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1 Introduction 

Large datasets are being produced at a very fast pace in the astronomy domain.  In principle, these datasets are most 
valuable if and only if they are made available to the entire community, which may have tens to thousands of 
members.  The astronomy community will generally want to perform various analyses on these datasets to be able to 
extract new science and knowledge that will both justify the investment in the original acquisition of the datasets as 
well as provide a building block for other scientists and communities to build upon to further the general quest for 
knowledge.   

Grid Computing has emerged as an important new field focusing on large-scale resource sharing and high-
performance orientation.  The Globus Toolkit, the “de facto standard” in Grid Computing, offers us much of the 
needed middleware infrastructure that is required to realize large scale distributed systems.  We proposed to develop 
a collection of Web Services-based systems that use grid computing to federate large computing and storage 
resources for dynamic analysis of large datasets.  We proposed to build a Globus Toolkit 4 based prototype named 
the “AstroPortal” that would support the “stacking” analysis on the Sloan Digital Sky Survey (SDSS).  The stacking 
analysis is the summing of multiple regions of the sky, a function that can help both identify variable sources and 
detect faint objects.  We proposed to deploy the AstroPortal on the TeraGrid distributed infrastructure and apply the 
stacking function to the SDSS DR5 dataset, which comprises more than 320 million objects dispersed over 1.5 
million files, a total of 9 terabytes of data.   

We claimed that our work with the AstroPortal would lead to interesting and innovative research work in three main 
areas: 1. resource management (efficient task dispatch, dynamic resource provisioning); 2. data management (data 
diffusion, data-aware scheduling); and 3. applications (performance and scalability).  We have produced interesting 
and useful results at both the theoretical and practical level, and have even generalized our results. In generalizing 
our results, we have come to define a new paradigm, called Many-Task Computing (MTC) [20].  

Many-task computing aims to bridge the gap between two computing paradigms, high throughput computing and 
high performance computing. Many-task computing denotes high-performance computations comprising multiple 
distinct activities, coupled via file system operations. The aggregate number of tasks, quantity of computing, and 
volumes of data may be extremely large. Traditional techniques found in production systems found in the scientific 
community to support many-task computing do not scale to today’s largest systems, due to local resource manager 
scalability and granularity, efficient utilization of the raw hardware, long wait queue times, and shared/parallel file 
system contention and scalability. To address these limitations, we adopted a “top-down” approach to building the 
middleware – Falkon [2, 4, 22] – to support the most demanding many-task computing applications at the largest 
scales.  

Falkon, the Fast and Light-weight tasK executiON framework, integrates (1) multi-level scheduling to enable 
dynamic resource provisioning and minimize wait queue times, (2) a streamlined task dispatcher able to achieve 
order-of-magnitude higher task dispatch rates than conventional schedulers, and (3) data diffusion which performs 
data caching and uses a data-aware scheduler to co-locate computational and storage resources. Micro-benchmarks 
have shown Falkon to achieve over 15K+ tasks/sec throughputs, scale to millions of queued tasks, execute billions 
of tasks per day, and scale to hundreds of thousands of processors. Data diffusion has also shown to improve 
applications scalability and performance, with its ability to achieve hundreds of Gb/s I/O rates on modest sized 
clusters, with Tb/s I/O rates on the horizon. Falkon has shown orders of magnitude improvements in performance 
and scalability than traditional approaches to resource management across many diverse workloads and applications 
(astronomy, physics, astrophysics, pharmaceuticals, bioinformatics, biometrics, neuroscience, medical imaging, 
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chemistry, climate modeling, economics, and data analytics) at scales of billions of tasks on hundreds of thousands 
of processors across clusters, specialized systems, Grids, and supercomputers. Falkon’s performance and scalability 
have enabled a new class of applications called Many-Task Computing to operate at previously believed impossible 
scales with high efficiency. We are grateful for the generous support of NASA GSRP program, which helped fund 
this research for three years, and helped produce 23 publications and proposals [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. 

Over the past year and a half, Falkon [2, 4] has seen wide deployment and usage across a variety of systems, from the 
TeraGrid [35], the SiCortex [36], the IBM Blue Gene/P [37], and the Sun Constellation [35]. Figure 1 shows plot of 
Falkon across these various systems from December 2007 – April 2009. Each blue dot represents a 60 second average of 
allocated processors, and the black line denotes the number of completed tasks. In summary, there were 166,305 peak 
concurrent processors, with 2 million CPU hours consumed and 173 million tasks for an average task execution time of 64 
seconds and a standard deviation of 486 seconds. Many of the results presented here are represented in Figure 1, although 
some applications were run prior to the history log repository being instantiated in late 2007.  

 
Figure 1: December 2007 – April 2009 plot of Falkon across various systems (ANL/UC TG 316 processor cluster, SiCortex 5832 

processor machine, IBM Blue Gene/P 4K and 160K processor machines, and the Sun Constellation with 62K processors) 

The rest of this report is organized as follows. We cover each of the three years of the fellowship, with the proposal 
for each year, as well as the results for that particular year. For the third year of the proposal, we went in more depth 
with the results, including results from other applications not specifically from astronomy, that have benefited from 
the research work generated by this fellowship and the AstroPortal to be exact. We finally conclude the report by 
outlining our contributions.   

2 Year 1 

The term “the Grid” denotes a distributed computing infrastructure for advanced science and engineering.  Grid 
computing has emerged as an important new field, distinguished from conventional distributed computing by its 
focus on large-scale resource sharing, innovative applications, and high-performance orientation. [24]  

The astronomy community has an abundance of imaging data (i.e. SDSS [57], GSC-II [60], 2MASS [61], POSS-II 
[62], etc) at its disposal which are essentially the “crown jewels”; however the terabytes of data makes the analysis 
of these datasets a very difficult process traditionally.  Large astronomy datasets are generally very large (terabytes 
+) and contain many objects (100 million +) separated into many files (100,000+). 

We propose to use grid computing as the main mechanism to enable the dynamic analysis of large astronomy 
datasets.  There are five reasons why analyzing these large datasets is not trivial: 1. large size of the datasets (TB+ 
in size, 100M+ objects); 2. large number of users (1,000s); 3. large amount of resources needed to have adequate 
performance (potentially 1,000s of processors and 100s TB of rotating storage); 4. dispersed geographic distribution 
of the users and resources; and 5. heterogeneity of the resources. 

The key question we will answer by the successful implementation of this proposal is: “How can the analysis of 
large astronomy datasets be made a reality for the astronomy community using Grid resources?”  Our answer is the 
“AstroPortal”, a science gateway to grid resources that is specifically tailored for the astronomy community.   
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Some of the interesting and innovative research work that will be the building blocks of the AstroPortal will be: 1. 
resource provisioning (advanced resource reservations, resource allocation, resource de-allocation, and resource 
migration); 2. data management (data location, data replication, and data caching); and 3. distributed resource 
management (coupling data and processing resources together efficiently, and distributed resource management for 
scalability).   

The AstroPortal is a real implemented system that gives the astronomy community a new tool to advance their 
research and to open new doors to opportunities never before possible.  At the same time, the building blocks of the 
AstroPortal have uncovered new approaches to resource and data management that are specifically tailored for the 
efficient and successful dynamic analysis of large scientific datasets.   

2.1 AstroPortal Implementation & Evaluation 
The AstroPortal implementation will be based on various components of the Globus Toolkit version 4 (GT4) [25], 
and it will be deployed in the TeraGrid [35].  Some of the GT4 components are: WS GRAM [25], MDS4 [26], RFT 
[25], GridFTP [27], RLS [25], DRS [25], and WS [25].  The implementation will be done in two versions focusing 
on different objectives: 1) AstroPortal functionality as a science gateway, along with the needed resource 
management support for astronomy analysis code to be efficiently run on large datasets; 2) it will focus on a 
distributed resource management design that will enhance scalability and performance of the AstroPortal.   

The rest of Section 3 will assume the use of the SDSS DR4 [28] dataset as it will be the first supported dataset in our 
prototype to be deployed on the ANL/UC TeraGrid testbed.   

2.1.1 AstroPortal Architecture 

There are several components that make the building blocks of the AstroPortal (AP): 1) the AstroPortal Web Service 
(AP WS), 2) the AstroData Manager (AD), 3) the Astro Clients (AC) running on the compute nodes, and 4) the User 
Clients (UC).  The communication between all these components would be using Web Services (WS).  Furthermore, 
we will leverage GT4 functionality which offers persistent state storage for WS; the persistent state will make the 
AP WS more robust to failures as it will offer the alternative to continue execution of unfinished jobs after a system 
restart.   

The AP WS and the AD are the two main components of the system where the resource management innovation 
needs to occur; furthermore, both of these components are rather generic, and with minor tuning, could be used in 
the analysis of other large non-astronomy related datasets.  The AC and UC are specific to the astronomy 
community, and will offer the analysis and visualization functionality needed make the AP system useful to 
astronomers.    

The AP WS is the centralized gateway for all UC to submit their analysis work into the grid.  Once the AP WS is up 
through a basic bootstrapping mechanism, the AP WS would register itself with a well known MDS4 Index, so UC 
could dynamically find the location of the AP WS.  The UC could use many existing tools offered by the SDSS / 
SkyServer [63] to find the location (the sky coordinates – {ra dec band}) of the interesting objects in question.  The 
UC then packages the list of locations along with the analysis to be performed, and it is sent to the AP WS for 
processing as a job.  Initially, the AP WS would make some advanced reservations (via GRAM) of some predefined 
set of resources for a predefined duration.  New resources could be reserved dynamically to increase the 
performance of the AP under heavy loads, and resources could be de-allocated to a minimum under light loads.  
Upon the AP WS receiving the work from the UC, it places the list of locations in a user queue and spawns multiple 
threads to find (via RLS) the necessary data within the storage hierarchy.  ACs use this data to perform the 
appropriate operation, and sends the results back to the AP WS.  When the AP WS received the results from an 
entire job, it packages or aggregates them depending on the particular analysis performed, and sends the results back 
to the UC.  For relatively large results, only the location of the results will be returned via WS, and the actual results 
will be retrievable via GridFTP for better efficiency.     

The storage hierarchy is one of the key design choices that differentiates the AstroPortal from other related work.  
The storage hierarchy consists of 4 layers: remote data repository (REMOTE), TeraGrid GPFS (WAN), ANL/UC 
GPFS (LAN), and local storage (LOCAL).  Each storage layer gets the data closer and closer to the computational 
resources making the analysis run faster.  The AP WS could use RLS to maintain a coherent state between the 
replica location among the different layers (LOCAL, LAN, WAN, REMOTE).  Ideally, as the data gradually flows 
in (from REMOTE, to WAN, to LAN, to LOCAL) as AC access the data, jobs would run faster over time.  This 
would be true if the set of resources was static, however we are targeting a dynamic system which has a variable 
pool of resources.  The REMOTE layer will offer persistent storage, the WAN GPFS and local GPFS (LAN) should 
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offer relatively persistent storage, but the LOCAL disk storage will be fairly dynamic, as worker resources will start-
up and terminate regularly.      

