Resource Management in Large-Scale Distributed Systems

loan Raicu, Alok Choudhary
Electrical Engineering and Computer Science, Northwestern University
iraicu@eecs.northwestern.edu, choudhar@eecs.northwestern.edu

Summary

A famous quote from lan Foster — “the advent of computation can be compared, in terms of the breadth and depth of its impact on
research and scholarship, to the invention of writing and the development of modern mathematics” — is central to the growing
importance of computational science to the many branches of science, and how interdisciplinary research can bridge the gap among
them. Computational science has already begun to change how science is done, enabling scientific breakthroughs through new kinds
of experiments that would have been impossible only a decade ago. Today’s science is generating datasets that are increasing
exponentially in both complexity and volume, making their analysis, archival, and sharing one of the grand challenges of the 21st
century. Seymour Cray once said — “a supercomputer is a device for turning compute-bound problems into I/O-bound problems” —
which drills at the fundamental shift in bottlenecks as supercomputers gain more parallelism in the number of cores at exponential
rates, the storage infrastructure performance is increasing at a lower rate. This implies that the data management and data flow
between the storage and compute resources is becoming the main bottleneck for large-scale data-intensive applications. The support
for data intensive computing is critical to advancing modern science as storage systems have experienced an increasing gap between
its capacity and its bandwidth by more than 10-fold over the last decade. There is an emerging need for advanced techniques to
manipulate, visualize and interpret large datasets. Many domains share these data management challenges, strengthening the
potential road impact from a generic solution. The world of high performance computing is heavily focused on compute-intensive
applications, where I/0 is assumed (often wrongly) to be a minor overhead, and parallel file systems avoid the need for data locality;
the focus is on achieving load balance and reducing communication overheads for fine grain tasks. On the other hand, data-intensive
computing is heavily focused on disk access overheads, on data distribution and on the scheduling of computations close to the data;
models, such as MapReduce assume that inter-task communication is limited and tasks are coarse grained. We focus on the
applications that lie at the intersection producing both compute-intensive and data-intensive workloads, which we have classified in
prior work as a new paradigm called Many-Task Computing (MTC).

MTC aims to bridge the gap between two traditional and prevalent programming paradigms for large-scale distributed systems, high
throughput computing (HTC) and high performance computing (HPC). MTC is reminiscent to HTC, but it differs in the emphasis of
using many computing resources over short periods of time to accomplish many computational tasks, where the primary metrics are
measured in seconds, as opposed to operations per month. MTC denotes high-performance computations comprising multiple
distinct activities, coupled via file system operations or message passing. There are many challenges to enable support for MTC across
clusters, Grids, and supercomputers, including scalable resource management and storage solutions, as well as having well defined
standards on how applications are to interact with the new or improved middleware.

This proposal aims to develop both the theoretical and practical aspects of building efficient and scalable support for both compute-
intensive and data-intensive MTC. To achieve this, we envision building a new distributed data-aware execution fabric that will
support HPC, MTC, and HTC workloads concurrently and efficiently at scales of at least millions of processors and petabytes of
storage, and verify through simulations that such a system could scale to a billion processors. Clients will be able to submit
computational jobs into the execution fabric by submitting to any compute node (as opposed to submitting to single point of failure
gateway nodes), the fabric will guarantee that jobs will execute at least once, and that it will optimize the data movement in order to
maximize processor utilization and minimize data transfer costs. The execution fabric will be elastic in which nodes will be able to join
and leave dynamically, and data will be automatically replicated throughout the distributed system for both redundancy and
performance. We will employ a variety of semantic for the data access patterns, from full POSIX compliance for generality, to relaxed
semantics (e.g. eventual consistency on data modifications, write-once read-many data access patterns) to avoid consistency issues
and increase scalability. Achieving this level of scalability and transparency will allow the data-aware execution fabric to revolutionize
the types of applications that can be supported at petascale and future exascale levels. It will also positively impact the design of
future supercomputers to rely more on a distributed architectures, rather than the current common architecture of having the
storage completely separate from the compute systems connected via a high speed network interconnect. Since data locality is most
critical at the largest scales, the proposed work can lower the costs of new supercomputers by reducing the need for monolithic
parallel file systems as well as expensive and exotic network interconnects, while increasing the reliance on distributed storage
systems built on commodity hardware and network interconnects. We believe this shift in large-scale architecture design will lead to
improving application performance and scalability for the most demanding data intensive applications as system scales continue to
increase according to Moore’s Law.

