deployed on the TeraGrid as part of theQNproject.

2.1.3 Evaluation Methodology

We intend to thoroughly test the AstroPortal perfance, scalability and robustness. Our initial@atdon will be
conducted via DiPerF [29, 30, 31], a DlstributedRREEmance testing Framework, aimed at simplifyingd a
automating service performance evaluation.

The AP will be first deployed at the ANL/UC sitetime TeraGrid, while the distributed AP will be dtped in the

entire TG across eight different sites geographjiadistributed across the US. Our experiments imiolve both

very controlled experiments on dedicated resoungdsn the TG, and more realistic scenario experitaevith the

UC running in another testbed, PlanetLab [32].nBiaab will offer real Internet conditions as th@0% nodes are
geographically distributed all over the world witiatively poor connectivity in comparison to th& Testbed.

2.2 Open Research Questions

We believe that there are at least three main asithsopen research problems that the architeadesggn of the
AstroPortal exposes. These areas are all in thadbcontext of resource management; they inclogisource
provisioning, data management, and distributed vese management

Resource provisioningincludes everything from advanced reservationstespurce allocation, to resource de-
allocation issues in large scale systems. Diffetechniques and heuristics will apply for managéfficiently the
set of resources depending on the problem we adeessing; some of the important things will be vioakl
characteristics, number of users in total and nurabeoncurrent users, data set size and distohutomputational
intensive analysis, and 1/O intensive analysis.e Tésource provisioning will be very important irder to achieve
efficient use of existing resources, yet maintaresponsive and good performance system.

—



Data management: Data location, data caching, andatia replication: Since one of our first two operations the
AstroPortal will support is STACKING, we will focusn our motivation for the storage hierarchy ddmadiin
Section 3.1, and the data management optimizatw@shope to investigate. In a preliminary perforg®n
evaluation of the various data access methods,owedf that there is a wide range of performanceedifices
between the various different access methods.ekample to complete 100K crops (needed for eitherGET or
the STACKING) on 100 nodes, the best case scensrgetting the data from the LOCAL layer which take
between at most 30 seconds. The next best penfiaenia delivered when getting the data from the Llaixer,
taking at most 200 seconds. The worst performavas the WAN layer, with times as high as 3000 sdson
Notice the difference in performance among theedéfit layers in the storage hierarchy, which coagen
opportunities for good data access optimization§here are some very interesting problems arodath
management in which we have a very large data set that watwa break up among various sites, but also do
some level of replication among the sites for inweb performance. Furthermore, doing data moverbaséd on
past workloads and access patterns might proveffés significant performance gains. We envisiomttithe
AstroData Manager will keep track of usage stafsstin each object form the dataset, which willrléie used to
keep the most likely items in the fastest and sssallayer, optimizing the time to access the marpufar data.
Another significant challenge will be resource ratgwn, in which our goal is to perform efficienatd transfer
among worker resources while maintaining a dynaystem.

Distributed Resource Management:The inter-site communication among the AstroPowadb Service and its
effects on the overall system performance is vetgresting; work can be performed at the local sitdt could be
delegated to another site that in theory could detapthe work faster; the algorithms, the amountstte
information, and the frequency of state informatéxchanges all contribute to how well and evengyworkload is
spread across the various AP WS, which ultimatedgides the response time that the user observesthen
aggregate throughput the entire distributed AstraPesystem can sustain. The successful implertientahe
distributed AP WS and the optimization of the usédath the data storage and the computational resswould
lead to a scalable system supporting large numifecencurrent users while providing very fast rasgotimes in
comparison to traditional single server implemeatet. The use of the GT4 throughout the architectill allow
the system to interoperate with other system eagilgl provide a standard method of accessing ttersy

2.3 Results

We have made significant progress since our inpiaposal. This section will first discuss the qbated
milestones, followed by the following short-termadm the deliverables we expect to produce, andigsmination
of our results.

We initially proposed to build the AstroPortal, whiwould implicitly involve interesting and innowa research
work in three main areas: figsource provisioning, 2) data management, 3) ilisted resource management.

At this point we have developed a Web Servicesthagstem, AstroPortal, that uses grid computindetterate
large computing and storage resources for dynanatysis of large datasets. We have deployed theoRettal on
the TeraGrid distributed infrastructure and is mavline in beta testing by our collaborator’s groApx Szalay at
John Hopkins University.

As for the three main areas that we claimed toesidin our work, we have implemented four basitding blocks
to address them. 3DcacheGrid, Dynamic Distribuizata cache for Grid applications addresses dhta
management.CompuStore, a Data Aware Task Scheduler, addréisselstributed resource managemerdRP,
Dynamic Resource Provisioning, addressesource provisioning. Finally, DeeF, Distributed execution
environment Framework, is used to integrate ak¢hthree basic components into a unified exec@iuironment
that can be used to facilitate the ease of impléatiem of applications.

3 Year2

3.1 Proposal

As a continuation to our Year 1 proposal, we wdikd to generalize our work from the AstroPortakaviurther
beyond just the implementation of the basic comptmé3DcacheGrid, CompuStore, DRP, and DeeF). oéljh
these basic building blocks should allow the im@atation of many applications to be built with telaly little

effort, we believe it would be valuable to define @bstract model that formally defines each basioponent and
its interaction with other components. This alidtraodel should allow us to explore the generablenm space
much more freely as we will break free of any apatibn specific implementation or feature which htigpave
influenced us when we implemented the basic buglthlocks and the AstroPortal.



The key observation we make is that as processiolgs become cheaper and data sets double ingirg gear,

the main challenge for a rapid turnaround in thalysis of large datasets is the location of the datative to the
available computational resources; even with highacity network interconnects, moving the data atgmy to

distant computational resources is becoming thédmeick. There are large differences in data acgpssds among
the hierarchical storage systems normally foundayouh large distributed systems. Furthermore, datalysis

workloads can be time varying in both their comfileand frequency, making both the computational atorage

resource demands vary frequently.

Abstract Model: The analysis of large datasets normally followspéit/merge methodology, which includes an
analysis query to be answered, which gets splitrdimto independent tasks to be computed, after twthie results
from all the tasks are merged back into a singlgregated result. The hypothesis is that signifig@rformance
improvements can be obtained in the analysis afeladlataset by leveraging information about datdyaisa
workloads rather than individual data analysis saskVe define workloads to be a complex query taat be
decomposed into simpler tasks, or a set of quénestogether answer some broader analysis questidfe believe
it is feasible to allocate compute resources amthiog storage resource that are relatively rematm fthe original
data location, co-scheduled together to optimize glrformance of entire data analysis workloadase on the
splitymerge methodology, we propose AMDASK, an Adst Model for DAta-centric taSK farms, which defithe
abstract model that allows us to study the statgubthesis. Traditionally, task farms have beeringef as a
common parallel pattern which drives the computatdd independent tasks, where a task is a selfagoed
computation. The data-centric component of thérabismodel emphasizes the central role data ptayse task
farm model we are proposing, and the fact thatakk farm is optimized to take advantage of datheatorage and
data locality found in many large datasets andcipapplication workloads. Together, a data-certask farm is
defined as a common parallel pattern which dribesindependent computational tasks taking into idenation the
data locality in order to optimize the performarafethe analysis of large datasets. This definitimplies the
integration of data semantics and application bieinam order to address critical challenges in th@nagement of
large scale datasets and the efficient executi@ppfication workloads.

We intend to validate the AMDASK model through slations. We expect the discrete event simulationshow
the AMDASK model is both efficient and scalablegjiva wide range of simulation parameters. Onceribael is
validated, we will show that the current set ofibdsuilding blocks and AstroPortal application fitee model, as
well as possibly implementing other applicationstop of AMDASK in order to show the model's efficiey,
effectiveness, scalability, and flexibility in ptae.

Simulations: We will implement the AMDASK model in a discreggent simulation that will allow us to investigate
a wider parameter space than we could in a redbvimplementation and deployment. We expect theuktions
to both validate the AMDASK model and help us prtvat the model is efficient and scalable givenidewange of
simulation parameters (i.e. number of storage amuiputational resources, communication costs, manage
overhead, and workloads — including inter-arriés, query complexity, and data locality).

The simulations will specifically attempt to modelgrid computing environment comprising of compotal

resources, storage resources, batch schedulersuyaommunication technologies, various typespgliaations,
and workload models. We will perform careful ande@sive empirical performance evaluations in otdecreate
accurate input models to the simulator; the inpatlels include 1) communication costs, 2) data mamegt costs,
3) task scheduling costs, 4) storage access @gtshy) workload models.

We expect to be able to scale simulations to morepaitational and storage resources than we cotiligain a
real deployed system due to the availability obteses. Furthermore, assuming the input modetgetoorrect, we
should be able to accurately measure the end-topenidrmance of various applications using a widege of
strategies for the various resource management coemnps.

Applications: After showing that the defined basic building dke (3DcacheGrid, CompuStore, DRP, and DeeF)
and the AstroPortal fit the general abstract modelintend to further pursue the identification amgplementation

of other applications to use the basic componeated on the AMDASK model in order to prove both the
effectiveness and the flexibility of the abstraaidal in practice. For each particular applicatiom, also expect to
quantify the efficiency and expected scalabilitgdihon the dataset sizes and typical workloads.