In order for the AP to reach that best case scenario performance, there would be a need for a worker resource to 
efficiently transfer its state (work queues and locally cached data) from one resource (i.e. node) to another.  As the 
system is used, it is possible that this transferring of state take longer due to a growing local cache of data.  This is 
high cost of transferring state is OK as long as it does not occur too often, but that means that the system will not be 
very dynamic and will not be able to respond to "hot-spots" of large number of queries for a short period of time 
without wasting resources.  We believe some innovative resource migration mechanisms could help keep the 
LOCAL layer available for longer periods, and hence improving the likelihood that data is read from the fastest 
layer (LOCAL) during the analysis. 

We envision that a natural evolution to the AP will be distribute the resource management decisions of the AP WS, 
offering a more scalable architecture!  The majority of the intra-site communication remains unchanged, with the 
exception that the MDS4 Index need not be specifically associated with any particular site.  Each AP WS from each 
site would register with the MDS4 Index; when users would query the MDS4 Index, users could pick a possible AP 
WS at random, or based on some simple metrics (i.e. AP WS load, latency from the AP WS to the user, etc) that 
MDS4 exposes to the users about each AP WS.  The key to the enhanced performance is the ability to harness all the 
resources across various sites in the TG; the interaction between the various AP WS from each of the various sites is 
critical.  Each AP WS would get some work from UC, and it would have a choice of completing it locally or 
forwarding the work to another site that might offer faster performance due to data locality, more available 
resources, faster hardware, etc.   

2.1.2 Large Dataset Analysis Support 
There are many different analysis/operations that the astronomy community can apply to astronomy datasets.  One 
simple operation would be the GET operation, in which the input would be a list of locations that need to be 
retrieved, and the output would be the images corresponding to the input locations.  The GET operation could be 
used if the user wanted to run some custom analysis not offered by the AP on a subset of the original dataset.  
Another operation could be MONTAGE, in which the input would be the coordinates to a rectangular area (4 set of 
coordinates), and the output would be an image that represented the entire rectangular area stitched together from 
smaller images.  The MONTAGE operation could be useful for the visualization of the sky at different levels of 
detail.  We will focus on the STACKING operation, in which the input would consist of a list of locations, and the 
output would be a single image corresponding to the stacked images.  Stacking could be used to enhance faint 
objects that would otherwise have not been detected.  In our initial prototype, we plan on supporting the GET 
operation and the STACKING operation.  To the best of our knowledge, there is no system out there offering a 
STACKING like service for astronomy datasets.  We do not plan to implement the MONTAGE operation since 
there currently exists a system (Montage [58]) that will be deployed on the TeraGrid as part of the NVO project.   

2.1.3 Evaluation Methodology 

We intend to thoroughly test the AstroPortal performance, scalability and robustness.  Our initial evaluation will be 
conducted via DiPerF [29, 30, 31], a DIstributed PERformance testing Framework, aimed at simplifying and 
automating service performance evaluation.   

The AP will be first deployed at the ANL/UC site in the TeraGrid, while the distributed AP will be deployed in the 
entire TG across eight different sites geographically distributed across the US.  Our experiments will involve both 
very controlled experiments on dedicated resources within the TG, and more realistic scenario experiments with the 
UC running in another testbed, PlanetLab [32].  PlanetLab will offer real Internet conditions as the 500+ nodes are 
geographically distributed all over the world with relatively poor connectivity in comparison to the TG testbed. 

2.2 Open Research Questions 
We believe that there are at least three main areas with open research problems that the architecture design of the 
AstroPortal exposes.  These areas are all in the broad context of resource management; they include: resource 
provisioning, data management, and distributed resource management. 

Resource provisioning includes everything from advanced reservations, to resource allocation, to resource de-
allocation issues in large scale systems.  Different techniques and heuristics will apply for managing efficiently the 
set of resources depending on the problem we are addressing; some of the important things will be workload 
characteristics, number of users in total and number of concurrent users, data set size and distribution, computational 
intensive analysis, and I/O intensive analysis.  The resource provisioning will be very important in order to achieve 
efficient use of existing resources, yet maintain a responsive and good performance system.     
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Data management: Data location, data caching, and data replication: Since one of our first two operations the 
AstroPortal will support is STACKING, we will focus on our motivation for the storage hierarchy described in 
Section 3.1, and the data management optimizations we hope to investigate.  In a preliminary performance 
evaluation of the various data access methods, we found that there is a wide range of performance differences 
between the various different access methods.  For example to complete 100K crops (needed for either the GET or 
the STACKING) on 100 nodes, the best case scenario is getting the data from the LOCAL layer which takes 
between at most 30 seconds.  The next best performance is delivered when getting the data from the LAN layer, 
taking at most 200 seconds.  The worst performance was the WAN layer, with times as high as 3000 seconds.  
Notice the difference in performance among the different layers in the storage hierarchy, which could open 
opportunities for good data access optimizations.  There are some very interesting problems around data 
management, in which we have a very large data set that we want to break up among various sites, but also do 
some level of replication among the sites for improved performance.  Furthermore, doing data movement based on 
past workloads and access patterns might prove to offer significant performance gains.  We envision that the 
AstroData Manager will keep track of usage statistics on each object form the dataset, which will later be used to 
keep the most likely items in the fastest and smallest layer, optimizing the time to access the more popular data.  
Another significant challenge will be resource migration, in which our goal is to perform efficient state transfer 
among worker resources while maintaining a dynamic system.   

Distributed Resource Management: The inter-site communication among the AstroPortal Web Service and its 
effects on the overall system performance is very interesting; work can be performed at the local site, or it could be 
delegated to another site that in theory could complete the work faster; the algorithms, the amount of state 
information, and the frequency of state information exchanges all contribute to how well and evenly the workload is 
spread across the various AP WS, which ultimately decides the response time that the user observes, and the 
aggregate throughput the entire distributed AstroPortal system can sustain.  The successful implementation the 
distributed AP WS and the optimization of the use of both the data storage and the computational resources could 
lead to a scalable system supporting large numbers of concurrent users while providing very fast response times in 
comparison to traditional single server implementations.  The use of the GT4 throughout the architecture will allow 
the system to interoperate with other system easily, and provide a standard method of accessing the system.   

2.3 Results 
We have made significant progress since our initial proposal.  This section will first discuss the completed 
milestones, followed by the following short-term goals, the deliverables we expect to produce, and the dissemination 
of our results.   

We initially proposed to build the AstroPortal, which would implicitly involve interesting and innovative research 
work in three main areas: 1) resource provisioning, 2) data management, 3) distributed resource management.   

At this point we have developed a Web Services-based system, AstroPortal, that uses grid computing to federate 
large computing and storage resources for dynamic analysis of large datasets. We have deployed the AstroPortal on 
the TeraGrid distributed infrastructure and is now online in beta testing by our collaborator’s group Alex Szalay at 
John Hopkins University.   

As for the three main areas that we claimed to address in our work, we have implemented four basic building blocks 
to address them.  3DcacheGrid, Dynamic Distributed Data cache for Grid applications addresses the data 
management.  CompuStore, a Data Aware Task Scheduler, addresses the distributed resource management.  DRP, 
Dynamic Resource Provisioning, addresses resource provisioning.  Finally, DeeF, Distributed execution 
environment Framework, is used to integrate all these three basic components into a unified execution environment 
that can be used to facilitate the ease of implementation of applications. 

3 Year 2 

3.1 Proposal 
As a continuation to our Year 1 proposal, we would like to generalize our work from the AstroPortal even further 
beyond just the implementation of the basic components (3DcacheGrid, CompuStore, DRP, and DeeF).  Although 
these basic building blocks should allow the implementation of many applications to be built with relatively little 
effort, we believe it would be valuable to define an abstract model that formally defines each basic component and 
its interaction with other components.  This abstract model should allow us to explore the general problem space 
much more freely as we will break free of any application specific implementation or feature which might have 
influenced us when we implemented the basic building blocks and the AstroPortal.    
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The key observation we make is that as processing cycles become cheaper and data sets double in size every year, 
the main challenge for a rapid turnaround in the analysis of large datasets is the location of the data relative to the 
available computational resources; even with high capacity network interconnects, moving the data repeatedly to 
distant computational resources is becoming the bottleneck. There are large differences in data access speeds among 
the hierarchical storage systems normally found today in large distributed systems.  Furthermore, data analysis 
workloads can be time varying in both their complexity and frequency, making both the computational and storage 
resource demands vary frequently. 

Abstract Model: The analysis of large datasets normally follows a split/merge methodology, which includes an 
analysis query to be answered, which gets split down into independent tasks to be computed, after which the results 
from all the tasks are merged back into a single aggregated result.  The hypothesis is that significant performance 
improvements can be obtained in the analysis of large dataset by leveraging information about data analysis 
workloads rather than individual data analysis tasks.  We define workloads to be a complex query that can be 
decomposed into simpler tasks, or a set of queries that together answer some broader analysis questions.  We believe 
it is feasible to allocate compute resources and caching storage resource that are relatively remote from the original 
data location, co-scheduled together to optimize the performance of entire data analysis workloads.  Based on the 
split/merge methodology, we propose AMDASK, an Abstract Model for DAta-centric taSK farms, which defines the 
abstract model that allows us to study the stated hypothesis.  Traditionally, task farms have been defined as a 
common parallel pattern which drives the computation of independent tasks, where a task is a self contained 
computation.  The data-centric component of the abstract model emphasizes the central role data plays in the task 
farm model we are proposing, and the fact that the task farm is optimized to take advantage of data cache storage and 
data locality found in many large datasets and typical application workloads.  Together, a data-centric task farm is 
defined as a common parallel pattern which drives the independent computational tasks taking into consideration the 
data locality in order to optimize the performance of the analysis of large datasets.  This definition implies the 
integration of data semantics and application behavior in order to address critical challenges in the management of 
large scale datasets and the efficient execution of application workloads.   

We intend to validate the AMDASK model through simulations.  We expect the discrete event simulations to show 
the AMDASK model is both efficient and scalable given a wide range of simulation parameters.  Once the model is 
validated, we will show that the current set of basic building blocks and AstroPortal application fits the model, as 
well as possibly implementing other applications on top of AMDASK in order to show the model’s efficiency, 
effectiveness, scalability, and flexibility in practice.   

Simulations: We will implement the AMDASK model in a discrete event simulation that will allow us to investigate 
a wider parameter space than we could in a real world implementation and deployment.  We expect the simulations 
to both validate the AMDASK model and help us prove that the model is efficient and scalable given a wide range of 
simulation parameters (i.e. number of storage and computational resources, communication costs, management 
overhead, and workloads – including inter-arrival rates, query complexity, and data locality). 

The simulations will specifically attempt to model a grid computing environment comprising of computational 
resources, storage resources, batch schedulers, various communication technologies, various types of applications, 
and workload models.  We will perform careful and extensive empirical performance evaluations in order to create 
accurate input models to the simulator; the input models include 1) communication costs, 2) data management costs, 
3) task scheduling costs, 4) storage access costs, and 5) workload models.   

We expect to be able to scale simulations to more computational and storage resources than we could achieve in a 
real deployed system due to the availability of resources.  Furthermore, assuming the input models to be correct, we 
should be able to accurately measure the end-to-end performance of various applications using a wide range of 
strategies for the various resource management components.    

Applications: After showing that the defined basic building blocks (3DcacheGrid, CompuStore, DRP, and DeeF) 
and the AstroPortal fit the general abstract model, we intend to further pursue the identification and implementation 
of other applications to use the basic components based on the AMDASK model in order to prove both the 
effectiveness and the flexibility of the abstract model in practice.  For each particular application, we also expect to 
quantify the efficiency and expected scalability based on the dataset sizes and typical workloads.     