The intellectual merit of the proposed work is extremely high, as it will touch every branch of computer science research that is
intertwined with computational science by changing the way computing is performed, facilitating rapid analysis at unprecedented
speeds and scalability. The impacted application areas will include all traditionally compute intensive disciplines from medicine,
astronomy, bioinformatics, chemistry, aeronautics, analytics, economics, to new emerging computational areas in the humanities,
arts, and education which are increasingly dealing with ever growing large datasets. We are qualified to pursue the proposed work as
we have an in-depth understanding of the challenges and potential solutions, due to our preliminary pioneer work in supporting MTC
applications (Swift, Falkon, data diffusion), as well as decades of experience in supporting HPC applications (MPI, PnetCDF, PVFS). We
have access to five of the top eight supercomputers in the world (using the June 2009 Top500 rankings) from all of the big
supercomputing vendors (Cray, SGI, IBM, and Sun). These five supercomputers represent the majority of supercomputer
architectures and are ideal for research and development of novel data management techniques at the frontier of the largest scales
available today. We also have access to the TeraGrid (TG) [43], the largest national cyberinfrastructure for open science research, as
well as the Open Science Grid (OSG) [44]. Both of these grids offer unique opportunities to explore data management techniques that
not only optimize data movement within tightly coupled systems, but also across geographic distribution that brings an entire new
range of issues and challenges. Our proposal of enabling MTC on the largest HPC resources of today and tomorrow is controversial as
it forces an outside the box thinking and changing the application landscape of high-end computing dramatically from what it has
been over the past several decades. However, the de-facto HPC programming model (e.g. MPl-based) was designed in a time when
supercomputers had parallelism in the tens or hundreds of processors, and had the capacity that is less than today's hand-held
devices. MPI-based applications are already facing scalability walls at the largest scales due to the orders of magnitude larger
parallelism, heterogeneous parallelism brought on by the multi-core era, and a decreasing mean-time-to-failure (MTTF) due to
increasing system complexity and size. The proposed MTC paradigm has been defined and built with the scalability of tomorrows
systems as a priority and can address many of the HPC shortcomings at extreme scales. MTC also fits well with modern parallel
programming languages, which will help accelerate the uptake of new thinking methods that until recently were reserved for the
select few that were involved in large scale science on distributed systems. These new emerging parallel programming languages will
be critical in harnessing these massively parallel machines by non-experts and to allow maximal impact of the many-core computing
era.

The quote -- “The users should be able to focus their attention on the information content of the data, rather than how to discover,
access, and use it.” -- from the Climate Change Science Program report (2003) underscores the broader impact that new and
improved data management techniques can have upon the scientific community. In essence, they claim that one of the main
objectives of future research programs should be to enhance the data management infrastructure, which is closely aligned with a NSF
report on “Research Challenges in Distributed Computing Systems”. We believe that delivering innovative support for data-intensive
large-scale applications will be an important step forward to achieving the goals set out by the national agencies. By supporting
compute intensive and data intensive MTC, we will capitalize NSF’s and DOE's investments in the TeraGrid, some of the largest
supercomputers available to open science research, as well as to emerging scientific clouds. The challenges we believe we can
overcome will only be magnified with the new generation of supercomputers that are scheduled to come online in 2011 that will
boast millions of processors and tens of petaflops of compute power, not to mention the expected exascale systems with hundreds of
millions to billions of processors that will be available within a decade. The proposed work has a potential for high impact as it addresses
resource management challenges and solutions looking forward over ten years into exascale computing and storage. These
advancements will impact scientific discovery and economic development at the national level, and it will strengthen a wide range of
research and development activities by enabling efficient access, processing, storage, and sharing of valuable scientific data. We will
disseminate our results through open source software and publications in the top conferences and journals (e.g. SC, HPDC, NSDI, JGC,
and TPDS). Furthermore, this work will serve as the foundation for numerous undergraduate and graduate courses for general
computer science literacy across the university, as well as for advanced topics for computer science majors.