We have identified two such applications. Thetfissapplication is very similar to the “stackinghalysis and uses
the same SDSS image dataset. This applicatioarised “montage”, which performs the stitching of smémages
in a contiguous portion of the sky to produce glgirunified image. Another application we idemifiis from the



astro-physics domain which would utilize simulatidata (as opposed to image data) from the Flasisefat The
applications that we have identified to fit the AMBK model are volume rendering and vector visuéitire The

dataset is composed of 32 million files (1000 tisteps times 32K files) taking up about 15TB of atmr resources.
The dataset contains both temporal and spatialitpcevhich should offer ample optimization oppantties in the

data management component. More information cafobed on the ASC / Alliances Center for Astroplogsi

Thermonuclear Flashes at their websitatgi://www.flash.uchicago.edu/website/home/

3.2 Reaults

This section will only discuss the progress we hanagle on the Year 2 proposal. This section widlt filiscuss the
completed milestones, followed by the following giterm goals.

Our proposal which built upon the work on the ABtootal and Falkon centered on two main areas: tlaefinition
of an abstract model for data-centric task farmasd the2) validation of the abstract modeOur progress has been
mostly in the formally defining the abstract modé\ complete definition of the abstract model canfbund in
“Harnessing Grid Resources with Data-Centric Taalis”.

Base Definitions: A data-centric task farm has various componergs ¢omputational resource where the tasks are
to execute, storage resources where the data ndwdéte tasks is stored, etc). We formally defirigt basic
elements that are later used to derive relatiogardéng the model: 1) Persistent data stores, &)dient data stores,
3) Transient resources, 4) Data Objects, 5) Stapa€ity, 6) Compute Speed, 7) Load, 8) Ideal Badthwi9)
Available Bandwidth, 10) Copy Time, 11) Tasks, &2) Computational Resource State.

Execution Model: We also defined an execution model, to tie thati@mhships between the basic definitions defined
prior. The execution model outlines the respeqbiokcies that control various parts of the exemutnodel and how
they relate to the definitions in the previous act Each incoming task is dispatched to a tramsiesource,
selected according to thiispatch policy If a response is not received after a time detexchby thereplay policy

or a failed response is received, the task is spadched according to tléspatch policy A missing data object that

is required by a task and does not exist on thesieat data store is copied from transient or ptast data stores
selected according to tliata fetch policylf necessary, existing data at a transient date sire discarded to make
room for the new data, according to #teche eviction policyEach computation is performed on the data objects
found in a transient data store. When all compomstiare complete, the result is aggregated andnssty this
aggregation of the results is assumed to be fresinplify the abstract model. Finally, we defineresource
acquisition policythat decides when, how many, and for how long dqQuae new transient computational and
storage resources for. Similarly, we also defimesmurcerelease policythat decides when to release some acquired
resources.

The Performance and Efficiency of the Abstract Mode We investigate when we can achieve good performanc
with this abstract model for data-centric task faramd under what assumptions. We define various ¢ogsts per
task and average task execution time) and effigigatated metrics (efficiency, computational inténsefficiency
overheads). Furthermore, we explore the relatigsstietween the different parameters in order tanopsd
efficiency.

o(k) + u(k), o0¢T)

Cost per task: We define theost per tasky(«) as follows: y(x) = 0(K) + u(K)+(3.7), SOHAT)

Average Task Execution Time: We define theaverage task execution tim&, as the summation of all the task

execution times divided by the number of tasks;arformally, we haveB =i| z,u(/() .
kOK

Computational Intensity: Let A denote thearrival rate of tasks we define thecomputational intensity], as
follows: 1 =B*A. If | =1, then all nodes are fully utilized; if >1, tasks are arriving faster than they can be
executed; finally, ifl <1, then there are nodes that might be idle.

Workload Execution Time: We define the workload execution time,V, of our system as

V=maf o K.
ITI"A



Workload Execution Time with Overhead: In general, the total execution time for a tasklK includes overheads,

which reduced efficiency by a factor éf% We define thavorkload execution time with overhead/ , of our
XKk

Y 1
system ad/V = ma{m,xj* |K |, whereY is theaverage task execution tinmecluding overheadslefined as
S k) o), S0¢r). 600
Y = | K |KDK .
LK) o) +¢ (B0, 50,800
KOK

\Y
Efficiency: We define theefficiency, E, of a particular workload ak = W . The expanded version of efficiency is
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We claim that for the caching mechanisms to becéffe in this model (i.e. the needed data objeztse found in

transient data stores), tlggregate capacity of our transient storage resesr¢ is greater than our workload’s

working set,Q , (all data objects required by a sequence of tagke)formally, we can say) o(r) 2|Q|.
T

<
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We also claim that we can obtal> 05 if u(k)>o(x)+{(0,1), where u(k), o(k), Z(9,r) are the time to
execute and dispatch the task]K , and copy the objead to 7 0T, respectively.

Speedup: We define thespeedup,S, of a particular workload aS = E*|T |.

Optimizing Efficiency: Having defined both efficiency and speedup, ip@ssible to maximize for either one, as
efficiency normally monotonically decreases andesip increases with more resources used. Weoptmize
efficiencyby finding the smallest number thinsient compute/storagesources| T| while we maximize speedup

times efficiency.
4 Year3

41 Proposal

As a continuation to our initial proposal, we wolikie to generalize our work further to allow adarclass of
applications to transparently use the mechanis@usatlfowed the AstroPortal to perform and scalevetl. Those
mechanisms have been implemented in Falkon, tocsugfficient task dispatch, dynamic resource psimriing,

and data management through data diffusion. Wi plaexploring the performance of data diffusiothwinore
applications and workloads through the synergy axelttreated between Falkon and the Swift paraltedamming
system. We have integrated Falkon into the Karsjarkflow engine, which in term is used by the Swaérallel

programming system. Thus, Karajan and Swift appboa can use Falkon without modification. We haleady
observe reductions in end-to-end run time by ashmag 90% when compared to traditional approacheshich

applications used batch schedulers directly bygoerihg dynamic resource provisioning and providapgplications
with a lighter weight task dispatch mechanism. fSWas been applied to applications in the physsménces,
biological sciences, social sciences, humanitiespputer science, and science education. We haseessfully
executed several applications (medical imagingpasimy image analysis, molecular dynamics simufesfichrough
Swift over Falkon (without data diffusion). We plan investigating the performance benefits of ahffaision on
these applications as well as others from bio-mfatics, pharmaceuticals, and physics for our Ye&r@osal.
There is considerable work that needs to be doriatéoface the Swift system’s data management Ghgied to

those of Falkon’s data management capabilitiesderofor Swift applications to take advantage @f ¢tata diffusion
from Falkon.



We also plan to evolve the Falkon architecture ftbencurrent 2-Tier architecture to a 3-Tier one #e expecting
that this architecture change would allow us taodtice more parallelism and distribution of therently
centralized management component in Falkon, andeheffer higher dispatch and execution rates thalkadr
currently supports. We are pursuing this work vifte goal to have Falkon run at considerably lasgates, such as
those found on the latest IBM BlueGene/P (BG/P) till be online in 2008 at Argonne National Labtmg. The
work in porting Falkon to the BG/P will open newpaptunities to applications that traditionally cduiot execute
on the BG/P due to the lack of support of task farthwill be crucial to test the limits of the 3€F architecture
from a performance point of view to evaluate thprapriateness of Falkon on the BG/P which can stalE0s of
millions of processors (the current configuratioitl moast 128K CPU cores). Furthermore, we willoalse working
at simplifying the various components in Falkorglinling the communication protocols that are iréro the
system. We plan to implement the Executor in Cadition to the one that is already implementedawa), and
offer a proprietary TCP-based communication prott¢as opposed to the existing Web Services projduetween
the Executors and the Dispatcher. This transitiooukd allow Falkon to achieve higher performance ¢ the
lighter weight communication protocol, and allove tBxecutor to be deployed on computer architectilnatsdo not
support Java, such as the IBM BlueGene.

4.2 Results

To address the limitations of existing resource ag@ment systems in supporting many-task computiegadopted
a “top-down” approach to building the middlewar&alkon — to support the most demanding many-tashkpeting

applications at the largest scales. Falkon, thé & Light-weight task executiON framework, integgrs (1) multi-
level scheduling to enable dynamic resource promieg and minimize wait queue times, (2) a streaeui task
dispatcher able to achieve order-of-magnitude highek dispatch rates than conventional scheduderd,(3) data
diffusion which performs data caching and uses @-dware scheduler to co-locate computational dochge

resources. This section will describe each of thesketail.

4.2.1  Architecture Overview

Falkon consists of a dispatcher, a provisioner, 2810 or more executors. The dispatcher accepts fesm clients

and implements the dispatch policy. The provisidngrlements the resource acquisition policy. Exerutun tasks
received from the dispatcher. Components commumigiat Web Services (WS) messages, except thaiaatitifins

are performed via a custom TCP-based protocol. fidtdication mechanism is implemented over TCP bsea
when we first implemented the core Falkon companesing GT3.9.5, the Globus Toolkit did not suppwakered

WS notifications. Starting with GT4.0.5, there igpport for brokered notifications.

The dispatcher implements the factory/instance pattern, providingreate instanceoperation to allow a clean
separation among different clients. To access thgatther, a client first requests creation of & mestance, for
which is returned a unique endpoint reference (EFPRg client then uses that EPR to submit tasksiitmoprogress
(or wait for notifications), retrieve results, affhally) destroy the instance.

A client “submit” request takes an array of tagdach with working directory, command to executguarents, and
environment variables. It returns an array of otgpaach with the task that was run, its returnec@ohd optional
output strings (STDOUT and STDERR contents). A starotification engine among all the different gegis used
to notify executors that work is available for pigk. This engine maintains a queue, on which a pbdhreads
operate to send out notifications. The GT4 contaaigo has a pool of threads that handle WS mess&yefiling

shows that most dispatcher time is spent communggWs calls, notifications). Increasing the numbéthreads
allows the service to scale effectively on neweititnre and multiprocessor systems.