We have identified two such applications.  The first is application is very similar to the “stacking” analysis and uses 
the same SDSS image dataset.  This application is named “montage”, which performs the stitching of many images 
in a contiguous portion of the sky to produce a single unified image.  Another application we identified is from the 
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astro-physics domain which would utilize simulation data (as opposed to image data) from the Flash dataset.  The 
applications that we have identified to fit the AMDASK model are volume rendering and vector visualization.  The 
dataset is composed of 32 million files (1000 time steps times 32K files) taking up about 15TB of storage resources.  
The dataset contains both temporal and spatial locality, which should offer ample optimization opportunities in the 
data management component.  More information can be found on the ASC / Alliances Center for Astrophysical 
Thermonuclear Flashes at their website at http://www.flash.uchicago.edu/website/home/. 

3.2 Results 
This section will only discuss the progress we have made on the Year 2 proposal.  This section will first discuss the 
completed milestones, followed by the following short-term goals.   

Our proposal which built upon the work on the AstroPortal and Falkon centered on two main areas: the 1) definition 
of an abstract model for data-centric task farms, and the 2) validation of the abstract model.  Our progress has been 
mostly in the formally defining the abstract model.  A complete definition of the abstract model can be found in 
“Harnessing Grid Resources with Data-Centric Task Farms”.      

Base Definitions: A data-centric task farm has various components (i.e. computational resource where the tasks are 
to execute, storage resources where the data needed by the tasks is stored, etc).  We formally defined 12 basic 
elements that are later used to derive relations regarding the model: 1) Persistent data stores, 2) Transient data stores, 
3) Transient resources, 4) Data Objects, 5) Store Capacity, 6) Compute Speed, 7) Load, 8) Ideal Bandwidth, 9) 
Available Bandwidth, 10) Copy Time, 11) Tasks, and 12) Computational Resource State.     

Execution Model: We also defined an execution model, to tie the relationships between the basic definitions defined 
prior.  The execution model outlines the respective policies that control various parts of the execution model and how 
they relate to the definitions in the previous section. Each incoming task is dispatched to a transient resource, 
selected according to the dispatch policy. If a response is not received after a time determined by the replay policy, 
or a failed response is received, the task is re-dispatched according to the dispatch policy. A missing data object that 
is required by a task and does not exist on the transient data store is copied from transient or persistent data stores 
selected according to the data fetch policy. If necessary, existing data at a transient data store are discarded to make 
room for the new data, according to the cache eviction policy. Each computation is performed on the data objects 
found in a transient data store. When all computations are complete, the result is aggregated and returned; this 
aggregation of the results is assumed to be free to simplify the abstract model.  Finally, we define a resource 
acquisition policy that decides when, how many, and for how long to acquire new transient computational and 
storage resources for. Similarly, we also define a resource release policy that decides when to release some acquired 
resources.  

The Performance and Efficiency of the Abstract Model:  We investigate when we can achieve good performance 
with this abstract model for data-centric task farms and under what assumptions. We define various costs (costs per 
task and average task execution time) and efficiency related metrics (efficiency, computational intensity, efficiency 
overheads). Furthermore, we explore the relationships between the different parameters in order to optimize 
efficiency. 

Cost per task: We define the cost per task )(κχ  as follows: 
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Workload Execution Time with Overhead: In general, the total execution time for a task Κ∈κ  includes overheads, 

which reduced efficiency by a factor of 
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Efficiency: We define the efficiency, Ε , of a particular workload as 
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We claim that for the caching mechanisms to be effective in this model (i.e. the needed data objects to be found in 
transient data stores), the aggregate capacity of our transient storage resources Τ  is greater than our workload’s 
working set, Ω , (all data objects required by a sequence of tasks) size; formally, we can say ||)( Ω≥∑

Τ∈τ
τσ .  

We also claim that we can obtain 5.0>Ε  if ),()()( τδζκοκµ +> , where )(κµ , )(κο , ),( τδζ  are the time to 

execute and dispatch the task Κ∈κ , and copy the object δ  to Τ∈τ , respectively.  

Speedup: We define the speedup, S , of a particular workload as ||* TES = . 

Optimizing Efficiency: Having defined both efficiency and speedup, it is possible to maximize for either one, as 
efficiency normally monotonically decreases and speedup increases with more resources used.  We can optimize 
efficiency by finding the smallest number of transient compute/storage resources ||Τ  while we maximize speedup 

times efficiency.   

4 Year 3 

4.1 Proposal 
As a continuation to our initial proposal, we would like to generalize our work further to allow a large class of 
applications to transparently use the mechanisms that allowed the AstroPortal to perform and scale so well.  Those 
mechanisms have been implemented in Falkon, to support efficient task dispatch, dynamic resource provisioning, 
and data management through data diffusion.  We plan on exploring the performance of data diffusion with more 
applications and workloads through the synergy we have created between Falkon and the Swift parallel programming 
system.  We have integrated Falkon into the Karajan workflow engine, which in term is used by the Swift parallel 
programming system. Thus, Karajan and Swift applications can use Falkon without modification. We have already 
observe reductions in end-to-end run time by as much as 90% when compared to traditional approaches in which 
applications used batch schedulers directly by performing dynamic resource provisioning and providing applications 
with a lighter weight task dispatch mechanism.  Swift has been applied to applications in the physical sciences, 
biological sciences, social sciences, humanities, computer science, and science education.  We have successfully 
executed several applications (medical imaging, astronomy image analysis, molecular dynamics simulations) through 
Swift over Falkon (without data diffusion).  We plan on investigating the performance benefits of data diffusion on 
these applications as well as others from bio-informatics, pharmaceuticals, and physics for our Year 3 Proposal.  
There is considerable work that needs to be done to interface the Swift system’s data management capabilities to 
those of Falkon’s data management capabilities in order for Swift applications to take advantage of the data diffusion 
from Falkon. 
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We also plan to evolve the Falkon architecture from the current 2-Tier architecture to a 3-Tier one. We are expecting 
that this architecture change would allow us to introduce more parallelism and distribution of the currently 
centralized management component in Falkon, and hence offer higher dispatch and execution rates than Falkon 
currently supports. We are pursuing this work with the goal to have Falkon run at considerably larger scales, such as 
those found on the latest IBM BlueGene/P (BG/P) that will be online in 2008 at Argonne National Laboratory. The 
work in porting Falkon to the BG/P will open new opportunities to applications that traditionally could not execute 
on the BG/P due to the lack of support of task farms. It will be crucial to test the limits of the 3-Tier architecture 
from a performance point of view to evaluate the appropriateness of Falkon on the BG/P which can scale to 10s of 
millions of processors (the current configuration will boast 128K CPU cores). Furthermore, we will also be working 
at simplifying the various components in Falkon, including the communication protocols that are internal to the 
system. We plan to implement the Executor in C (in addition to the one that is already implemented in Java), and 
offer a proprietary TCP-based communication protocol (as opposed to the existing Web Services protocol) between 
the Executors and the Dispatcher. This transition should allow Falkon to achieve higher performance due to the 
lighter weight communication protocol, and allow the Executor to be deployed on computer architectures that do not 
support Java, such as the IBM BlueGene.   

4.2 Results 
To address the limitations of existing resource management systems in supporting many-task computing, we adopted 
a “top-down” approach to building the middleware – Falkon – to support the most demanding many-task computing 
applications at the largest scales. Falkon, the Fast and Light-weight tasK executiON framework, integrates (1) multi-
level scheduling to enable dynamic resource provisioning and minimize wait queue times, (2) a streamlined task 
dispatcher able to achieve order-of-magnitude higher task dispatch rates than conventional schedulers, and (3) data 
diffusion which performs data caching and uses a data-aware scheduler to co-locate computational and storage 
resources. This section will describe each of these in detail. 

4.2.1 Architecture Overview 
Falkon consists of a dispatcher, a provisioner, and zero or more executors. The dispatcher accepts tasks from clients 
and implements the dispatch policy. The provisioner implements the resource acquisition policy. Executors run tasks 
received from the dispatcher. Components communicate via Web Services (WS) messages, except that notifications 
are performed via a custom TCP-based protocol. The notification mechanism is implemented over TCP because 
when we first implemented the core Falkon components using GT3.9.5, the Globus Toolkit did not support brokered 
WS notifications. Starting with GT4.0.5, there is support for brokered notifications. 

The dispatcher implements the factory/instance pattern, providing a create instance operation to allow a clean 
separation among different clients. To access the dispatcher, a client first requests creation of a new instance, for 
which is returned a unique endpoint reference (EPR). The client then uses that EPR to submit tasks, monitor progress 
(or wait for notifications), retrieve results, and (finally) destroy the instance.  

A client “submit” request takes an array of tasks, each with working directory, command to execute, arguments, and 
environment variables. It returns an array of outputs, each with the task that was run, its return code, and optional 
output strings (STDOUT and STDERR contents). A shared notification engine among all the different queues is used 
to notify executors that work is available for pick up. This engine maintains a queue, on which a pool of threads 
operate to send out notifications. The GT4 container also has a pool of threads that handle WS messages. Profiling 
shows that most dispatcher time is spent communicating (WS calls, notifications). Increasing the number of threads 
allows the service to scale effectively on newer multicore and multiprocessor systems.  

The dispatcher runs within a Globus Toolkit 4 (GT4) [44] WS container, which provides authentication, message 
integrity, and message encryption mechanisms, via transport-level, conversation-level, or message-level security 
[45]. 

The provisioner is responsible for creating and destroying executors. It is initialized by the dispatcher with 
information about the state to be monitored and how to access it; the rule(s) under which the provisioner should 
create/destroy executors; the location of the executor code; bounds on the number of executors to be created; bounds 
on the time for which executors should be created; and the allowed idle time before executors are destroyed. The 
provisioner periodically monitors dispatcher state and determines whether to create additional executors, and if so, 
how many, and for how long. The provisioner supports both static and dynamic provisioning. Dynamic provisioning 
is supported through GRAM4 [25]. Static provisioning is supported by directly interfacing with LRMs; Falkon 
currently supports PBS, SGE and Cobalt.  
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A new executor registers with the dispatcher. Work is then supplied as follows: the dispatcher notifies the executor 
when work is available; the executor requests work; the dispatcher returns the task(s); the executor executes the 
supplied task(s) and returns the exit code and the optional standard output/error strings; and the dispatcher 
acknowledges delivery. 

Communication costs can be reduced by task bundling between client and dispatcher and/or dispatcher and 
executors. In the latter case, problems can arise if task sizes vary and one executor gets assigned many large tasks, 
although that problem can be addressed by having clients assign each task an estimated runtime. Another technique 
that can reduce message exchanges is to piggy-back new task dispatches when acknowledging result delivery. [4] 
Using both task bundling and piggy-backing, we can reduce the average number of message exchanges per task to be 
close to zero, by increasing the bundle size. In practice, we find that performance degrades for bundle sizes of greater 
than 300 tasks. 