This work proposes novel resource management techniques to allow the many branches of science to make use of the dramatic
advancements being made in computing and storage systems. The intersection of computer science and the sciences has the
potential to have a profound impact on science, how it is practiced, and the rate that major advancements are achieved.
Computational science represents the foundation of a new revolution in science that is just beginning, will re-energize virtually all
disciplines over the next decades, and will enable a new era of science-based innovation that could dwarf the last decades of
technology-based innovation.

1. Overview

A famous quote from lan Foster — “the advent of computation can be compared, in terms of the breadth and depth of its
impact on research and scholarship, to the invention of writing and the development of modern mathematics” — is
central to the growing importance of computational science to the many branches of science, and how interdisciplinary
research can bridge the gap among them. Computational science has already begun to change how science is done,
enabling scientific breakthroughs through new kinds of experiments that would have been impossible only a decade
ago. Today’s science is generating datasets that are increasing exponentially in both complexity and volume, making
their analysis, archival, and sharing one of the grand challenges of the 21st century.

1.1. Defining Many-Task Computing

Many-task computing [11, 19, 20] aims to bridge the gap between two computing paradigms, high throughput
computing and high performance computing. Many task computing differs from high throughput computing in the
emphasis of using large number of computing resources over short periods of time to accomplish many computational
tasks (i.e. including both dependent and independent tasks), where primary metrics are measured in seconds (e.g.
FLOPS, tasks/sec, MB/s I/O rates), as opposed to operations (e.g. jobs) per month. Many task computing denotes high-
performance computations comprising multiple distinct activities, coupled via file system operations. Tasks may be
small or large, uniprocessor or multiprocessor, compute-intensive or data-intensive. The set of tasks may be static or
dynamic, homogeneous or heterogeneous, loosely coupled or tightly coupled. The aggregate number of tasks, quantity
of computing, and volumes of data may be extremely large. Many task computing includes loosely coupled applications
that are generally communication-intensive but not naturally expressed using standard message passing interface
commonly found in high performance computing, drawing attention to the many computations that are heterogeneous
but not “happily” parallel.

We want to enable the use of large-scale distributed systems for task-parallel applications, which are linked into useful
workflows through the looser task-coupling model of passing data via files between dependent tasks. This potentially
larger class of task-parallel applications is precluded from leveraging the increasing power of modern parallel systems
such as supercomputers (e.g. IBM Blue Gene/L [23] and Blue Gene/P [24]) because the lack of efficient support in those
systems for the “scripting” programming model [25]. With advances in e-Science and the growing complexity of
scientific analyses, more scientists and researchers rely on various forms of scripting to automate end-to-end
application processes involving task coordination, provenance tracking, and bookkeeping. Their approaches are typically
based on a model of loosely coupled computation, in which data is exchanged among tasks via files, databases or XML
documents, or a combination of these. Vast increases in data volume combined with the growing complexity of data
analysis procedures and algorithms have rendered traditional manual processing and exploration unfavorable as
compared with modern high performance computing

processes automated by scientific workflow systems. [26] Input A

The problem space can be partitioned into four main Data B
categories (Figure 1 and Figure 2). 1) At the low end of the Size Data

spectrum (low number of tasks and small input size), we have Analysis, Big Data and
tightly coupled Message Passing Interface (MPI) applications Mining T IESS
(white). 2) As the data size increases, we move into the Med
analytics category, such as data mining and analysis (blue);

MapReduce [27, 46] is an example for this category. 3) Heroic

Keeping data size modest, but increasing the number of tasks MPI

moves us into the loosely coupled applications involving many Teg /e GRS
tasks (yellow); Swift/Falkon [28, 29] and Pegasus/DAGMan