The dispatcher runs within a Globus Toolkit 4 (GT44] WS container, which provides authenticatioressage
integrity, and message encryption mechanisms, raiasport-level, conversation-level, or messagetiseeurity
[45].

The provisioner is responsible for creating and destroying exesutdt is initialized by the dispatcher with
information about the state to be monitored and bowccess it; the rule(s) under which the prowisioshould
create/destroy executors; the location of the exe@ode; bounds on the number of executors tadéated; bounds
on the time for which executors should be creasedt the allowed idle time before executors arerdgstl. The
provisioner periodically monitors dispatcher statel determines whether to create additional exesuémd if so,
how many, and for how long. The provisioner suppbidth static and dynamic provisioning. Dynamicvisioning
is supported through GRAM4 [25]. Static provisiamiis supported by directly interfacing with LRMsalkon
currently supports PBS, SGE and Cobalt.



A new executor registers with the dispatcher. Work is then swgaphs follows: the dispatcher notifies the executor
when work is available; the executor requests wtik; dispatcher returns the task(s); the executeciwges the
supplied task(s) and returns the exit code and dpional standard output/error strings; and thepatisher
acknowledges delivery.

Communication costs can be reduced thgk bundlingbetween client and dispatcher and/or dispatcher an
executors. In the latter case, problems can afrisesk sizes vary and one executor gets assigney taege tasks,
although that problem can be addressed by haviagtslassign each task an estimated runtime. Ant¢lcenique
that can reduce message exchanges Edgy-backnew task dispatches when acknowledging resulvelsii [4]
Using both task bundling and piggy-backing, we iduce the average number of message exchangeskéo be
close to zero, by increasing the bundle size. &efice, we find that performance degrades for baisifles of greater
than 300 tasks.

Figure 2 shows the Falkon architecture, includinthithe data management and data-aware schedutgrooents.
Individual executors manage their own caches, ugiegl eviction policies (e.gLRU [46]), and communicate
changes in cache content to the dispatcher. Thedstdr sends tasks to compute nodes, along witmebessary
information about where to find related input dalaitially, each executor fetches needed data fr@mote
persistent storage. Subsequent accesses to thedsaaneesults in executors fetching data from offesr executors
if the data is already cached elsewhere. The cuingplementation runs a GridFTP server [47] at eaxbcutor,
which allows other executors to read data fronedtshe. This scheduling information are only hiatsyemote cache
state can change frequently and is not guarantebé L00% in sync with the global index. In thergvihat a data
item is not found at any of the known cached lagw] it attempts to retrieve the item from persisttorage; if this
also fails, the respective task fails. In Figuréh® black dotted lines represent the schedulatisgrihe task to the
compute nodes, along with the necessary informadioout where to find input data. The red thick ddines
represent the ability for each executor to get ffatian remote persistent storage. The blue thirddalies represent
the ability for each storage resource to obtairhedadata from another peer executor. We assumédalktevs the
normal pattern found in scientific computing, whighto write-once/read-many (the same assumptiorlRBES
makes in the Hadoop system [39]). Thus, we avoithgicated and expensive cache coherence schemes oth
parallel file systems enforce.

To support data-aware scheduling, we implementné&rakized index within the dispatcher that recotius location
of every cached data object; this is similar to teatralized NameNode in Hadoop’s HDFS [39]. Thideix is
maintained loosely coherent with the contents eféikecutor's caches via periodic update messagesajed by
the executors. In addition, each executor maintailtcal index to record the location of its cachath objects. We
believe that this hybrid architecture provides adyalance between latency to the data and goddbdiig. In
previous work [1, 21], we offered a deeper analysithe difference between a centralized index amtistributed
one, and under what conditions a distributed indepeferred.

User .
Task Dispatcher Persistent Storage
Data-Aware Scheduler
‘ Wait Quéue
Dynamic Tt
Resource
Provisioning

Available Resources
(GRAM4)

Figure 2: Architecture overview of Falkon extendedvith data diffusion (data management and data-aware
scheduler)



We implement four dispatch policies: first-avaiakFA), max-cache-hit (MCH), max-compute-util (MGlind
good-cache-compute (GCC).

The FA policyignores data location information when selectingeaacutor for a task; it simply chooses the first
available executor, and provides the executor withnformation concerning the location of data ct§eneeded by
the task. Thus, the executor must fetch all dataleé by a task from persistent storage on evemgsacd his policy

is used for all experiments that do not use ddtasion.

The MCH policy uses information about data location to dish each task to the executor with the largestuamno
of data needed by that task. If that executor syptask dispatch is delayed until the executoobexs available.
This strategy is expected to reduce data movemesrations compared to first-cache-available and-owampute-
util, but may lead to load imbalances where pramessilization will be sub optimal, if nodes frequity join and
leave.

The MCU policy leverages data location information, attengptto maximize resource utilization even at the
potential higher cost of data movement. It sentissk to an available executor, preferring executats the most
needed data locally.

The GCC policy is a hybrid MCH/MCU policy. The GQO@blicy sets a threshold on the minimum processor
utilization to decide when to use MCH or MCU. Wédide processor utilization to be the number of pssors with
active tasks divided by the total number of prooessillocated. MCU used a threshold of 100%, &seid to keep

all allocated processors utilized. We find thabxéhg this threshold even slightly (e.g., 90%) wovkell in practice

as it keeps processor utilization high and it gittes scheduler flexibility to improve cache hitemtsignificantly
when compared to MCU alone.

4.2.2 Distributing the Falkon Architecture

Significant engineering efforts were needed toFgdkon to work on systems such as the Blue Gerféitireatly at
large scale. In order to improve Falkon’'s perforoeand scalability, we developed alternate impldatem and
distributed the Falkon architecture.

Alternative Implementations: Performance depends critically on the behaviorwftask dispatch mechanisms. The
initial Falkon implementation was 100% Java, anddenaise of GT4 Java WS-Core to handle Web Services
communications. [44] The Java-only implementatiarks well in typical Linux clusters and Grids, lbe lack of
Java on the Blue Genel/L, Blue Gene/P, and SiCartempted us to re-implement some functionality in C

In order to keep the implementation simple that Mouork on these specialized systems, we used plsifiCP-
based protocol (to replace the prior WS-based podfpinternally between the dispatcher and thecet@. We
implemented a new component called TCPCore to katidi TCP-based communication protocol. TCPCoe is
component to manage a pool of threads that livakensame JVM as the Falkon dispatcher, and usegimory
notifications and shared objects for communicatibor performance reasons, we implemented persiSief
sockets so connections can be reused across tasks.

Distributed Falkon Architecture: The original Falkon architecture [4] use a singdjlgpatcher (running on one login
node) to manage many executors (running on commdes). The architecture of the Blue Gene/P isahidical, in
which there are 10 login nodes, 640 I/0O nodes, 40id compute nodes. This led us to the offloadingthed
dispatcher from one login node (quad-core 2.5GHZ)RB the many 1/0O nodes (quad-core 0.85GHz PPiQure 3
shows the distribution of components on differest® of the Blue Gene/P.

Experiments show that a single dispatcher, wheningnon modern node with 4 to 8 cores at 2GHz+ 2@8+ of

memory, can handle thousands of tasks/sec andofett®usands of executors. However, as we rampeduip
experiments to 160K processors (each executor mgnmm one processor), the centralized design btgahow its
limitations. One limitation (for scalability) wabke fact that our implementation maintained perstsseckets to all
executors (two sockets per executor). With theantrimplementation, we had trouble scaling a sinigpatcher to
160K executors (320K sockets). Another motivationdistributing the dispatcher was to reduce thedlon login

nodes. The system administrators of the Blue Ged&fMot approve of the high system utilizationttbamemory
and processors) of a login node for extended psriddime when we were running intense workloads.
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Figure 3: 3-Tier Architecture Overview

Our change in architecture from a centralized @na tistributed one allowed each dispatcher to gamadisjoint
set of 256 executors, without requiring any intepdtcher communication. We did however had to émpnt
additional client-side functionality to load balan@ask submission across many dispatchers, ambtoethat it did
not overcommit tasks that could cause some dispegdio be underutilized while others queued upstakir new
architecture allowed Falkon to scale to 160K preoeswhile minimizing the load on the login nodes.

Reliability Issues at Large Scale: We discuss reliability only briefly here, to explanow our approach addresses
this critical requirement. The Blue Gene/L has aamgme-to-failure (MTBF) of 10 days [33], which rcgose
challenges for long-running applications. When ingnloosely coupled applications via Swift and Falk the
failure of a single node only affects the tasklg)ttwere being executed by the failed node atithe of the failure.
I/O node failures only affect their respective ps€256 processors); these failures are identifigdhbartbeat
messages or communication failures. Falkon has amesims to identify specific errors, and act upo@nthwith
specific actions. Most errors are generally padsmtk up to the application (Swift) to deal with ihebut other
(known) errors can be handled by Falkon directlydégcheduling the tasks. Falkon can suspend ofignabdes if
too many tasks fail in a short period of time. Swifaintains persistent state that allows it toaesa parallel
application script from the point of failure, reezxting only uncompleted tasks. There is no neeéxplicit check-
pointing as is the case with MPI applications; ¢pointing occurs inherently with every task thatrpletes and is
communicated back to Swift.