Figure 2 shows the Falkon architecture, including both the data management and data-aware scheduler components. 
Individual executors manage their own caches, using local eviction policies (e.g. LRU [46]), and communicate 
changes in cache content to the dispatcher. The scheduler sends tasks to compute nodes, along with the necessary 
information about where to find related input data. Initially, each executor fetches needed data from remote 
persistent storage. Subsequent accesses to the same data results in executors fetching data from other peer executors 
if the data is already cached elsewhere. The current implementation runs a GridFTP server [47] at each executor, 
which allows other executors to read data from its cache. This scheduling information are only hints, as remote cache 
state can change frequently and is not guaranteed to be 100% in sync with the global index. In the event that a data 
item is not found at any of the known cached locations, it attempts to retrieve the item from persistent storage; if this 
also fails, the respective task fails. In Figure 2, the black dotted lines represent the scheduler sending the task to the 
compute nodes, along with the necessary information about where to find input data. The red thick solid lines 
represent the ability for each executor to get data from remote persistent storage. The blue thin solid lines represent 
the ability for each storage resource to obtain cached data from another peer executor. We assume data follows the 
normal pattern found in scientific computing, which is to write-once/read-many (the same assumption as HDFS 
makes in the Hadoop system [39]). Thus, we avoid complicated and expensive cache coherence schemes other 
parallel file systems enforce.  

To support data-aware scheduling, we implement a centralized index within the dispatcher that records the location 
of every cached data object; this is similar to the centralized NameNode in Hadoop’s HDFS [39]. This index is 
maintained loosely coherent with the contents of the executor’s caches via periodic update messages generated by 
the executors. In addition, each executor maintains a local index to record the location of its cached data objects. We 
believe that this hybrid architecture provides a good balance between latency to the data and good scalability. In 
previous work [1, 21], we offered a deeper analysis in the difference between a centralized index and a distributed 
one, and under what conditions a distributed index is preferred.  

 

Figure 2: Architecture overview of Falkon extended with data diffusion (data management and data-aware 
scheduler) 
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We implement four dispatch policies: first-available (FA), max-cache-hit (MCH), max-compute-util (MCU), and 
good-cache-compute (GCC). 

The FA policy ignores data location information when selecting an executor for a task; it simply chooses the first 
available executor, and provides the executor with no information concerning the location of data objects needed by 
the task. Thus, the executor must fetch all data needed by a task from persistent storage on every access. This policy 
is used for all experiments that do not use data diffusion. 

The MCH policy uses information about data location to dispatch each task to the executor with the largest amount 
of data needed by that task. If that executor is busy, task dispatch is delayed until the executor becomes available. 
This strategy is expected to reduce data movement operations compared to first-cache-available and max-compute-
util, but may lead to load imbalances where processor utilization will be sub optimal, if nodes frequently join and 
leave. 

The MCU policy leverages data location information, attempting to maximize resource utilization even at the 
potential higher cost of data movement. It sends a task to an available executor, preferring executors with the most 
needed data locally.  

The GCC policy is a hybrid MCH/MCU policy. The GCC policy sets a threshold on the minimum processor 
utilization to decide when to use MCH or MCU. We define processor utilization to be the number of processors with 
active tasks divided by the total number of processors allocated. MCU used a threshold of 100%, as it tried to keep 
all allocated processors utilized. We find that relaxing this threshold even slightly (e.g., 90%) works well in practice 
as it keeps processor utilization high and it gives the scheduler flexibility to improve cache hit rates significantly 
when compared to MCU alone.  

4.2.2 Distributing the Falkon Architecture 
Significant engineering efforts were needed to get Falkon to work on systems such as the Blue Gene/P efficiently at 
large scale. In order to improve Falkon’s performance and scalability, we developed alternate implementation and 
distributed the Falkon architecture.  

Alternative Implementations: Performance depends critically on the behavior of our task dispatch mechanisms. The 
initial Falkon implementation was 100% Java, and made use of GT4 Java WS-Core to handle Web Services 
communications. [44] The Java-only implementation works well in typical Linux clusters and Grids, but the lack of 
Java on the Blue Gene/L, Blue Gene/P, and SiCortex prompted us to re-implement some functionality in C.  

In order to keep the implementation simple that would work on these specialized systems, we used a simple TCP-
based protocol (to replace the prior WS-based protocol), internally between the dispatcher and the executor. We 
implemented a new component called TCPCore to handle the TCP-based communication protocol. TCPCore is a 
component to manage a pool of threads that lives in the same JVM as the Falkon dispatcher, and uses in-memory 
notifications and shared objects for communication. For performance reasons, we implemented persistent TCP 
sockets so connections can be reused across tasks.  

Distributed Falkon Architecture: The original Falkon architecture [4] use a single dispatcher (running on one login 
node) to manage many executors (running on compute nodes). The architecture of the Blue Gene/P is hierarchical, in 
which there are 10 login nodes, 640 I/O nodes, and 40K compute nodes. This led us to the offloading of the 
dispatcher from one login node (quad-core 2.5GHz PPC) to the many I/O nodes (quad-core 0.85GHz PPC); Figure 3 
shows the distribution of components on different parts of the Blue Gene/P.  

Experiments show that a single dispatcher, when running on modern node with 4 to 8 cores at 2GHz+ and 2GB+ of 
memory, can handle thousands of tasks/sec and tens of thousands of executors. However, as we ramped up our 
experiments to 160K processors (each executor running on one processor), the centralized design began to show its 
limitations. One limitation (for scalability) was the fact that our implementation maintained persistent sockets to all 
executors (two sockets per executor). With the current implementation, we had trouble scaling a single dispatcher to 
160K executors (320K sockets). Another motivation for distributing the dispatcher was to reduce the load on login 
nodes. The system administrators of the Blue Gene/P did not approve of the high system utilization (both memory 
and processors) of a login node for extended periods of time when we were running intense workloads. 
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Figure 3: 3-Tier Architecture Overview 

Our change in architecture from a centralized one to a distributed one allowed each dispatcher to manage a disjoint 
set of 256 executors, without requiring any inter-dispatcher communication. We did however had to implement 
additional client-side functionality to load balance task submission across many dispatchers, and to ensure that it did 
not overcommit tasks that could cause some dispatchers to be underutilized while others queued up tasks. Our new 
architecture allowed Falkon to scale to 160K processors while minimizing the load on the login nodes. 

Reliability Issues at Large Scale: We discuss reliability only briefly here, to explain how our approach addresses 
this critical requirement. The Blue Gene/L has a mean-time-to-failure (MTBF) of 10 days [33], which can pose 
challenges for long-running applications. When running loosely coupled applications via Swift and Falkon, the 
failure of a single node only affects the task(s) that were being executed by the failed node at the time of the failure. 
I/O node failures only affect their respective psets (256 processors); these failures are identified by heartbeat 
messages or communication failures. Falkon has mechanisms to identify specific errors, and act upon them with 
specific actions. Most errors are generally passed back up to the application (Swift) to deal with them, but other 
(known) errors can be handled by Falkon directly by rescheduling the tasks. Falkon can suspend offending nodes if 
too many tasks fail in a short period of time. Swift maintains persistent state that allows it to restart a parallel 
application script from the point of failure, re-executing only uncompleted tasks. There is no need for explicit check-
pointing as is the case with MPI applications; check-pointing occurs inherently with every task that completes and is 
communicated back to Swift.  

4.3 Performance Evaluation 
We use micro-benchmarks to determine performance characteristics and potential bottlenecks on systems with many 
cores. This section explores the dispatch performance, how it compares with other traditional LRMs, efficiency, and 
data diffusion effectiveness. 

4.3.1 Falkon Task Dispatch Performance  
One key component to achieving high utilization of large-scale systems is achieving high task dispatch and execute 
rates. In previous work [4] we reported that Falkon with a Java Executor and WS-based communication protocol 
achieves 487 tasks/sec in a Linux cluster (Argonne/Univ. of Chicago) with 256 CPUs, where each task was a “sleep 
0” task with no I/O. We repeated the peak throughput experiment on a variety of systems (Argonne/Univ. of Chicago 
Linux cluster, SiCortex, and Blue Gene/P) for both versions of the executor (Java and C, WS-based and TCP-based 
respectively) at significantly larger scales (see Figure 4). We achieved 604 tasks/sec and 2534 tasks/sec for the Java 
and C Executors respectively (Linux cluster, 1 dispatcher, 200 CPUs), 3186 tasks/sec (SiCortex, 1 dispatcher, 5760 
CPUs), 1758 tasks/sec (Blue Gene/P, 1 dispatcher, 4096 CPUs), and 3071 tasks/sec (Blue Gene/P, 640 dispatchers, 
163840 CPUs). Note that the SiCortex and Blue Gene/P only support the C Executors. The throughput numbers that 
indicate “1 dispatcher” are tests done with the original centralized dispatcher running on a login node. The last 
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throughput of 3071 tasks/sec was achieved with the dispatchers distributed over 640 I/O nodes, each managing 256 
processors. 

 

Figure 4: Task dispatch and execution throughput for trivial tasks with no I/O (sleep 0) 

To better understand the performance achieved for different workloads, we measured performance as a function of 
task length. We made measurements in two different configurations: 1) 1 dispatcher up to 2K processors, and 2) 
N/256 dispatchers on up to N=160K processors, with 1 dispatcher managing 256 processors. We varied the task 
lengths from 1 second to 256 seconds (using sleep tasks with no I/O), and ran weak scaling workloads ranging from 
2K tasks to 1M tasks (7 tasks per core). 

Figure 5 investigates the effects of efficiency of 1 dispatcher running on a faster login node (quad core 2.5GHz PPC) 
at relatively small scales. With 4 second tasks, we can get high efficiency (95%+) across the board (up to the 
measured 2K processors). Figure 6 shows the efficiency with the distributed dispatchers on the slower I/O nodes 
(quad core 850 MHz PPC) at larger scales. It is interesting to notice that the same 4 second tasks that offered high 
efficiency in the single dispatcher configuration now achieves relatively poor efficiency, starting at 65% and 
dropping to 7% at 160K processors. This is due to both the extra costs associated with running the dispatcher on 
slower hardware, and the increasing need for high throughputs at large scales. If we consider the 160K processor 
case, based on our experiments, we need tasks to be at least 64 seconds long to get 90%+ efficiency. Adding I/O to 
each task will further increase the minimum task length in order to achieve high efficiency.  

 

Figure 5: Efficiency graph for the Blue Gene/P for 1 to 2048 processors and task lengths from 1 to 32 seconds 
using a single dispatcher on a login node 
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To summarize: distributing the Falkon dispatcher from a single (fast) login node to many (slow) I/O nodes has both 
advantages and disadvantages. The advantage is that we achieve good scalability to 160K processors, but at the cost 
of significantly worse efficiency at small scales (less than 4K processors) and short tasks (1 to 8 seconds). We 
believe both approaches are valid, depending on the application task execution distribution and scale of the 
application.  