[30] are examples of this category. 4) Finally, the combination Low >
of both many tasks and large datasets moves us into the data- 1 1K 1M
intensive many-task computing category (green); examples of Number of Tasks
this category are Swift/Falkon and data diffusion [31], Dryad Figure 1: Problem types with respect to data size and
[32], and Sawzall [33]. number of tasks

High performance computing can be considered to be part of
the first category (denoted by the white area). High Single task, modest data
throughput computing [34] can be considered to be a subset MRSt

of the third category (denoted by the yellow area). Many-
Task Computing can be considered as part of categories three
and four (denoted by the yellow and green areas). This paper

Many Tasks Much Data

focuses on defining many-task computing, and the challenges DAGMan-+Pegasus MapReduce/Hadoop
that arise as datasets and computing systems are growing Karajan+Swift+Falkon Dryad
exponentially.

Clusters and Grids have been the preferred platform for

loosely coupled applications that have been traditionally part Complex Tasks, Much Data

of the high throughput computing class of applications, which .

Figure 2: An incomplete and simplistic view of programming
models and tools

are managed and executed through workflow systems or parallel programming systems. Various properties of a new
emerging applications, such as large number of tasks (i.e. millions or more), relatively short per task execution times (i.e.
seconds to minutes long), and data intensive tasks (i.e. tens of MB of 1/O per CPU second of compute) have lead to the
definition of a new class of applications called Many-Task Computing. MTC emphasizes on using much large numbers of
computing resources over short periods of time to accomplish many computational tasks, where the primary metrics
are in seconds (e.g., FLOPS, tasks/sec, MB/sec 1/O rates), while HTC requires large amounts of computing for long
periods of time with the primary metrics being operations per month [34]. MTC applications are composed of many
tasks (both independent and dependent tasks) that can be individually scheduled on many different computing
resources across multiple administrative boundaries to achieve some larger application goal.

MTC denotes high-performance computations comprising multiple distinct activities, coupled via file system operations
or message passing. Tasks may be small or large, uniprocessor or multiprocessor, compute-intensive or data-intensive.
The set of tasks may be static or dynamic, homogeneous or heterogeneous, loosely coupled or tightly coupled. The
aggregate number of tasks, quantity of computing, and volumes of data may be extremely large. Is MTC really different
enough to justify coining a new term? There are certainly other choices we could have used instead, such as multiple
program multiple data (MPMD), high throughput computing, workflows, capacity computing, or embarrassingly parallel.

MPMD is a variant of Flynn’s original taxonomy [35], used to denote computations in which several programs each
operate on different data at the same time. MPMD can be contrasted with Single Program Multiple Data (SPMD), in
which multiple instances of the same program each execute on different processors, operating on different data. MPMD
lacks the emphasis that a set of tasks can vary dynamically. High throughput computing [34], a term coined by Miron
Livny within the Condor project [36], to contrast workloads for which the key metric is not floating-point operations per
second (as in high performance computing) but “per month or year.” MTC applications are often just as concerned with
performance as is the most demanding HPC application; they just don't happen to be SPMD programs. The term
“workflow” was first used to denote sequences of tasks in business processes, but the term is sometimes used to
denote any computation in which control and data passes from one “task” to another. We find it often used to describe
many-task computations (or MPMD, HTC, MTC, etc.), making its use too general. “Embarrassingly parallel computing” is
used to denote parallel computations in which each individual (often identical) task can execute without any significant
communication with other tasks or with a file system. Some MTC applications will be simple and embarrassingly parallel,
but others will be extremely complex and communication-intensive, interacting with other tasks and shared file-
systems. The new term MTC is drawing attention to “applications that are communication-intensive but are not
naturally expressed in MPI”, which are also loosely coupled, and could potentially be composed of many independent
tasks. Many of these computations are essentially heterogeneous but not “happily” parallel.