4.3 Performance Evaluation

We use micro-benchmarks to determine performanaeackeristics and potential bottlenecks on systeitts many
cores. This section explores the dispatch perfocmanow it compares with other traditional LRMdja@éncy, and
data diffusion effectiveness.

4.3.1 Falkon Task Dispatch Performance

One key component to achieving high utilizatiorlasfje-scale systems is achieving high task dispatchexecute
rates. In previous work [4] we reported that Falkeith a Java Executor and WS-based communicatiotopol
achieves 487 tasks/sec in a Linux cluster (Argddni/. of Chicago) with 256 CPUs, where each task adsleep
0" task with no I/O. We repeated the peak througlgxperiment on a variety of systems (Argonne/Uni\Chicago
Linux cluster, SiCortex, and Blue Gene/P) for beghsions of the executor (Java and C, WS-basedr etibased
respectively) at significantly larger scales (séguFe 4). We achieved 604 tasks/sec and 2534 tesk$dr the Java
and C Executors respectively (Linux cluster, 1 disher, 200 CPUs), 3186 tasks/sec (SiCortex, latlibpr, 5760
CPUs), 1758 tasks/sec (Blue Gene/P, 1 dispatch86 €PUs), and 3071 tasks/sec (Blue Gene/P, 64@tdisers,
163840 CPUs). Note that the SiCortex and Blue Geoely support the C Executors. The throughput remnkhat
indicate “1 dispatcher” are tests done with thegiadl centralized dispatcher running on a login eno@ihe last
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throughput of 3071 tasks/sec was achieved withdibgatchers distributed over 640 I/O nodes, eachagiiag 256
processors.
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1service 1 service 1service 1 service 640 services
Executor Implementation and Various Systems

Figure 4: Task dispatch and execution throughput fotrivial tasks with no 1/0 (sleep 0)

To better understand the performance achievediffareint workloads, we measured performance asation of
task length. We made measurements in two diffecenfigurations: 1) 1 dispatcher up to 2K processarsl 2)
N/256 dispatchers on up to N=160K processors, Wittispatcher managing 256 processors. We variedasie
lengths from 1 second to 256 seconds (using skesks twith no 1/0), and ran weak scaling workloaaigging from
2K tasks to 1M tasks (7 tasks per core).

Figure 5 investigates the effects of efficiencylafispatcher running on a faster login node (quae 2.5GHz PPC)
at relatively small scales. With 4 second tasks,can get high efficiency (95%+) across the boand t@ the
measured 2K processors). Figure 6 shows the effigiavith the distributed dispatchers on the sloWer nodes
(quad core 850 MHz PPC) at larger scales. It isr@dting to notice that the same 4 second taskoffemed high
efficiency in the single dispatcher configuratioown achieves relatively poor efficiency, starting &% and
dropping to 7% at 160K processors. This is duedth lthe extra costs associated with running thpatther on
slower hardware, and the increasing need for Higbughputs at large scales. If we consider the 1pBi¢essor
case, based on our experiments, we need tasksablbast 64 seconds long to get 90%+ efficienaydiAg 1/O to
each task will further increase the minimum tagsigté in order to achieve high efficiency.
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Figure 5: Efficiency graph for the Blue Gene/P forl to 2048 processors and task lengths from 1 to 38conds
using a single dispatcher on a login node



To summarize: distributing the Falkon dispatchentfra single (fast) login node to many (slow) I/Gles has both
advantages and disadvantages. The advantage isdhathieve good scalability to 160K processors,abthe cost
of significantly worse efficiency at small scaldes§ than 4K processors) and short tasks (1 toc8nsis). We
believe both approaches are valid, depending onafhidication task execution distribution and scafethe

application.
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Figure 6: Efficiency graph for the Blue Gene/P for256 to 160K processors and task lengths ranging fno 1 to
256 seconds using N dispatchers with each dispatchianning on a separate 1/0 node

The experiments presented in Figure 4, Figure 8,Fagure 6 were conducted using one million tasksrpn. We
thought it would be worthwhile to conduct a largeale experiment, with one billion tasks, to vakdhat the
Falkon service can reliably run under heavy stfesprolonged periods of time. Figure 7 depicts ¢nelurance test
running one billion tasks (sleep 0) on 128 processawhich took 19.2 hours to complete. We ran tistriduted
version of the Falkon dispatcher using four insg@non an 8-core server using bundling of 100, whithwed the
aggregate throughput to be four times higher tihan teported in Figure 4. Over the course of theegment, the
throughput decreased from 17K+ tasks/sec to just dbK+ tasks/sec, with an average throughput o6K5
tasks/sec. The loss in throughput is attributed tnemory leak in the client, which was making treeftheap size
smaller and smaller, and hence invoking the garlcafjection more frequently. We estimated that Hilbon tasks
would have been sufficient to exhaust the 1.5GBohea had allocated the client, and the client wdadde likely
failed at that point. Nevertheless, 1.5 billionkiass larger than any application parameter spasdave today, and
is many orders of magnitude larger than what oslystems support. The following sub-section attertpptsompare
and contrast the throughputs achieved between Falikd other local resource managers.
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Figure 7: Endurance test with 1B tasks on 128 CPUs ANL/UC cluster



4.3.2 Comparing Falkon to Other LRMs and Solutions

It is instructive to compare with task executioterachieved by other local resource managerstaviqus work
[4], we measured Condor (v6.7.2, via MyClust@]] and PBS (v2.1.8) performance in a Linux enviremin(the
same environment where we test Falkon and achi2g8d tasks/sec throughputs). The throughputs wesuned
for PBS was 0.45 tasks/sec and for Condor wast@l&/sec; other studies in the literature havesored Condor’s
performance as high as 22 tasks/sec in a reseesttype called Condor J2 [38].

We also tested the performance of Cobalt (the Baae/P’s LRM), which yielded a throughput of 0.08%ks/sec;
recall that Cobalt also lacks the support for @nglocessor tasks, unless HTC-mode [43] is use@-Hidde means
that the termination of a process does not reld@sallocated resource and initiates a node reladiar; which the
launcher program is used to launch the next agpmicaThere is still some management (which we an@nted as
part of Falkon) that needs to happen on the compadies, as exit codes from previous applicationéations need
to be persisted across reboots (e.g. to sharedyfitem), sent back to the client, and have thiyahd launch an
arbitrary application from the launcher programnRing Falkon in conjunction with Cobalt's HTC-modapport

yielded a 0.29 task/sec throughput. We only ingaséid the performance of HTC-mode on the Blue Geaegmall

scales, as we realized that it will not be suffititor MTC applications due to the high overheachofle reboots
across tasks; we did not pursue it at larger scatesn the Blue Gene/P.

Cope et al. [41] also explored a similar space adhave, leveraging HTC-mode [43] support in Cobalthe Blue
Gene/L. The authors had various experiments, whiehtried to replicate for comparison reasons. Tathas
measured an overhead of 46.4+21.2 seconds forrmgrf) second tasks on 1 pset of 64 processorseoBltie
Gene/L. In a similar experiment in running 64 setdmsks on 1 pset of 256 processors on the Blue/Benve
achieve an overhead of 1.2+2.8 seconds, more thawrder of magnitude better. Another comparisothés task
startup time, which they measured to be on avesdgait 25 seconds, but sometimes as high as 45 dscthe
startup times for tasks in our system are 0.8+8cbsds. Another comparison is average task loag tiynnumber
of simultaneously submitted tasks on a single pset executable image size of 8MB. The authors tedoan
average of 40~80 seconds for 32 simultaneous tasB2 compute nodes on the Blue Gene/L (1 psef4s). We
measured our overheads of executing an 8MB birtabgt9.5+3.1 seconds on 64 compute nodes on tree@dme/P
(1 pset, 256 CPUs).

Finally, Peter’s et al. from IBM also recently pishled some performance numbers on the HTC-modeensuipport
in Cobalt [42], which shows a similar one ordemadgnitude difference between HTC-mode on Blue Gened

our Falkon support for MTC workloads on the Bluen&. For example, the authors reported a worktda@RK

tasks on 8K processors and 32 dispatchers tak@3.82conds to complete (an overhead of 5.58msapky), thut the
same workload on the same number of processorg &sitkon completed in 30.31 seconds with 32 digpatc(an
overhead of 0.92ms per task). Note that a similarklead of 1M tasks on 160K processors run by Falkan be
completed in as little as 368 seconds (0.35msgsér dverheads).

4.3.3 DataDiffusion Performance

We measured the performance of the data-aware sighedn various workloads, both with static and aiyic
resource provisioning, and ran experiments on thik/AIC TeraGrid [48] (up to 100 nodes, 200 procesiofhe
Falkon service ran on an 8-core Xeon@2.33GHz, 2@B1RJava 1.5, 100Mb/s network, and 2 ms latencth®
executors. The persistent storage was GPFS [48]«fiins latency to executors.

We investigate three diverse workloads: Monototyekldcreasing (MI) and All-Pairs (AP). We use the torkload
to explore the dynamic resource provisioning supjpodata diffusion, and the various schedulingges and cache
sizes. We use the AP workload to compare datagiiffuwith active storage [50].