 

Figure 6: Efficiency graph for the Blue Gene/P for 256 to 160K processors and task lengths ranging from 1 to 
256 seconds using N dispatchers with each dispatcher running on a separate I/O node 

The experiments presented in Figure 4, Figure 5, and Figure 6 were conducted using one million tasks per run. We 
thought it would be worthwhile to conduct a larger scale experiment, with one billion tasks, to validate that the 
Falkon service can reliably run under heavy stress for prolonged periods of time. Figure 7 depicts the endurance test 
running one billion tasks (sleep 0) on 128 processors, which took 19.2 hours to complete. We ran the distributed 
version of the Falkon dispatcher using four instances on an 8-core server using bundling of 100, which allowed the 
aggregate throughput to be four times higher than that reported in Figure 4. Over the course of the experiment, the 
throughput decreased from 17K+ tasks/sec to just over 15K+ tasks/sec, with an average throughput of 15.6K 
tasks/sec. The loss in throughput is attributed to a memory leak in the client, which was making the free heap size 
smaller and smaller, and hence invoking the garbage collection more frequently. We estimated that 1.5 billion tasks 
would have been sufficient to exhaust the 1.5GB heap we had allocated the client, and the client would have likely 
failed at that point. Nevertheless, 1.5 billion tasks is larger than any application parameter space we have today, and 
is many orders of magnitude larger than what other systems support. The following sub-section attempts to compare 
and contrast the throughputs achieved between Falkon and other local resource managers. 

 

Figure 7: Endurance test with 1B tasks on 128 CPUs in ANL/UC cluster 
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4.3.2 Comparing Falkon to Other LRMs and Solutions  

It is instructive to compare with task execution rates achieved by other local resource managers. In previous work 
[4], we measured Condor (v6.7.2, via MyCluster [40]) and PBS (v2.1.8) performance in a Linux environment (the 
same environment where we test Falkon and achieved 2534 tasks/sec throughputs). The throughputs we measured 
for PBS was 0.45 tasks/sec and for Condor was 0.49 tasks/sec; other studies in the literature have measured Condor’s 
performance as high as 22 tasks/sec in a research prototype called Condor J2 [38].  

We also tested the performance of Cobalt (the Blue Gene/P’s LRM), which yielded a throughput of 0.037 tasks/sec; 
recall that Cobalt also lacks the support for single processor tasks, unless HTC-mode [43] is used. HTC-mode means 
that the termination of a process does not release the allocated resource and initiates a node reboot, after which the 
launcher program is used to launch the next application. There is still some management (which we implemented as 
part of Falkon) that needs to happen on the compute nodes, as exit codes from previous application invocations need 
to be persisted across reboots (e.g. to shared file system), sent back to the client, and have the ability to launch an 
arbitrary application from the launcher program. Running Falkon in conjunction with Cobalt’s HTC-mode support 
yielded a 0.29 task/sec throughput. We only investigated the performance of HTC-mode on the Blue Gene/L at small 
scales, as we realized that it will not be sufficient for MTC applications due to the high overhead of node reboots 
across tasks; we did not pursue it at larger scales, or on the Blue Gene/P.  

Cope et al. [41] also explored a similar space as we have, leveraging HTC-mode [43] support in Cobalt on the Blue 
Gene/L. The authors had various experiments, which we tried to replicate for comparison reasons. The authors 
measured an overhead of 46.4±21.2 seconds for running 60 second tasks on 1 pset of 64 processors on the Blue 
Gene/L. In a similar experiment in running 64 second tasks on 1 pset of 256 processors on the Blue Gene/P, we 
achieve an overhead of 1.2±2.8 seconds, more than an order of magnitude better. Another comparison is the task 
startup time, which they measured to be on average about 25 seconds, but sometimes as high as 45 seconds; the 
startup times for tasks in our system are 0.8±2.7 seconds. Another comparison is average task load time by number 
of simultaneously submitted tasks on a single pset and executable image size of 8MB. The authors reported an 
average of 40~80 seconds for 32 simultaneous tasks on 32 compute nodes on the Blue Gene/L (1 pset, 64 CPUs). We 
measured our overheads of executing an 8MB binary to be 9.5±3.1 seconds on 64 compute nodes on the Blue Gene/P 
(1 pset, 256 CPUs).  

Finally, Peter’s et al. from IBM also recently published some performance numbers on the HTC-mode native support 
in Cobalt [42], which shows a similar one order of magnitude difference between HTC-mode on Blue Gene/L and 
our Falkon support for MTC workloads on the Blue Gene/P. For example, the authors reported a workload of 32K 
tasks on 8K processors and 32 dispatchers take 182.85 seconds to complete (an overhead of 5.58ms per task), but the 
same workload on the same number of processors using Falkon completed in 30.31 seconds with 32 dispatchers (an 
overhead of 0.92ms per task). Note that a similar workload of 1M tasks on 160K processors run by Falkon can be 
completed in as little as 368 seconds (0.35ms per task overheads).  

4.3.3 Data Diffusion Performance 

We measured the performance of the data-aware scheduler on various workloads, both with static and dynamic 
resource provisioning, and ran experiments on the ANL/UC TeraGrid [48] (up to 100 nodes, 200 processors). The 
Falkon service ran on an 8-core Xeon@2.33GHz, 2GB RAM, Java 1.5, 100Mb/s network, and 2 ms latency to the 
executors. The persistent storage was GPFS [49] with <1ms latency to executors.  

We investigate three diverse workloads: Monotonically-Increasing (MI) and All-Pairs (AP). We use the MI workload 
to explore the dynamic resource provisioning support in data diffusion, and the various scheduling policies and cache 
sizes. We use the AP workload to compare data diffusion with active storage [50].  

4.3.3.1 Data-Aware Scheduler Performance 

In order to understand the performance of the data-aware scheduler, we developed several micro-benchmarks to test 
scheduler performance. We used the FA policy that performed no I/O as the baseline scheduler, and tested the 
various scheduling policies. We measured overall achieved throughput in terms of scheduling decisions per second 
and the breakdown of where time was spent inside the Falkon service. We conducted our experiments using 32 
nodes; our workload consisted of 250K tasks, where each task accessed a random file (uniform distribution) from a 
dataset of 10K files of 1B in size each. We use files of 1 byte to measure the scheduling time and cache hit rates with 
minimal impact from the actual I/O performance of persistent storage and local disk. We compare the FA policy 
using no I/O (sleep 0), FA policy using GPFS, MCU policy, MCH policy, and GCC policy. The scheduling window 
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size was set to 100X the number of nodes, or 3200. We also used 0.8 as the CPU utilization threshold in the GCC 
policy to determine when to switch between the MCH and MCU policies. Figure 8 shows the scheduler performance 
under different scheduling policies.  

 

Figure 8: Data-aware scheduler performance and code profiling for the various scheduling policies 

We see the throughput in terms of scheduling decisions per second range between 2981/sec (for FA without I/O) to 
as low as 1322/sec (for MCH). Note that for the FA policy, the cost of communication is significantly larger than the 
rest of the costs combined, including scheduling. The scheduling is quite inexpensive for this policy as it simply load 
balances across all workers. However, we see that with the data-aware policies, the scheduling costs (red and light 
blue areas) are significant.  

4.3.3.2 Monotonically Increasing Workload  

We investigated the performance of the FA, MCH, MCU, and GCC policies, while also analyzing cache size effects 
by varying node cache size (1GB to 4GB). The MI workload has a high I/O to compute ratio (10MB:10ms). The 
dataset is 100GB large (10K x 10MB files). Each task reads one file chosen at random (uniform distribution) from 
the dataset, and computes for 10ms. The arrival rate is initially 1 task/sec and is increased by a factor of 1.3 every 60 
seconds to a maximum of 1000 tasks/sec. The function varies arrival rate A from 1 to 1000 in 24 distinct intervals 
makes up 250K tasks and spans 1415 seconds; we chose a maximum arrival rate of 1000 tasks/sec as that was within 
the limits of the data-aware scheduler, and offered large aggregate I/O requirements at modest scales. This workload 
aims to explore a varying arrival rate under a systematic increase in task arrival rate, to explore the data-aware 
scheduler’s ability to optimize data locality with an increasing demand.  

The baseline experiment (FA policy) ran each task directly from GPFS, using dynamic resource provisioning. 
Aggregate throughput matches demand for arrival rates up to 59 tasks/sec, but remains flat at an average of 4.4Gb/s 
beyond that. The workload execution time was 5011 seconds, yielding 28% efficiency (ideal being 1415 seconds).  

We ran the same workload with data diffusion with varying cache sizes per node (1GB to 4GB) using the GCC 
policy, optimizing cache hits while keeping processor utilization high (90%). The working set was 100GB, and with 
a per-node cache size of 1GB, 1.5GB, 2GB, and 4GB caches, we get aggregate cache sizes of 64GB, 96GB, 128GB, 
and 256GB. The 1GB and 1.5GB caches cannot fit the working set in cache, while the 2GB and 4GB cache can.  

For the GCC policy with 1GB caches, throughput keeps up with demand better than the FA policy, up to 101 
tasks/sec arrival rates (up from 59), at which point the throughput reached an average of 5.2Gb/s. Once the working 
set caching reaches a steady state, the throughput reaches 6.9Gb/s. The overall cache hit rate was 31%, resulting in a 
57% higher throughput than GPFS. The workload execution time is reduced to 3762 seconds (from 5011 seconds), 
with 38% efficiency.  

Increasing the cache size to 2GB (128GB aggregate), the aggregate throughput is close to the demand (up to the peak 
of 80Gb/s) for the entire experiment. We attribute this good performance to the ability to cache the entire working set 
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and then schedule tasks to the nodes that have required data to achieve cache hit rates approaching 98%. With an 
execution time of 1436 seconds, efficiency was 98.5%.  

Both the MCH and MCU policies performed significantly worse than GCC, due to them being too rigid and causing 
either unnecessary transfers over the network, or leaving processors idle. However, both MCH and MCU still 
managed to outperform the baseline FA policy. 

Figure 9 summarizes the aggregate I/O throughput measured in each of the experiments conducted. We present in 
each case first, as the solid bars, the average throughput achieved from start to finish, partitioned among local cache, 
remote cache, and GPFS, and second, as a black line, the “peak” (actually 99th percentile) throughput achieved 
during the execution. The second metric is interesting because of the progressive increase in job submission rate: it 
may be viewed as a measure of how far a particular method can go in keeping up with user demands. 

We see that the FA policy had the lowest average throughput of 4Gb/s, compared to between 5.3Gb/s and 13.9Gb/s 
for data diffusion (GCC, MCH, and MCU with various cache sizes), and 14.1Gb/s for the ideal case. In addition to 
having higher average throughputs, data diffusion also achieved significantly throughputs towards the end of the 
experiment (the black bar) when the arrival rates are highest, as high as 81Gb/s as opposed to 6Gb/s for the FA 
policy.  

 

Figure 9: MI workload average and peak (99 percentile) throughput 

Note also that GPFS file system load (the red portion of the bars) is significantly lower with data diffusion than for 
the GPFS-only experiments (FA); in the worst case, with 1GB caches where the working set did not fit in cache, the 
load on GPFS is still high with 3.6Gb/s due to all the cache misses, while FA tests had 4Gb/s load. However, as the 
cache sizes increased and the working set fit in cache, the load on GPFS became as low as 0.4Gb/s; similarly, the 
network load was considerably lower, with the highest values of 1.5Gb/s for the MCU policy, and less than 1Gb/s for 
the other policies. 

The response time (see Figure 10) is probably one of the most important metrics interactive applications. Average 
Response Time (ARi) is the end-to-end time from task submission to task completion notification for task i; ARi = 
WQi+TKi+Di, where WQi is the wait queue time, TKi is the task execution time, and Di is the delivery time to deliver 
the result.  