1.2. A Case for Many-Task Computing on Extreme Scale Distributed Systems

We claim that MTC applies to not only traditional HTC environments such as clusters and Grids, assuming appropriate
support in the middleware, but also supercomputers [9, 10, 38]. Emerging petascale computing systems, such as IBM’s
Blue Gene/P [24], incorporate high-speed, low-latency interconnects and other features designed to support tightly
coupled parallel computations. Most of the applications run on these computers have a SMPD structure, and are
commonly implemented by using MPI to achieve the needed inter-process communication. We believe MTC to be a
viable paradigm for supercomputers. As the computing and storage scale increases, the set of problems that must be
overcome to make MTC practical (ensuring good efficiency and utilization at large-scale) exacerbate. The challenges
include local resource manager scalability and granularity, efficient utilization of the raw hardware, shared file system
contention and scalability, reliability at scale, application scalability, and understanding the limitations of the HPC
systems in order to identify promising and scientifically valuable MTC applications.

One could ask, why use petascale systems for problems that might work well on terascale systems? We point out that
petascale systems are more than just many processors with large peak petaflop ratings. They normally come well
balanced, with proprietary, high-speed, and low-latency network interconnects to give tightly-coupled applications good
opportunities to scale well at full system scales. Even IBM has proposed in their internal project Kittyhawk [37] that Blue
Gene/P can be used to run non-traditional workloads (e.g. HTC). We identify four factors that motivate the support of
MTC applications on petascale HPC systems:

1) The I/O subsystems of petascale systems offer unique capabilities needed by MTC applications. For example,
collective 1/O operations [38] could be implemented to use the specialized high-bandwidth and low-latency
interconnects. MTC applications could be composed of individual tasks that are themselves parallel programs,
many tasks operating on the same input data, and tasks that need considerable communication among them.

Furthermore, the aggregate shared file system performance of a supercomputer can be potentially larger than
that found in a distributed infrastructure (i.e., Grid), with data rates in the 10GB+/s range, rather than the more
typical 0.1GB/s to 1GB/s range at most Grid sites.

2) The cost to manage and run on petascale systems like the Blue Gene/P is less than that of conventional clusters or
Grids[37]. For example, a single 13.9 TF Blue Gene/P rack draws 40 kilowatts, for 0.35 GF/watt. Two other
systems that get good compute power per watt consumed are the SiCortex with 0.32 GF/watt and the Blue
Gene/L with 0.23 GF/watt. In contrast, the average power consumption of the Top500 systems is 0.12 GF/watt
[39]. Furthermore, we also argue that it is more cost effective to manage one large system in one physical
location, rather than many smaller systems in geographically distributed locations.

3) Large-scale systems inevitably have utilization issues. Hence it is desirable to have a community of users who can
leverage traditional back-filling strategies to run loosely coupled applications on idle portions of petascale
systems.

4) Perhaps most importantly, some applications are so demanding that only petascale systems have enough compute
power to get results in a reasonable timeframe, or to exploit new opportunities in such applications. With
petascale processing capabilities on ordinary applications, it becomes possible to perform vast computations
with quick turn-around, thus answering questions in a timeframe that can make a quantitative difference in
addressing significant scientific challenges or responding to emergencies.

1.3. The Data Deluge Challenge and the Growing Storage/Compute Gap

A famous quote from Seymour Cray — “a supercomputer is a device for turning compute-bound problems into I/O-bound
problems” — drills at the fundamental shift in bottlenecks as supercomputers gain more parallelism in the number of
cores at exponential rates, yet the storage infrastructure supporting the compute resources is increasing at a lower rate.
This implies that the data management and data flow between the storage and compute resources is becoming the
main bottleneck for large-scale data-intensive applications. The support for data intensive computing is critical to
advancing modern science as storage systems have experienced an increasing gap between its capacity and its
bandwidth by more than 10-fold over the last decade. There is an emerging need for advanced techniques to
manipulate, visualize and interpret large datasets. [40] Many domains share these data management challenges,
strengthening the potential road impact from a generic solution. The world of high performance computing is heavily
focused on compute-intensive applications, where 1/0 is assumed (often wrongly) to be a minor overhead, and parallel
file systems avoid the need for data locality; the focus is on achieving load balance and reducing communication
overheads for fine grain tasks. On the other hand, data-intensive computing is heavily focused on disk access overheads,
on data distribution and on the scheduling of computations close to the data; models, such as Bigtable and MapReduce
assume that inter-task communication is limited and tasks are coarse grained. However, many interesting applications
do couple modules that are compute-intensive with modules that are data-intensive. This is particularly true for
applications in ecology and sustainability that may couple compute-intensive simulations with geographic information
systems.