4.3.3.1 Data-Aware Scheduler Performance

In order to understand the performance of the daiare scheduler, we developed several micro-bendsnma test
scheduler performance. We used the FA policy tkefopmed no I/O as the baseline scheduler, anédette
various scheduling policies. We measured overdilea®d throughput in terms of scheduling decisipes second
and the breakdown of where time was spent insideRdlkon service. We conducted our experimentsgu3i
nodes; our workload consisted of 250K tasks, wieaieh task accessed a random file (uniform disiobyfrom a
dataset of 10K files of 1B in size each. We ugssfibf 1 byte to measure the scheduling time ankechit rates with
minimal impact from the actual I/O performance efgistent storage and local disk. We compare thep&licy

using no I/O (sleep 0), FA policy using GPFS, MCaligy, MCH policy, and GCC policy. The schedulingndow



size was set to 100X the number of nodes, or 3@0®also used 0.8 as the CPU utilization thresholthe GCC
policy to determine when to switch between the M&td MCU policies. Figure 8 shows the schedulerguardnce
under different scheduling policies.
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Figure 8: Data-aware scheduler performance and codgrofiling for the various scheduling policies

We see the throughput in terms of scheduling dessper second range between 2981/sec (for FA witti®) to

as low as 1322/sec (for MCH). Note that for the peflicy, the cost of communication is significantdyger than the
rest of the costs combined, including schedulifge $cheduling is quite inexpensive for this pobsyit simply load
balances across all workers. However, we see thihtthwe data-aware policies, the scheduling cagid and light
blue areas) are significant.

4.3.3.2 Monotonically Increasing Workload

We investigated the performance of the FA, MCH, M@udd GCC policies, while also analyzing cache sifects
by varying node cache size (1GB to 4GB). The Ml klmad has a high 1/0 to compute ratio (10MB:10ni)e
dataset is 100GB large (10K x 10MB files). Eactktemads one file chosen at random (uniform distiim) from
the dataset, and computes for 10ms. The arrivalisahitially 1 task/sec and is increased by adaof 1.3 every 60
seconds to a maximum of 1000 tasks/sec. The funetimies arrival rate A from 1 to 1000 in 24 distintervals
makes up 250K tasks and spans 1415 seconds; we almaximum arrival rate of 1000 tasks/sec aswhatwithin
the limits of the data-aware scheduler, and offéaegle aggregate 1/O requirements at modest scEfes.workload
aims to explore a varying arrival rate under a esysttic increase in task arrival rate, to explore data-aware
scheduler’s ability to optimize data locality wil increasing demand.

The baseline experiment (FA policy) ran each taskctly from GPFS, using dynamic resource provisign
Aggregate throughput matches demand for arrivalsrap to 59 tasks/sec, but remains flat at an geevd4.4Gb/s
beyond that. The workload execution time was 5@&cbsds, yielding 28% efficiency (ideal being 14&6ands).

We ran the same workload with data diffusion widrying cache sizes per node (1GB to 4GB) usingGReC
policy, optimizing cache hits while keeping proeasstilization high (90%). The working set was 1@&nd with
a per-node cache size of 1GB, 1.5GB, 2GB, and 4@&Bes, we get aggregate cache sizes of 64GB, 9625H&B,
and 256GB. The 1GB and 1.5GB caches cannot fivtir&ing set in cache, while the 2GB and 4GB cadche ¢

For the GCC policy with 1GB caches, throughput lseep with demand better than the FA policy, up @1 1
tasks/sec arrival rates (up from 59), at which ptie throughput reached an average of 5.2Gb/se @ working
set caching reaches a steady state, the througigehies 6.9Gb/s. The overall cache hit rate was 8d8dlting in a
57% higher throughput than GPFS. The workload et@cuime is reduced to 3762 seconds (from 501 brsgs),
with 38% efficiency.

Increasing the cache size to 2GB (128GB aggredgéienggregate throughput is close to the demaméb(the peak
of 80Gh/s) for the entire experiment. We attribilie good performance to the ability to cache thiére working set



and then schedule tasks to the nodes that havéedqlata to achieve cache hit rates approachifg. 38ith an
execution time of 1436 seconds, efficiency was 8.5

Both the MCH and MCU policies performed signifidgnvorse than GCC, due to them being too rigid eadsing
either unnecessary transfers over the network.eavihg processors idle. However, both MCH and MGU s
managed to outperform the baseline FA policy.

Figure 9 summarizes the aggregate /O throughpuatsored in each of the experiments conducted. Weeptén
each case first, as the solid bars, the averageghput achieved from start to finish, partitiorsedong local cache,
remote cache, and GPFS, and second, as a blackthimeépeak” (actually 99 percentile) throughput achieved
during the execution. The second metric is intémgsbecause of the progressive increase in job Edion rate: it
may be viewed as a measure of how far a particaéhod can go in keeping up with user demands.

We see that the FA policy had the lowest averagautihput of 4Gb/s, compared to between 5.3Gb/s18m@Gb/s
for data diffusion (GCC, MCH, and MCU with varioaache sizes), and 14.1Gb/s for the ideal casedditian to
having higher average throughputs, data diffusitso achieved significantly throughputs towards émal of the
experiment (the black bar) when the arrival rates taghest, as high as 81Gb/s as opposed to 6Gbthd FA
policy.
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Figure 9: Ml workload average and peak (99 percenkt) throughput

Note also that GPFS file system load (the red portif the bars) is significantly lower with datdfdsion than for
the GPFS-only experiments (FA); in the worst cagth 1GB caches where the working set did notrfitache, the
load on GPFS is still high with 3.6Gb/s due toth# cache misses, while FA tests had 4Gb/s loadieMer, as the
cache sizes increased and the working set fit aheathe load on GPFS became as low as 0.4Gb/gadynthe
network load was considerably lower, with the higthealues of 1.5Gb/s for the MCU policy, and ldssnt 1Gb/s for
the other policies.

The response time (see Figure 10) is probably dribeomost important metrics interactive applicatioAverage
Response Time (ARs the end-to-end time from task submission t& empletion notification for task AR; =
WQ+TK;+D;, where WQis the wait queue time, T ks the task execution time, andiBthe delivery time to deliver
the result.

We see a significant different between the best défusion response time (3.1 seconds per task)eavorst data
diffusion (1084 seconds) and the worst GPFS (183brds). That is over 500X difference between tata d
diffusion GCC policy and the FA policy responsedimi principal factor influencing the average resgmtime is

the time tasks spend in the Falkon wait queuehénwiorst (FA) case, the queue length grew to o08K2asks as

the allocated resources could not keep up witlathigal rate. In contrast, the best (GCC with 4Gles) case only
queued up 7K tasks at its peak. The ability to krepwait queue short allowed data diffusion topkeserage

response times low (3.1 seconds), making it a bftténteractive workloads.
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4.3.3.3 All-Pairs Workload Evaluation

In order to compare data diffusion with other rethtvork, we implemented a common workload calledP/irs

(AP) [50]. This related work is part of the Chifpl] project. We call the All-Pairs use of Chaptive storageChirp

has several contributions, such as delivering grldmentation that behaves like a file system antht@ias most of
the semantics of a shared filesystem, and offdisiazit distribution of datasets via a spanningetreaking Chirp
ideal in scenarios with a slow and high latencyadaturce. However, Chirp does not address dataeaseaieduling,
so when used by All-Pairs, it typically distributais entire application working data set to eachpa node local
disk prior to the application running. This requient hinders active storage from scaling as wetlata diffusion,
making large working sets that do not fit on eadmpute node local disk difficult to handle, and guoing

potentially unnecessary transfers of data. Dafagldn only transfers the minimum data needed qler j

Variations of the AP problem occur in many appiicas. For example when we want to understand the\ber of
a new function F on sets A and B, or to learn tinaciance of sets A and B on a standard inner ptodufb0] The
AP problem is easy to express in terms of two me&ie loops over some parameter space. This regtiacture
also enables the optimization of its data accessations.

Thain et al [50] conducted experiments with bionestand data mining workloads using Chirp. The nusth-
intensive workload was where each function exectitedl second to compare two 12MB items, for an 10O
compute ratio of 24MB:1000ms. At the largest sc@® nodes and 500x500 problem size), we measured an
efficiency of 60% for the active storage implemdiota and 3% for the demand paging (to be compé#oethe
GPFS performance we cite). These experiments warducted in a campus wide heterogeneous clustbrneiies

at risk for suspension, network connectivity of Mifis between nodes, and a shared file system edté@0Mb/s
from which the dataset needed to be transferréidetcompute nodes.

Due to differences in our testing environments,jraal comparison is difficult, but we compute thesbcase for
active storage as defined in [50], and comparel#tia diffusion performance against this best case.environment
has 100 nodes (200 processors) which are dedidatethe duration of the allocation, with 1Gb/s netkw
connectivity between nodes, and a parallel fileteayps (GPFS) rated at 8Gb/s. For the 500x500 worklatzda
diffusion achieves a throughput that is 80% of llest case of all data accesses occurring to laskl(dee Figure
11).

We computed the best case for active storage @6#& however in practice, based on the efficierfcthe 50 node
case from previous works{] which achieved 60% efficiency, we believe the Ififile case would not perform
significantly better than the 80% efficiency of aatiffusion. Running the same workload through Ealklirectly
against a parallel file system achieves only 26%hefideal throughput.