We see a significant different between the best data diffusion response time (3.1 seconds per task) to the worst data 
diffusion (1084 seconds) and the worst GPFS (1870 seconds). That is over 500X difference between the data 
diffusion GCC policy and the FA policy response time. A principal factor influencing the average response time is 
the time tasks spend in the Falkon wait queue. In the worst (FA) case, the queue length grew to over 200K tasks as 
the allocated resources could not keep up with the arrival rate. In contrast, the best (GCC with 4GB caches) case only 
queued up 7K tasks at its peak. The ability to keep the wait queue short allowed data diffusion to keep average 
response times low (3.1 seconds), making it a better for interactive workloads.  
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Figure 10: MI workload average response time 

4.3.3.3 All-Pairs Workload Evaluation 

In order to compare data diffusion with other related work, we implemented a common workload called All-Pairs 
(AP) [50]. This related work is part of the Chirp [51] project. We call the All-Pairs use of Chirp active storage. Chirp 
has several contributions, such as delivering an implementation that behaves like a file system and maintains most of 
the semantics of a shared filesystem, and offers efficient distribution of datasets via a spanning tree making Chirp 
ideal in scenarios with a slow and high latency data source. However, Chirp does not address data-aware scheduling, 
so when used by All-Pairs, it typically distributes an entire application working data set to each compute node local 
disk prior to the application running. This requirement hinders active storage from scaling as well as data diffusion, 
making large working sets that do not fit on each compute node local disk difficult to handle, and producing 
potentially unnecessary transfers of data. Data diffusion only transfers the minimum data needed per job.  

Variations of the AP problem occur in many applications. For example when we want to understand the behavior of 
a new function F on sets A and B, or to learn the covariance of sets A and B on a standard inner product F. [50] The 
AP problem is easy to express in terms of two nested for loops over some parameter space. This regular structure 
also enables the optimization of its data access operations.  

Thain et al [50] conducted experiments with biometrics and data mining workloads using Chirp. The most data-
intensive workload was where each function executed for 1 second to compare two 12MB items, for an I/O to 
compute ratio of 24MB:1000ms. At the largest scale (50 nodes and 500x500 problem size), we measured an 
efficiency of 60% for the active storage implementation, and 3% for the demand paging (to be compared to the 
GPFS performance we cite). These experiments were conducted in a campus wide heterogeneous cluster with nodes 
at risk for suspension, network connectivity of 100Mb/s between nodes, and a shared file system rated at 100Mb/s 
from which the dataset needed to be transferred to the compute nodes.  

Due to differences in our testing environments, a direct comparison is difficult, but we compute the best case for 
active storage as defined in [50], and compare the data diffusion performance against this best case. Our environment 
has 100 nodes (200 processors) which are dedicated for the duration of the allocation, with 1Gb/s network 
connectivity between nodes, and a parallel file system (GPFS) rated at 8Gb/s. For the 500x500 workload, data 
diffusion achieves a throughput that is 80% of the best case of all data accesses occurring to local disk (see Figure 
11).  

We computed the best case for active storage to be 96%, however in practice, based on the efficiency of the 50 node 
case from previous work [50] which achieved 60% efficiency, we believe the 100 node case would not perform 
significantly better than the 80% efficiency of data diffusion. Running the same workload through Falkon directly 
against a parallel file system achieves only 26% of the ideal throughput.  

In order to push data diffusion harder, we made the workload 10X more data-intensive by reducing the compute time 
from 1 second to 0.1 seconds, yielding a I/O to compute ratio of 24MB:100ms. For this workload, the throughput 
steadily increased to about 55Gb/s as more local cache hits occurred. We found extremely few cache misses, which 
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indicates the high data locality of the AP workload. Data diffusion achieved 75% efficiency. Active storage and data 
diffusion transferred similar amounts of data over the network (1536GB for active storage and 1528GB for data 
diffusion with 0.1 sec compute time and 1698GB with the 1 sec compute time workload) and to/from the parallel file 
system (12GB for active storage and 62GB and 34GB for data diffusion for the 0.1 sec and 1 sec compute time 
workloads respectively). The similarities in bandwidth usage manifested themselves in similar efficiencies, 75% for 
data diffusion and 91% for the best case active storage. 

In order to explore larger scale scenarios, we emulated (ran the entire Falkon stack on 200 processors with multiple 
executors per processor and emulated the data transfers) an IBM Blue Gene/P. We configured the Blue Gene/P with 
4096 processors, 2GB caches per node, 1Gb/s network connectivity, and a 64Gb/s parallel file system. We also 
increased the problem size to 1000x1000 (1M tasks), and set the I/O to compute ratios to 24MB:4sec (each processor 
on the Blue Gene/P is about ¼ the speed of those in our 100 node cluster). On the emulated Blue Gene/P, we 
achieved an efficiency of 86%. The throughputs steadily increased up to 180Gb/s (of a theoretical upper bound of 
187Gb/s). It is possible that our emulation was optimistic due to a simplistic modeling of the Torus network, 
however it shows that the scheduler scales well to 4K processors and is able to do 870 scheduling decisions per 
second to complete 1M tasks in 1150 seconds. The best case active storage yielded only 35% efficiency. We justify 
the lower efficiency of the active storage due to the significant time that is spent to distribute the 24GB dataset to 1K 
nodes via the spanning tree. Active storage used 12.3TB of network bandwidth (node-to-node communication) and 
24GB of parallel file system bandwidth, while data diffusion used 4.7TB of network bandwidth, and 384GB of 
parallel file system bandwidth.  

 
Figure 11: AP workload efficiency for 500x500 problem size on 200 processor cluster and 1000x1000 problem 

size on the Blue Gene/P supercomputer with 4096 processors 

In reality, the best case active storage would require cache sizes of at least 24GB to fit the 1000x1000 problem size, 
while the existing 2GB cache sizes for the Blue Gene/P would only be sufficient for an 83X83 problem. This 
comparison is not only emulated, but also hypothetical. Nevertheless, it is interesting to see the significant difference 
in efficiency between data diffusion and active storage at this larger scale.  

Our comparison between data diffusion and active storage fundamentally boils down to a comparison of pushing 
data versus pulling data. The active storage implementation pushes all the needed data for a workload to all nodes via 
a spanning tree. With data diffusion, nodes pull only the files immediately needed for a task, creating an incremental 
spanning forest (analogous to a spanning tree, but one that supports cycles) at runtime that has links to both the 
parent node and to any other arbitrary node or persistent storage. We measured data diffusion to perform comparably 
to active storage on our 200 processor cluster, but differences exist between the two approaches. Data diffusion is 
more dependent on having a well balanced persistent storage for the amount of computing power, but can scale to 
larger number of nodes due to the more selective nature of data distribution. Furthermore, data diffusion only needs 
to fit the per task working set in local caches, rather than an entire workload working set as is the case for active 
storage.  

4.4 Applications 
We have found many real applications that are a better fit for MTC than HTC or HPC. Their characteristics include 
having a large number of small parallel jobs, a common pattern in many scientific applications [13]. They also use 
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files (instead of messages, as in MPI) for intra-processor communication, which tends to make these applications 
data intensive.  

We have identified various loosely coupled applications from many domains as potential good candidates that have 
these characteristics to show examples of many-task computing applications. These applications cover a wide range 
of domains, from astronomy, physics, astrophysics, pharmaceuticals, bioinformatics, biometrics, neuroscience, 
medical imaging, chemistry, climate modeling, economics, and data analytics. They often involve many tasks, 
ranging from tens of thousands to billions of tasks, and have a large variance of task execution times ranging from 
hundreds of milliseconds to hours. Furthermore, each task is involved in multiple reads and writes to and from files, 
which can range in size from kilobytes to gigabytes. These characteristics made traditional resource management 
techniques found in HTC inefficient; also, although some of these applications could be coded as HPC applications, 
due to the wide variance of the arrival rate of tasks from many users, an HPC implementation would also yield poor 
utilization. Furthermore, the data intensive nature of these applications can quickly saturate parallel file systems at 
even modest computing scales. 

Many of the applications presented in this section were executed via the Swift runtime system, which in turn used 
Falkon, although some applications are coded directly against the Falkon APIs. All these applications pose 
significant challenges to traditional resource management found in HPC and HTC, from both job management and 
storage management perspective, and are in critical need of MTC enabled middleware. This section discusses these 
applications in more details, and explores their performance scalability across a wide range of systems, such as 
clusters, grids, and supercomputers. 

4.4.1 Functional Magnetic Resonance Imaging 

We note that for each volume, each individual task in the fMRI [52] workflow required just a few seconds on an 
ANL_TG cluster node, so it is quite inefficient to schedule each job over GRAM and PBS, since the overhead of 
GRAM job submission and PBS resource allocation is large compared with the short execution time. In Figure 12 we 
show the execution time for different input data sizes for the fMRI workflow.  

We submitted from UC_SUBMIT to ANL_TG and measured the turnaround time for the workflows. A 120-volume 
input (each volume consists of an image file of around 200KB and a header file of a few hundred bytes) involves 480 
computations for the four stages, whereas the 480-volume input has 1960 computation tasks. The GRAM+PBS 
submission had low throughput although it could have potentially used all the available nodes on the site (62 nodes 
to be exact, as we only used the IA64 nodes). We can however bundle small jobs together using the clustering 
mechanism in Swift, and we show the execution time was reduced by up to 4 times (jobs were bundled into roughly 
8 groups, as the grouping of jobs was a dynamic process) with GRAM and clustering, as the overhead was amortized 
by the bundled jobs. The Falkon execution service (with 8 worker nodes) however further cuts down the execution 
time by 40-70%, as each job was dispatched efficiently to the workers. We carefully chose the bundle size for the 
clustering so that the clustered jobs only required 8 nodes to execute. This choice allowed us to compare 
GRAM/Clustering against Falkon, which used 8 nodes, fairly. We also experimented with different bundle sizes for 
the 120-volume run, but the overall variations for groups of 4, 6 and 10 were not significant (within 10% of the total 
execution time for the 8 groups). 

 

Figure 12 Execution Time for the fMRI Workflow 
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4.4.2 MolDyn (Chemistry Domain) 

The goal of this molecular dynamics (MolDyn) application is to optimize and automate the computational workflow 
that can be used to generate the necessary parameters and other input files for calculating the solvation free energy of 
ligands, and can also be extended to protein-ligand binding energy. Solvation free energy is an important quantity in 
Computational Chemistry with a variety of applications, especially in drug discovery and design. The accurate 
prediction of solvation free energies of small molecules in water is still a largely unsolved problem, which is mainly 
due to the complex nature of the water-solute interactions. In the study, a library of 244 neutral ligands is chosen for 
free energy perturbation calculations. This library contains compounds with various chemical functional groups. 
Also, the absolute free energies of solvation for these compounds are known experimentally, and will serve as a tool 
to benchmark our calculations. All the structures were obtained from the NIST Chemistry WebBook database [53]. 