In order to push data diffusion harder, we madentbekload 10X more data-intensive by reducing thempute time
from 1 second to 0.1 seconds, yielding a I/O to at® ratio of 24MB:100ms. For this workload, theotilghput
steadily increased to about 55Gb/s as more locdiechits occurred. We found extremely few cachesesiswhich



indicates the high data locality of the AP worklo&dta diffusion achieved 75% efficiency. Activersige and data
diffusion transferred similar amounts of data otle network (1536GB for active storage and 1528GBdata
diffusion with 0.1 sec compute time and 1698GB with 1 sec compute time workload) and to/from thealtel file
system (12GB for active storage and 62GB and 34@Bdéta diffusion for the 0.1 sec and 1 sec compiute
workloads respectively). The similarities in bandthi usage manifested themselves in similar effiigs) 75% for
data diffusion and 91% for the best case activeage

In order to explore larger scale scenarios, we atadl(ran the entire Falkon stack on 200 processititsmultiple
executors per processor and emulated the datddrapan IBM Blue Gene/P. We configured the Bluen&P with
4096 processors, 2GB caches per node, 1Gb/s netamkectivity, and a 64Gb/s parallel file systeme \also
increased the problem size to 1000x1000 (1M tasks),set the I/O to compute ratios to 24MB:4sechgaocessor
on the Blue Gene/P is about % the speed of thosmiinl00 node cluster). On the emulated Blue Gengd?
achieved an efficiency of 86%. The throughputsditgancreased up to 180Gb/s (of a theoretical ugpmund of
187Gb/s). It is possible that our emulation wasimistic due to a simplistic modeling of the Torustwork,
however it shows that the scheduler scales welikoprocessors and is able to do 870 schedulingsies per
second to complete 1M tasks in 1150 seconds. Tiedase active storage yielded only 35% efficienig. justify
the lower efficiency of the active storage dueh® significant time that is spent to distribute 24&B dataset to 1K
nodes via the spanning tree. Active storage use8iTRof network bandwidth (node-to-node communmaYiand
24GB of parallel file system bandwidth, while dat#fusion used 4.7TB of network bandwidth, and 384Gf
parallel file system bandwidth.
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Figure 11: AP workload efficiency for 500x500 prok#m size on 200 processor cluster and 1000x1000 plexi
size on the Blue Gene/P supercomputer with 4096 pressors

In reality, the best case active storage wouldireqeache sizes of at least 24GB to fit the 1000@Q1problem size,
while the existing 2GB cache sizes for the Blue &Bnwould only be sufficient for an 83X83 problefthis
comparison is not only emulated, but also hypothétiNevertheless, it is interesting to see thaiaant difference
in efficiency between data diffusion and activerate at this larger scale.

Our comparison between data diffusion and actieeage fundamentally boils down to a comparison ughing
data versus pulling data. The active storage impteation pushes all the needed data for a workioadl nodes via
a spanning tree. With data diffusion, nodes puly ¢he files immediately needed for a task, creptim incremental
spanning forest (analogous to a spanning treepbetthat supports cycles) at runtime that has liokboth the
parent node and to any other arbitrary node origierg storage. We measured data diffusion to parfmomparably
to active storage on our 200 processor clusterdbfdrences exist between the two approaches. Biffiasion is
more dependent on having a well balanced persistenage for the amount of computing power, but seale to
larger number of nodes due to the more selectiner@af data distribution. Furthermore, data diffssonly needs
to fit the per task working set in local cacheshea than an entire workload working set as isahse for active
storage.

4.4  Applications

We have found many real applications that are tebét for MTC than HTC or HPC. Their characteidstinclude
having a large number of small parallel jobs, a wmm pattern in many scientific applications [13h€e¥ also use



files (instead of messages, as in MPI) for intrageissor communication, which tends to make thepécations
data intensive.

We have identified various loosely coupled appiama from many domains as potential good candiddigishave
these characteristics to show examples of manydasiputing applications. These applications covefide range
of domains, from astronomy, physics, astrophyspsarmaceuticals, bioinformatics, biometrics, neciersce,
medical imaging, chemistry, climate modeling, eaoies, and data analytics. They often involve maagks,
ranging from tens of thousands to billions of tasksd have a large variance of task execution tiraeging from
hundreds of milliseconds to hours. Furthermorehdask is involved in multiple reads and writesatal from files,
which can range in size from kilobytes to gigabyfEsese characteristics made traditional resouraeagement
techniques found in HTC inefficient; also, althousgme of these applications could be coded as Hplcations,
due to the wide variance of the arrival rate ok$asom many users, an HPC implementation would gisld poor
utilization. Furthermore, the data intensive natofé¢hese applications can quickly saturate pdréilke systems at
even modest computing scales.

Many of the applications presented in this secti@ne executed via the Swift runtime system, whichurn used
Falkon, although some applications are coded dijremtjainst the Falkon APIls. All these applicatiopsse

significant challenges to traditional resource nggmaent found in HPC and HTC, from both job manageraad

storage management perspective, and are in critead of MTC enabled middleware. This section dises these
applications in more details, and explores thefqenance scalability across a wide range of systesnch as
clusters, grids, and supercomputers.

441  Functional Magnetic Resonance Imaging

We note that for each volume, each individual taskhe fMRI [52] workflow required just a few seaison an
ANL_TG cluster node, so it is quite inefficient $ahedule each job over GRAM and PBS, since thehewaet of
GRAM job submission and PBS resource allocatidarige compared with the short execution time. fuFe 12 we
show the execution time for different input datzesifor the fMRI workflow.

We submitted from UC_SUBMIT to ANL_TG and measutke turnaround time for the workflows. A 120-volume
input (each volume consists of an image file oLach200KB and a header file of a few hundred byites)lves 480
computations for the four stages, whereas the 480w input has 1960 computation tasks. The GRAMSPB
submission had low throughput although it couldénhpwtentially used all the available nodes on ttee(§2 nodes
to be exact, as we only used the IA64 nodes). Wehzavever bundle small jobs together using thetefusy
mechanism in Swift, and we show the execution timas reduced by up to 4 times (jobs were bundlea iotighly
8 groups, as the grouping of jobs was a dynamicqgss) with GRAM and clustering, as the overheadamagrtized
by the bundled jobs. The Falkon execution servigith(8 worker nodes) however further cuts down é¢lecution
time by 40-70%, as each job was dispatched effilji¢n the workers. We carefully chose the bundie dor the
clustering so that the clustered jobs only requiBechodes to execute. This choice allowed us to eoenp
GRAM/Clustering against Falkon, which used 8 nodiaisly. We also experimented with different bundgiees for
the 120-volume run, but the overall variationsdooups of 4, 6 and 10 were not significant (withB®6 of the total
execution time for the 8 groups).
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Figure 12 Execution Time for the fMRI Workflow
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442  MolDyn (Chemistry Domain)

The goal of this molecular dynamics (MolDyn) apation is to optimize and automate the computatievakflow
that can be used to generate the necessary pararaeteother input files for calculating the soiwatfree energy of
ligands, and can also be extended to protein-liganding energy. Solvation free energy is an impatrguantity in
Computational Chemistry with a variety of applicat, especially in drug discovery and design. Tbeurte
prediction of solvation free energies of small neoles in water is still a largely unsolved problemhmich is mainly
due to the complex nature of the water-solute autéons. In the study, a library of 244 neutrabhigs is chosen for
free energy perturbation calculations. This libragntains compounds with various chemical functiogr@ups.
Also, the absolute free energies of solvation st compounds are known experimentally, and willesas a tool
to benchmark our calculations. All the structuresewobtained from the NIST Chemistry WebBoakabase [53].

Our experiment performed a 244 molecule run, wiscbhomposed of 20497 jobs that should take less 9%.3
CPU hours to complete; in practice, it takes ewess las some job executions are shared betweenuiesleEigure
13 shows the resource utilization in relation tdkéa queue length as the experiment progresseds&®ethat as
resources were acquired (using the dynamic resqumésioning, starting with 0 CPUs and ending watt6 CPUs
at the peak), the CPU utilization was near perfgeten means utilized, red mean idle) with the ptioa of the end
of the experiment as the last few jobs completbd [ast 43 seconds). Figure 13 shows the samematan on a
per task basis. The entire experiment with the gtkae of the last 43 seconds consumed 866.33 CRigshand
wasted 0.09 CPU hours (99.98971% efficiency); ifindude the last 43 seconds as the experimentwirding
down, the workflow consumed 867.1 CPU hours andvasted 1.78 CPU hours, with a final efficiency of
99.7949013%. The experiment completed in 15091 rmbcon a maximum of 216 processors, which resnl@ i
speedup of 206.9; note the average number of pocefor the entire experiment was 207.26 CPUthesapeedup
of 206.9 reflects the 99.79% computed efficiency.
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Figure 13: 244 Molecule MolDyn application; summaryiew showing executor’s utilization in relation tothe
Falkon wait queue length as experiment time progresed

It is worth comparing the performance we obtain@dMolDyn using Falkon with that of MolDyn over tfitional
GRAM/PBS. Due to reliability issues (with GRAM afBS) when submitting 20K jobs over the course afrbp

we were not able to successfully run the same 2diecule run over GRAM/PBS. We therefore tried tostone
smaller experiments, in the hopes that it wouldéase the probability of doing a successful run. tésl several
runs with 50 molecules (4201 of jobs for the 50 esale run, instead of 20497 jobs for the 244 mdé&cun); the
best execution times we were able to achieve ®@5th molecule runs with GRAM/PBS (on the same tahtiiook
25292 seconds. We achieved a speedup of only 26@Xpared to 206.9X when using Falkon on the same
workflow and the same Grid site in a similar state.

We explain this drastic difference mostly due te tiipical job duration (~200 seconds) and the sabimmn rate
throttling of 1/5 jobs per second; with 200 secgutak, the most concurrent jobs we could expect4@adncreasing



the submission rate throttle resulted in GRAM/PBSegay instability, or even causing it to stop fimmuing.
Furthermore, each node was only using a singlegssmr of the dual processors available on the ctenmmdes due
to the local site PBS policy that allocates eadhga entire (dual processor) machine and doesliost ather jobs
to run on allocated machines; it is left up to #pplication to fully utilize the entire machine rabbgh multi-
threading, or by invoking several different jobgtm in parallel on the same machine. This is atgegample of the
benefits of having the flexibility to set queue ip@s per application, which is impractical to do rieal-world
deployed systems.