Our experiment performed a 244 molecule run, which is composed of 20497 jobs that should take less than 957.3 
CPU hours to complete; in practice, it takes even less as some job executions are shared between molecules. Figure 
13 shows the resource utilization in relation to Falkon queue length as the experiment progressed. We see that as 
resources were acquired (using the dynamic resource provisioning, starting with 0 CPUs and ending with 216 CPUs 
at the peak), the CPU utilization was near perfect (green means utilized, red mean idle) with the exception of the end 
of the experiment as the last few jobs completed (the last 43 seconds). Figure 13 shows the same information on a 
per task basis. The entire experiment with the exception of the last 43 seconds consumed 866.33 CPU hours and 
wasted 0.09 CPU hours (99.98971% efficiency); if we include the last 43 seconds as the experiment was winding 
down, the workflow consumed 867.1 CPU hours and it wasted 1.78 CPU hours, with a final efficiency of 
99.7949013%. The experiment completed in 15091 seconds on a maximum of 216 processors, which results in a 
speedup of 206.9; note the average number of processors for the entire experiment was 207.26 CPUs, so the speedup 
of 206.9 reflects the 99.79% computed efficiency.   

 

Figure 13: 244 Molecule MolDyn application; summary view showing executor’s utilization in relation to the 
Falkon wait queue length as experiment time progressed 

It is worth comparing the performance we obtained for MolDyn using Falkon with that of MolDyn over traditional 
GRAM/PBS. Due to reliability issues (with GRAM and PBS) when submitting 20K jobs over the course of hours, 
we were not able to successfully run the same 244 molecule run over GRAM/PBS. We therefore tried to do some 
smaller experiments, in the hopes that it would increase the probability of doing a successful run. We tried several 
runs with 50 molecules (4201 of jobs for the 50 molecule run, instead of 20497 jobs for the 244 molecule run); the 
best execution times we were able to achieve for the 50 molecule runs with GRAM/PBS (on the same testbed) took 
25292 seconds. We achieved a speedup of only 25.3X compared to 206.9X when using Falkon on the same 
workflow and the same Grid site in a similar state.  

We explain this drastic difference mostly due to the typical job duration (~200 seconds) and the submission rate 
throttling of 1/5 jobs per second; with 200 second jobs, the most concurrent jobs we could expect was 40. Increasing 
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the submission rate throttle resulted in GRAM/PBS gateway instability, or even causing it to stop functioning. 
Furthermore, each node was only using a single processor of the dual processors available on the compute nodes due 
to the local site PBS policy that allocates each job an entire (dual processor) machine and does not allow other jobs 
to run on allocated machines; it is left up to the application to fully utilize the entire machine, through multi-
threading, or by invoking several different jobs to run in parallel on the same machine. This is a great example of the 
benefits of having the flexibility to set queue policies per application, which is impractical to do in real-world 
deployed systems. 

4.4.3 Molecular Dynamics: DOCK 

The DOCK (molecular dynamics) application [54] deals with virtual screening of core metabolic targets against 
KEGG [55] compounds and drugs. DOCK6 addresses the problem of “docking” molecules to each other. In general, 
“docking” is the identification of the low-energy binding modes of a small molecule, or ligand, within the active site 
of a macromolecule, or receptor, whose structure is known. A compound that interacts strongly with a receptor (such 
as a protein molecule) associated with a disease may inhibit its function and thus act as a beneficial drug. 
Development of antibiotic and anticancer drugs is a process fraught with dead ends. Each dead end costs potentially 
millions of dollars, wasted years and lives. Computational screening of protein drug targets helps researchers 
prioritize targets and determine leads for drug candidates.  

The goal of this project was to 1) validate our ability to approximate the binding mechanism of the protein’s natural 
ligand (a.k.a compound that binds), 2) determine key interaction pairings of chemical functional groups from 
different compounds with the protein’s amino acid residues, 3) study the correlation between a natural ligand that is 
similar to other compounds and its binding affinity with the protein’s binding pocket, and 4) prioritize the proteins 
for further study.  

Running a workload consisting of 934,803 molecules on 116K CPU cores took 2.01 hours (see Figure 14). The per-
task execution time was quite varied with a minimum of 1 second, a maximum of 5030 seconds, and a mean of 
713±560 seconds. The two-hour run has a sustained utilization of 99.6% (first 5700 seconds of experiment) and an 
overall utilization of 78% (due to the tail end of the experiment). Note that we had allocated 128K CPUs, but only 
116K CPUs registered successfully and were available for the application run; this was due to GPFS contention in 
bootstrapping Falkon on 32 racks, and was fixed in later large runs by moving the Falkon framework to RAM before 
starting, and by pre-creating log directories on GPFS to avoid lock contention. We have made dozens on runs at 32 
and 40 rack scales, and we have not encountered this specific problem since.  

 

Figure 14: 934,803 DOCK5 runs on 118,784 CPU cores on Blue Gene/P 

Despite the loosely coupled nature of this application, our preliminary results show that the DOCK application 
performs and scales well to nearly full scale (116K of 160K CPUs). The excellent scalability (99.7% efficiency when 
compared to the same workload at 64K CPUs) was achieved only after careful consideration was taken to avoid the 
shared file system, which included the caching of the multi-megabyte application binaries, and the caching of 35MB 
of static input data that would have otherwise been read from the shared file system for each job. Note that each job 
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still had some minimal read and write operations to the shared file system, but they were on the order of 10s of KB 
(only at the start and end of computations), with the majority of the computations being in the 100s of seconds, with 
an average of 713 seconds. 

These computations are, however, just the beginning of a much larger computational pipeline that will screen 
millions of compounds and tens of thousands of proteins. The downstream stages use even more computationally 
intensive and sophisticated programs that provide for more accurate binding affinities by allowing for the protein 
residues to be flexible and the water molecules to be explicitly modeled. Computational screening, which is 
relatively inexpensive, cannot replace the wet lab assays, but can significantly reduce the number of dead ends by 
providing more qualified protein targets and leads. To grasp the magnitude of this application, the largest run we 
made of 934,803 tasks we performed represents only 0.09% of the search space (1 billion runs) being considered by 
the scientists we are working with; simple calculations project a search over the entire parameter space to need 
20,938 CPU years, the equivalent of 48 days on the 160K-core Blue Gene/P. This is a large problem that cannot be 
solved in a reasonable amount of time without a supercomputer scale resource. Our loosely coupled approach holds 
great promise for making this problem tractable and manageable on today’s largest supercomputers. 

4.4.4 Production Runs in Drug Design 
We have been working extensively with a group of researchers at the Midwest Center for Structural Genomics at 
Argonne National Laboratory, who have adopted Falkon and use it in their daily production runs in modeling three-
dimensional protein structures towards drug design. Since proteins with similar structures tend to behave in similar 
ways, the team compares the modeled structures to known proteins in order to predict their functions – a 
computationally intensive task. 

As the Protein Data Bank expands exponentially, it becomes more difficult to coax desktop machines to do the types 
of analysis required. They turned to Falkon as a way to utilize their existing software applications on increasingly 
large machines, such as the IBM Blue Gene/P supercomputer with 160K processors. “Falkon has allowed us to ask 
bigger questions and perform experiments on a scale never before attempted — or even thought possible,” said 
Andrew Binkowski, one of the main researchers involved in performing the productions runs.  “This is the difference 
between comparing a newly determined protein structure to a family of related proteins versus comparing it to the 
entire protein universe.” The team has done all of this using existing software packages that were not designed for 
high-throughput computing or many-task computing, and used Falkon to coordinate and drive the execution of many 
loosely-coupled computations that are treated as “black boxes” without any application-specific code modifications. 

Over the course of 7 months (09/08 – 04/09), this group managed to run 2 million production jobs consuming 170K 
CPU hours with a minimum of 256 concurrent processors, an average of 8192 processors, and a maximum of 51200 
concurrent processors; the average per job execution time was 310 seconds, with a standard deviation of 335 
seconds. 

4.4.5 Economic Modeling: MARS 

We also evaluated MARS (Macro Analysis of Refinery Systems), an economic modeling application for petroleum 
refining developed by D. Hanson and J. Laitner at Argonne [56]. This modeling code performs a fast but broad-based 
simulation of the economic and environmental parameters of petroleum refining, covering over 20 primary & 
secondary refinery processes. MARS analyzes the processing stages for six grades of crude oil (from low-sulfur light 
to high-sulfur very-heavy and synthetic crude), as well as processes for upgrading heavy oils and oil sands. It 
includes eight major refinery products including gasoline, diesel and jet fuel, and evaluates ranges of product shares. 
It models the economic and environmental impacts of the consumption of natural gas, the production and use of 
hydrogen, and coal-to-liquids co-production, and seeks to provide insights into how refineries can become more 
efficient through the capture of waste energy. 

While MARS analyzes this large number of processes and variables, it does so at a coarse level without involving 
intensive numerics. It consists of about 16K lines of C code, and can process many internal model execution 
iterations, with a range from 0.5 seconds (1 internal iteration) to hours (many thousands of internal iterations) of 
Blue Gene/P CPU time. Using the power of the Blue Gene/P we can perform detailed multi-variable parameter 
studies of the behavior of all aspects of petroleum refining covered by MARS. 

As a larger and more complex test, we performed a 2D parameter sweep to explore the sensitivity of the investment 
required to maintain production capacity over a 4-decade span on variations in the diesel production yields from low 
sulfur light crude and medium sulfur heavy crude oils. This mimics one possible segment of the many complex 
multivariate parameter studies that become possible with ample computing power. A single MARS model execution 
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involves an application binary of 0.5MB, static input data of 15KB, 2 floating point input variables and a single 
floating point output variable. The average micro
performed task-batching of 600 model runs into a single task, yielding a workload with 4KB of input and 4KB of 
output data, and an average execution time of 271 seconds. 

We executed a workload with 600 million model runs (1M t
Figure 15). The experiment consumed 9.3 CPU years and took 2483 seconds to complete. Even at this lar
the per task execution times were quite deterministic with an average of 280±10 seconds; this means that most 
processors would start and stop executing tasks at about the same time, which produces the peaks in task completion 
rates (blue line) that are as high as 4000 tasks/sec. As a comparison, a 1 processor experiment using a small part of 
the same workload had an average of 271±0.3 seconds; this yielded an efficiency of 97% with a speedup of 126,892
(ideal speedup being 130,816).  

Figure 15: MARS application (summary view) on the Blue Gene/P; 1M tasks using 128K processor cores

4.4.6 Large-scale Astronomy Application Evaluation

We have implemented the AstroPortal [
the sky. This function can help to statistically detect objects too faint otherwise. Astronomical image collections 
usually cover an area of sky several times (in different wavebands, different times, etc). On the other hand, there are 
large differences in the sensitivities of different observations: objects detected in one band are often too faint to be 
seen in another survey. In such cases we still would like to see whether these objects can be detected, even in a 
statistical fashion. There has been a growing interest
stacking images. The stacking improves the signal to noise, and after coadding a large number of images, there will 
be a detectable signal to measure the average brightness/shape etc of these 
years manually for a small number of pointing fields, performing this task on wide areas of sky in a systematic way 
has not yet been done. It is also expected that the detection of much fainter sources (e.g., unusual o
transients) can be obtained from stacked images than can be detected in any individual image. 

Astronomical surveys produce terabytes of data, and contain millions of objects. For example, the SDSS DR5 dataset 
has 320M objects in 9TB of images [57
quasar search) from SDSS DR5. The working
where each file was either 2MB compressed or 6MB uncompressed, resulting in a total of 1.1TB compressed and 
3.35TB uncompressed. From this working set, various workloads were defined, with 
characteristics, varying from the lowest locality of 1 (i.e., 1
locality of 30 (i.e., each file contained an average of 30 objects).

The AstroPortal was tested on the ANL/UC TeraGrid
the performance and scalability of the stacking code in four configurations: 1) Data Diffusion (GZ), 2) Data 
Diffusion (FIT), 3) GPFS (GZ), and 4) GPFS (FIT). At the start of each experiment, al
persistent storage system (GPFS). For data diffusion we use the MCU policy and cached data on local nodes. For the 
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We have implemented the AstroPortal [12, 5] which performs the “stacking” of image cutouts from different parts of 
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usually cover an area of sky several times (in different wavebands, different times, etc). On the other hand, there are 
ities of different observations: objects detected in one band are often too faint to be 

seen in another survey. In such cases we still would like to see whether these objects can be detected, even in a 
statistical fashion. There has been a growing interest to re-project each image to a common set of pixel planes, then 
stacking images. The stacking improves the signal to noise, and after coadding a large number of images, there will 
be a detectable signal to measure the average brightness/shape etc of these objects. While this has been done for 
years manually for a small number of pointing fields, performing this task on wide areas of sky in a systematic way 
has not yet been done. It is also expected that the detection of much fainter sources (e.g., unusual o
transients) can be obtained from stacked images than can be detected in any individual image.  

produce terabytes of data, and contain millions of objects. For example, the SDSS DR5 dataset 
57]. To construct realistic workloads, we identified the interesting objects (for a 

quasar search) from SDSS DR5. The working set we constructed consisted of 771,725 objects in 558,500 files, 
where each file was either 2MB compressed or 6MB uncompressed, resulting in a total of 1.1TB compressed and 
3.35TB uncompressed. From this working set, various workloads were defined, with certain data locality 
characteristics, varying from the lowest locality of 1 (i.e., 1-1 mapping between objects and files) to the highest 
locality of 30 (i.e., each file contained an average of 30 objects). 

The AstroPortal was tested on the ANL/UC TeraGrid site, with up to 128 processors. The experiments investigate 
the performance and scalability of the stacking code in four configurations: 1) Data Diffusion (GZ), 2) Data 
Diffusion (FIT), 3) GPFS (GZ), and 4) GPFS (FIT). At the start of each experiment, all data is present only on the 
persistent storage system (GPFS). For data diffusion we use the MCU policy and cached data on local nodes. For the 
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GPFS experiments we use the FA policy and perform no caching. GZ indicates that the image data is in compressed 
format while FIT indicates that the image data is uncompressed.  

Data diffusion can make its largest impact on larger scale deployments, and hence we ran a series of experiments to 
capture the performance at a larger scale (128 processors) as we vary the data locality. We investigated the data-
aware scheduler’s ability to exploit the data locality found in the various workloads and its ability to direct tasks to 
computers on which needed data was cached. We found that the data-aware scheduler can get within 90% of the 
ideal cache hit ratios in all cases.  

The following experiment (Figure 16) offers a detailed view of the performance (time per stack per processor) of the 
stacking application as we vary the locality. The last data point in each case represents ideal performance when 
running on a single node. Note that although the GPFS results show improvements as locality increases, the results 
are far from ideal. However, we see data diffusion gets close to the ideal as locality increases beyond 10. 

 

Figure 16: Performance of the stacking application using 128 CPUs for workloads with data locality ranging 
from 1 to 30, using data diffusion and GPFS 

Using data diffusion, we achieve an aggregated I/O throughput of 39Gb/s with high data locality, a significantly 
higher rate than with GPFS, which tops out at 4Gb/s. These results show the decreased load on shared infrastructure 
(i.e., GPFS), which ultimately gives data diffusion better scalability. 

4.4.7 Montage (Astronomy Domain) 

The Montage [58] workflow demonstrated similar job execution time pattern as there were many small jobs 
involved. We show in Figure 17 the comparison of the workflow execution time using Swift with clustering over 
GRAM, Swift over Falkon, and MPI. The Montage application code we used for clustering and Falkon are the same. 
The code for the MPI runs is derived from the same set of source code, with the addition of data partitioning and 
inter-processor communication, so when multiple processors are allocated, each would process part of the input 
datasets, and combine the outputs if necessary. The MPI execution was well balanced across multiple processors, as 
the processing for each image was similar and the image sizes did not vary much. All three approaches needed to go 
over PBS to request for computation nodes, we used 16 nodes for Falkon and MPI, and also configured the 
clustering for GRAM to be around 16 groups. 

The workflow had twelve stages, and we only show the parallel stages and the total execution time in the figure (the 
serial stages ran on a single node, and the difference of running them across the three approaches was small, so we 
only included them in the total time for comparison purposes). The workflow produced a 3x3 square degree mosaic 
around galaxy M16, where there were about 440 input images (2MB each), and 2,200 overlappings between them. 
There were two mAdd stages because we divided the region into subsets, co-added images in each subset, and then 
co-added the subsets together into a final mosaic. We can observe that the Falkon execution service performed close 
to the MPI execution, which indicated that jobs were dispatched efficiently to the 16 workers. The GRAM execution 
with clustering enabled still did not perform as well as the other two, mainly due to PBS queuing overhead. It is 
worth noting that the last stage mAdd was parallelized in the MPI version, but not for the version for GRAM or 
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Falkon, and hence the big difference in execution time between Falkon and MPI, and the source of the major 
difference in the entire run between MPI and Falkon. 

Katz et al. [59] have also created a task-graph implementation of the Montage code, using Pegasus. They did not 
implement quite the same application as us: for example, they ran mOverlap and mImgtbl on the portal rather than 
on compute nodes, and they omitted the final mAdd phase. Thus direct comparison with Swift over Falkon is 
difficult. However, if we omit the final mAdd phase from the comparison, Swift over Falkon is then about 5% faster 
than MPI, and thus also faster than the Pegasus approach, as they claimed that MPI execution time was the lower 
bound for them. The reasons that Swift over Falkon performs better are that MPI incurs initialization and aggregation 
processes, which involve multi-processor communications, for each of the parallel stages, where Falkon acquires 
resource at one time and then the communications in dispatching tasks from the Falkon service to workers have been 
kept minimum (only 2 message exchanges for each job dispatch). The Pegasus approach used Condor’s glide-in 
mechanism, where Condor is still a heavy-weight scheduler compared with Falkon. 

 

Figure 17: Execution Time for the Montage Workflow 

4.4.8 Data Analytics: Sort and WordCount 

Many programming models and frameworks have been introduced to abstract away the management details of 
running applications in distributed environments. MapReduce [34] is regarded as a power-leveler that solves 
computation problems using brutal-force resources. It provides a simple programming model and powerful runtime 
system for processing large datasets. The model is based on two key functions: “map” and “reduce”, and the runtime 
system automatically partitions input data and schedules the execution of programs in a large cluster of commodity 
machines. MapReduce has been applied to document processing problems (e.g. distributed indexing, sorting, 
clustering). 

Applications that can be implemented in MapReduce are a subset of those that can be implemented in Swift due to 
the more generic programming model found in Swift. Contrasting Swift and Hadoop are interesting as it could 
potentially attract new users and applications to systems which traditionally were not considered.  

We compared two benchmarks, Sort and WordCount, and tested them at different scales and with different datasets. 
[16] The testbed consisted of a 270 processor cluster (TeraPort at UChicago). Hadoop (the MapReduce 
implementation from Yahoo!) was configured to use Hadoop Distributed File System (HDFS), while Swift used 
Global Parallel File System (GPFS). We found Swift offered comparable performance with Hadoop, a surprising 
finding due to the choice of benchmarks which favored the MapReduce model. In Sorting over a range of small to 
large files, Swift execution times were on average 38% higher when compared to Hadoop. However, for WordCount, 
Swift execution times were on average 75% lower.  

Our experience with Swift and Hadoop indicate that the file systems (GPFS and Hadoop) are the main bottlenecks as 
applications scale; HDFS is more scalable than GPFS, but it still has problems with small files, and it requires 
applications be modified. There are current efforts in Falkon to enable Swift to operate over local disks rather than 
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shared file systems and to cache data across jobs, which would in turn offers comparable scalability and performance 
to HDFS without the added requirements of modifying applications.  

5 Contributions and Conclusions 

We see the dynamic analysis of large datasets to be important due to the ever growing datasets that need to be 
accessed by larger and larger communities. Attempting to address the storage and computational problems separately 
(essentially forcing much data movement between computational and storage resources) will not scale to tomorrow’s 
peta-scale datasets and will likely yield significant underutilization of the raw computational resources.  

It has been argued that data intensive applications cannot be executed in grid environments because of the high costs 
of data movement. But if data analysis workloads have internal locality of reference, then it can be feasible to acquire 
and use even remote resources, as high initial data movement costs can be offset by many subsequent data analysis 
operations performed on that data.  We envision "data diffusion" as a process in which data is stochastically moving 
around in the system, and that different applications can reach a dynamic equilibrium this way. One can think of a 
thermodynamic analogy of an optimizing strategy, in terms of energy required to move data around (“potential 
wells”) and a "temperature" representing random external perturbations (“job submissions”) and system failures.  
Our work proposes exactly such a stochastic optimizer. 

We argue that data locality is critical to the successful and efficient use of large distributed systems for data-intensive 
applications, where the threshold of what constitutes a data-intensive application is lowered every year as the 
performance gap between processing power and storage performance widens. Large scale data management is the 
next major road block that must be addressed in a general way, to ensure data movement is minimized by intelligent 
data-aware scheduling both among distributed computing sites, and among compute nodes. Storage systems design 
should shift from being decoupled from the computing resources, as is commonly found in today’s large-scale 
systems. Storage systems must be co-located among the compute resources, and make full use of all resources at 
their disposal, from memory, solid state storage, spinning disk, and network interconnects, giving them 
unprecedented high aggregate bandwidth to supply to an ever growing demand for data-intensive applications at the 
largest scales. 

We have designed and implemented Falkon, a generalization of the initial prototype, the AstroPortal, to enable the 
rapid and efficient execution of many independent jobs on large compute clusters. Falkon combines three techniques 
to achieve this goal: (1) multi-level scheduling to enable dynamic resource provisioning; (2) a streamlined task 
dispatcher able to achieve order-of-magnitude higher task dispatch rates than conventional schedulers; and (3) 
performs data caching and uses a data-aware scheduler to co-locate computational and storage resources.  Falkon has 
been deployed and tested in a wide range of environments, from 100 node clusters, to Grids (TeraGrid), to 
specialized machines (SiCortex with 5832 CPUs), to supercomputers (IBM BlueGene/P with 160K CPUs).  Micro-
benchmarks have shown Falkon to achieve over 15K+ tasks/sec throughputs, scale to millions of queued tasks, and 
to execute billions of tasks per day.  Data diffusion has also shown to improve applications scalability and 
performance, with its ability to achieve hundreds of Gb/s I/O rates on modest sized clusters, with Tb/s I/O rates on 
the horizon. 

There are various fundamental research questions we have addressed through this work. They have centered on two 
main areas, data and compute resource management, and how they relate to particular workloads of data analysis on 
large datasets. We have explored a variety of applications from various domains, such as astronomy, astro-physics, 
medicine, chemistry, economics, bio-informatics, pharmaceuticals, physics, and analytics in order to show off the 
flexibility and effectiveness of Falkon and data diffusion on real world applications; much of the outreach in the 
wide range of scientific domains has been accomplished through the fantastic synergy that has been created between 
Falkon and the Swift parallel programming system.   
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