443 Molecular Dynamics: DOCK

The DOCK (molecular dynamics) application [54] dealith virtual screening of core metabolic targetminst
KEGG [55] compounds and drugs. DOCK6 addressegprthislem of “docking” molecules to each other. Imggal,

“docking” is the identification of the low-energyriding modes of a small molecule, or ligand, witttie active site
of a macromolecule, or receptor, whose structukmasvn. A compound that interacts strongly witreaaptor (such
as a protein molecule) associated with a diseasg infdbit its function and thus act as a benefiaillig.

Development of antibiotic and anticancer drugs acess fraught with dead ends. Each dead end pogtntially
millions of dollars, wasted years and lives. Comagiohal screening of protein drug targets helpsasshers
prioritize targets and determine leads for drugdodates.

The goal of this project was to 1) validate ourigbto approximate the binding mechanism of thetpin’s natural
ligand (a.k.a compound that binds), 2) determing keeraction pairings of chemical functional grsufrom
different compounds with the protein’s amino a@didues, 3) study the correlation between a naligeaid that is
similar to other compounds and its binding affinitith the protein’s binding pocket, and 4) priarétithe proteins
for further study.

Running a workload consisting of 934,803 moleculrsl 16K CPU cores took 2.01 hours (see Figure . per-
task execution time was quite varied with a minimafl second, a maximum of 5030 seconds, and a Ean
7131560 seconds. The two-hour run has a sustaitikghation of 99.6% (first 5700 seconds of experittjeand an
overall utilization of 78% (due to the tail endtbe experiment). Note that we had allocated 128KI€Put only
116K CPUs registered successfully and were avail&di the application run; this was due to GPFStextion in
bootstrapping Falkon on 32 racks, and was fixeldter large runs by moving the Falkon frameworlR&M before
starting, and by pre-creating log directories orFGRo avoid lock contention. We have made dozengins at 32
and 40 rack scales, and we have not encounteredphbcific problem since.
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Figure 14: 934,803 DOCKS5 runs on 118,784 CPU cores Blue Gene/P

Despite the loosely coupled nature of this appbegtour preliminary results show that the DOCK laggiion
performs and scales well to nearly full scale (118K 60K CPUSs). The excellent scalability (99.7%aééncy when
compared to the same workload at 64K CPUs) waseaetionly after careful consideration was takeavoid the
shared file system, which included the cachindhefmulti-megabyte application binaries, and thehirarof 35MB
of static input data that would have otherwise beam from the shared file system for each jobeNbat each job



still had some minimal read and write operationghio shared file system, but they were on the oofld0s of KB
(only at the start and end of computations), whi majority of the computations being in the 100sexonds, with
an average of 713 seconds.

These computations are, however, just the beginning much larger computational pipeline that veiireen
millions of compounds and tens of thousands ofginst The downstream stages use even more conumshyi

intensive and sophisticated programs that provienfore accurate binding affinities by allowing five protein
residues to be flexible and the water moleculedbaoexplicitty modeled. Computational screening, chhis

relatively inexpensive, cannot replace the wetdabays, but can significantly reduce the numbeteaid ends by
providing more qualified protein targets and lealis.grasp the magnitude of this application, thgdat run we
made of 934,803 tasks we performed represents®mfps of the search space (1 billion runs) beingsmtered by
the scientists we are working with; simple caldolas project a search over the entire parametecrespm need
20,938 CPU years, the equivalent of 48 days orlL@@K-core Blue Gene/P. This is a large problem tlaanot be
solved in a reasonable amount of time without eestgmputer scale resource. Our loosely coupledaagirholds
great promise for making this problem tractable axahageable on today’s largest supercomputers.

444  Production Runsin Drug Design

We have been working extensively with a group aeeechers at the Midwest Center for Structural Gec® at
Argonne National Laboratory, who have adopted Falkond use it in their daily production runs in miae three-
dimensional protein structures towards drug des&nce proteins with similar structures tend toaehin similar
ways, the team compares the modeled structuresntavrk proteins in order to predict their functionsa—
computationally intensive task.

As the Protein Data Bank expands exponentiallyedéomes more difficult to coax desktop machinedatohe types
of analysis required. They turned to Falkon as & teautilize their existing software applications creasingly
large machines, such as the IBM Blue Gene/P supgrater with 160K processors. “Falkon has allowedouask
bigger questions and perform experiments on a svaler before attempted — or even thought possikhkd

Andrew Binkowski, one of the main researchers imgdlin performing the productions runs. “Thistie tifference
between comparing a newly determined protein atrecto a family of related proteins versus compgaitrnto the
entire protein universe.” The team has done ath@f using existing software packages that weredestgned for
high-throughput computing or many-task computing] ased Falkon to coordinate and drive the exeawfanany
loosely-coupled computations that are treated Exkiboxes” without any application-specific codedifications.

Over the course of 7 months (09/08 — 04/09), thisig managed to run 2 million production jobs conslg 170K
CPU hours with a minimum of 256 concurrent processan average of 8192 processors, and a maximahagfo
concurrent processors; the average per job exectiioe was 310 seconds, with a standard deviatioB835
seconds.

445 Economic Modeling: MARS

We also evaluated MARS (Macro Analysis of Refin8gystems), an economic modeling application forgletrm
refining developed by D. Hanson and J. Laitner @ofine [56]. This modeling code performs a fastdrotd-based
simulation of the economic and environmental patamseof petroleum refining, covering over 20 prigna&
secondary refinery processes. MARS analyzes theepsing stages for six grades of crude oil (from-$ailfur light
to high-sulfur very-heavy and synthetic crude),vasl as processes for upgrading heavy oils andsailds. It
includes eight major refinery products includinggiine, diesel and jet fuel, and evaluates ranfi@sanluct shares.
It models the economic and environmental impactshefconsumption of natural gas, the production asel of
hydrogen, and coal-to-liquids co-production, andkseto provide insights into how refineries candme more
efficient through the capture of waste energy.

While MARS analyzes this large number of process®s variables, it does so at a coarse level withoudlving
intensive numerics. It consists of about 16K limdsC code, and can process many internal modelutiec
iterations, with a range from 0.5 seconds (1 irgefteration) to hours (many thousands of interitedations) of
Blue Gene/P CPU time. Using the power of the Bluen&P we can perform detailed multi-variable patame
studies of the behavior of all aspects of petroleefiming covered by MARS.

As a larger and more complex test, we performed p@&ameter sweep to explore the sensitivity ofitivestment
required to maintain production capacity over aegatle span on variations in the diesel productieldsy from low
sulfur light crude and medium sulfur heavy crudks.of his mimics one possible segment of the mamyptex
multivariate parameter studies that become possilifeample computing power. A single MARS modeéeution



involves an application binary of 0.5MB, static indata of 15KB, 2 floating point input variablesdaa single
floating point output variable. The average m-task execution time is 0.454 seconds.sEale this efficiently, w
performed taskatching of 600 model runs into a single task,djred a workload with 4KB of input and 4KB !
output data, and an average execution time of 2¢argls

We executed a workload with 600 million model ryas1 tasks) on 128K processors on the Blue Gene/P
Figure 15. The experiment consumed 9.3 CPU years and td888 2econds to complete. Even at thige scale,
the per task execution times were quite deterniinigith an average of 28010 seconds; this meaas ripst
processors would start and stop executing tasébait the same time, which produces the peakskndampletior
rates (blue line) it are as high as 4000 tasks/sec. As a compadsbmrocessor experiment using a small pa
the same workload had an average of 271+0.3 serthidyielded an efficiency of 97% with a speeaiifl26,89:

(ideal speedup being 130,816).
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Figure 15 MARS application (summary view) on the Blue Gend?; 1M tasks using 128K processor cor

4.4.6 Large-scale Astronomy Application Evaluation

We have implemented the AstroPori12, § which performs the “stacking” of image cutouterfr different parts o
the sky. Thisfunction can help to statistically detect objeais faint otherwise. Astronomical image collectic
usually cover an area of sky several times (inedéfiit wavebands, different times, etc). On therdthad, there ar
large differences in the sensitigs of different observations: objects detecteamne band are often too faint to
seen in another survey. In such cases we still dviiké to see whether these objects can be deteetash in ¢
statistical fashion. There has been a growing @3 to reproject each image to a common set of pixel plathes)
stacking images. The stacking improves the signaloise, and after coadding a large number of imathere will
be a detectable signal to measure the averagetfeggishape etc of theobjects. While this has been done
years manually for a small number of pointing felgerforming this task on wide areas of sky ilystematic way
has not yet been done. It is also expected thati¢hection of much fainter sources (e.g., unusbjects such as
transients) can be obtained from stacked imagesdha be detected in any individual ima

Astronomical surveyproduce terabytes of data, and contain millionshjécts. For example, the SDSS DR5 dat
has 320M objects in 9TB of images/]. To construct realistic workloads, we identifigge interesting objects (for
quasar search) from SDSS DR5. The wor set we constructed consisted of 771,725 objects58,500 files
where each file was either 2MB compressed or 6MBourpressed, resulting in a total of 1.1TB compresssd
3.35TB uncompressed. From this working set, varioumkloads were defined, witlcertain data localit
characteristics, varying from the lowest localitiy o (i.e., -1 mapping between objects and files) to the hig
locality of 30 (i.e., each file contained an averad 30 objects

The AstroPortal was tested on the ANL/UC Tera site, with up to 128 processors. The experimentestigate
the performance and scalability of the stackingecadl four configurations: 1) Data Diffusion (GZ)) Data
Diffusion (FIT), 3) GPFS (GZ), and 4) GPFS (FIT)t the start of each experimentl data is present only on tl
persistent storage system (GPFS). For data diffus® use the MCU policy and cached data on locdéaoFor the



GPFS experiments we use the FA policy and perfamathing. GZ indicates that the image data iompressed
format while FIT indicates that the image datarisampressed.

Data diffusion can make its largest impact on lagale deployments, and hence we ran a seriegpefienents to
capture the performance at a larger scale (128epsmes) as we vary the data locality. We investijahe data-
aware scheduler’s ability to exploit the data ldgdlound in the various workloads and its abilitydirect tasks to
computers on which needed data was cached. We filhatdhe data-aware scheduler can get within 90%e
ideal cache hit ratios in all cases.

The following experiment (Figure 16) offers a digdiview of the performance (time per stack percpssor) of the
stacking application as we vary the locality. Thetldata point in each case represents ideal psafare when
running on a single node. Note that although thé&&Results show improvements as locality increasesresults
are far from ideal. However, we see data diffugjets close to the ideal as locality increases beyidn
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Figure 16: Performance of the stacking applicatiorusing 128 CPUs for workloads with data locality raging
from 1 to 30, using data diffusion and GPFS

Using data diffusion, we achieve an aggregatedthi@ughput of 39Gb/s with high data locality, arsfggantly
higher rate than with GPFS, which tops out at 4Ghese results show the decreased load on sh#radtiucture
(i.e., GPFS), which ultimately gives data diffusioetter scalability.

4.4.7  Montage (Astronomy Domain)

The Montage [58] workflow demonstrated similar jelkecution time pattern as there were many smalé job
involved. We show in Figure 17 the comparison @& thorkflow execution time using Swift with clustegi over
GRAM, Swift over Falkon, and MPI. The Montage apption code we used for clustering and Falkon lagesame.
The code for the MPI runs is derived from the sameof source code, with the addition of data parting and
inter-processor communication, so when multiplecpssors are allocated, each would process pafteofnput
datasets, and combine the outputs if necessaryMPieexecution was well balanced across multiplecpssors, as
the processing for each image was similar andrfagyé sizes did not vary much. All three approacteesied to go
over PBS to request for computation nodes, we usedodes for Falkon and MPI, and also configured th
clustering for GRAM to be around 16 groups.

The workflow had twelve stages, and we only shosvghrallel stages and the total execution timé&énfigure (the
serial stages ran on a single node, and the diiteref running them across the three approachesmal, so we
only included them in the total time for comparigurposes). The workflow produced a 3x3 squareetegrosaic
around galaxy M16, where there were about 440 inpages (2MB each), and 2,200 overlappings betvtiieem.
There were twanAddstages because we divided the region into subseiadded images in each subset, and then
co-added the subsets together into a final mo¥égccan observe that the Falkon execution servidenmeed close
to the MPI execution, which indicated that jobs evdispatched efficiently to the 16 workers. The GR&xecution
with clustering enabled still did not perform aslivas the other two, mainly due to PBS queuing bead. It is
worth noting that the last stageAddwas parallelized in the MPI version, but not fbe tversion for GRAM or



Falkon, and hence the big difference in executiometbetween Falkon and MPI, and the source of tlagom
difference in the entire run between MPI and Falkon

Katz et al. [59] have also created a task-graphempntation of the Montage code, using Pegasusy ik not
implement quite the same application as us: forrgta, they ran mOverlap and mimgtbl on the porasher than
on compute nodes, and they omitted the fimsldd phase. Thus direct comparison with Swift over Balks
difficult. However, if we omit the finalmAddphase from the comparison, Swift over Falkon entabout 5% faster
than MPI, and thus also faster than the Pegasu®magp as they claimed that MPI execution time theslower
bound for them. The reasons that Swift over Falkeriorms better are that MPI incurs initializatend aggregation
processes, which involve multi-processor commuiooat for each of the parallel stages, where Fakoquires
resource at one time and then the communicatiodsspatching tasks from the Falkon service to wskeve been
kept minimum (only 2 message exchanges for eachdjsjpatch). The Pegasus approach used Condor’'s-iglid
mechanism, where Condor is still a heavy-weighedcder compared with Falkon.
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Figure 17: Execution Time for the Montage Workflow

448 DataAnalytics: Sort and WordCount

Many programming models and frameworks have be&odoced to abstract away the management details of
running applications in distributed environmentsap®educe [34] is regarded as a power-leveler thbtes
computation problems using brutal-force resourttegrovides a simple programming model and powertuitime
system for processing large datasets. The modsed on two key functions: “map” and “reduce”, amelruntime
system automatically partitions input data and dales the execution of programs in a large clusterommodity
machines. MapReduce has been applied to documecegsing problems (e.g. distributed indexing, Bgrti
clustering).

Applications that can be implemented in MapRedueeaasubset of those that can be implemented ift Sué to
the more generic programming model found in Swifantrasting Swift and Hadoop are interesting asoitld
potentially attract new users and applicationsysiesns which traditionally were not considered.

We compared two benchmarks, Sort and WordCounttestdd them at different scales and with diffedatasets.
[16] The testbed consisted of a 270 processor alugteraPort at UChicago). Hadoop (the MapReduce
implementation from Yahoo!) was configured to usadblop Distributed File System (HDFS), while Swifted
Global Parallel File System (GPFS). We found Swifered comparable performance with Hadoop, a singy
finding due to the choice of benchmarks which fadothe MapReduce model. In Sorting over a rangadll to
large files, Swift execution times were on averag2o higher when compared to Hadoop. However, ford@ount,
Swift execution times were on average 75% lower.

Our experience with Swift and Hadoop indicate thatfile systems (GPFS and Hadoop) are the maitebetks as
applications scale; HDFS is more scalable than GBSt still has problems with small files, andréquires
applications be modified. There are current effant&alkon to enable Swift to operate over locakdirather than



shared file systems and to cache data acrossvdlish) would in turn offers comparable scalabilitydgperformance
to HDFS without the added requirements of modifyapglications.

5 Contributions and Conclusions

We see the dynamic analysis of large datasets timpertant due to the ever growing datasets thatine be
accessed by larger and larger communities. Attargpb address the storage and computational prebdemparately
(essentially forcing much data movement betweenpetational and storage resources) will not scateaorrow’s

peta-scale datasets and will likely yield significanderutilization of the raw computational resms.

It has been argued that data intensive applicattansot be executed in grid environments becausieedfigh costs
of data movement. But if data analysis workloadgehaternal locality of reference, then it can badible to acquire
and use even remote resources, as high initial dat@ement costs can be offset by many subsequémtadalysis
operations performed on that data. We envisioma'défusion” as a process in which data is stotitaty moving
around in the system, and that different applicetioan reach a dynamic equilibrium this way. Orre tbénk of a
thermodynamic analogy of an optimizing strategytémms of energy required to move data around éiptil
wells”) and a "temperature" representing randonemr perturbations (“job submissions”) and systaitures.
Our work proposes exactly such a stochastic opéimiz

We argue that data locality is critical to the sagsful and efficient use of large distributed systdor data-intensive
applications, where the threshold of what consiguad data-intensive application is lowered evergryas the
performance gap between processing power and stgragormance widens. Large scale data managemmé¢he i
next major road block that must be addressed iengi@gl way, to ensure data movement is minimizethtefligent
data-aware scheduling both among distributed coimgugites, and among compute nodes. Storage systesign
should shift from being decoupled from the computhesources, as is commonly found in today’s lacge
systems. Storage systems must be co-located arhengompute resources, and make full use of alluress at
their disposal, from memory, solid state storagpinring disk, and network interconnects, giving nthe
unprecedented high aggregate bandwidth to suppdytever growing demand for data-intensive appéioatat the
largest scales.

We have designed and implemented Falkon, a geratialn of the initial prototype, the AstroPortal, énable the
rapid and efficient execution of many independebsjon large compute clusters. Falkon combineg tterehniques
to achieve this goal: (1) multi-level scheduling énable dynamic resource provisioning; (2) a stieeu task
dispatcher able to achieve order-of-magnitude highsk dispatch rates than conventional schedukensd; (3)

performs data caching and uses a data-aware sené¢dwdo-locate computational and storage resourgatkon has
been deployed and tested in a wide range of enwiemts, from 100 node clusters, to Grids (TeraGrid),
specialized machines (SiCortex with 5832 CPUsxupercomputers (IBM BlueGene/P with 160K CPUSs).crgh

benchmarks have shown Falkon to achieve over 1%kkkstsec throughputs, scale to millions of queastls, and
to execute billions of tasks per day. Data diffusihas also shown to improve applications scatsibdind

performance, with its ability to achieve hundredssb/s 1/0 rates on modest sized clusters, withs THD rates on
the horizon.

There are various fundamental research questiorfsawe addressed through this work. They have cehi@n two

main areas, data and compute resource managemdripe they relate to particular workloads of datalysis on
large datasets. We have explored a variety of egidins from various domains, such as astronong-ghysics,

medicine, chemistry, economics, bio-informaticsahaceuticals, physics, and analytics in orderhtmasoff the

flexibility and effectiveness of Falkon and datdfiiion on real world applications; much of the reaich in the
wide range of scientific domains has been accommgdighrough the fantastic synergy that has beataentebetween
Falkon and the Swift parallel programming system.
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