1.4. Background Information -- Prior Work

Our prior work addressed many-task computing at modest scales with the middleware Falkon (a FAst and Light-weight
tasK executiON framework) [7, 8] and the parallel programming system Swift [17, 28, 21, 22], as well as other work in
resource management in distributed systems and grids [76, 77, 78]. Falkon aims to enable the rapid and efficient
execution of many tasks on large compute clusters, and to improve application performance and scalability using novel
data management techniques. Falkon combines three techniques to achieve these goals: (1) multi-level scheduling
techniques to enable separate treatments of resource provisioning [6] and the dispatch of user tasks to those resources;
(2) a streamlined task dispatcher [7] able to achieve order-of-magnitude higher task dispatch rates than conventional
schedulers; and (3) data diffusion [13, 31, 15, 16] which performs data caching and uses a data-aware scheduler to
leverage the co-located computational and storage resources to minimize the use of shared storage infrastructure.
Falkon’s integration of multi-level scheduling, streamlined dispatchers, and data diffusion delivers performance not
provided by any other system. Falkon has been deployed on various large scale distributed systems, such as the IBM
BlueGene/P at Argonne National Laboratory (160K processors) and the NSF TeraGrid. It has also been integrated with
other projects, to deliver turn-key solutions on machines such as the BlueGene/P and Sun Constellation where users can
have the entire software stack pre-installed and configured at the system level.

We propose to address data intensive many-task computing by re-architecting, parallelizing, and generalizing our
resource management techniques we have explored in prior work, with an emphasis on utilizing the largest scale
distributed systems of today and tomorrow at petascale and exascale compute levels with millions to billions of
processor cores, petabytes of memory, and exabytes of persistent storage. This project proposes to address challenges
at the middleware level in large-scale distributed systems, and it especially targets for scalable resource management
(including both compute and storage resources), scalable data-aware scheduling, and generic as well as transparent
tools to help scientists concentrate on the important scientific application logic, rather than how to implement, execute,
or scale their application on distributed systems.

1.5. MTC Applications
We have found many applications that are a better fit for MTC than HTC or HPC. Their characteristics include having a
large number of small parallel jobs, a common pattern observed in many scientific applications [28]. They also use files
(instead of messages, as in MPI) for intra-processor communication, which tends to make these applications data
intensive.

While we can push hundreds or even thousands of such small jobs via GRAM to a traditional local resource manager
(e.g. PBS [51], Condor [48], SGE [52]), the achieved utilization of a modest to large resource set will be poor due to high
queuing and dispatching overheads, which ultimately results in low job throughput. A common technique to amortize
the costs of the local resource management is to “cluster” multiple jobs into a single larger job. Although this lowers the
per job overhead, it is best suited when the set of jobs to be executed are homogenous in execution times, or accurate
execution time information is available prior to job execution; with heterogeneous job execution times, it is hard to
maintain good load balancing of the underlying resource, causing low resource utilization. We claim that “clustering”
jobs is not enough, and that the middleware that manages jobs must be streamlined and made as light-weight as
possible to allow applications with heterogonous execution times to execute without “clustering” with high efficiency.

In addition to streamlined task dispatching, scalable data management techniques are also required in order to support
MTC applications. MTC applications are often data and/or meta-data intensive, as each job requires at least one input
file and one output file, and can sometimes involve many files per job. These data management techniques need to
make good utilization of the full network bandwidth of large scale systems, which is a function of the number of nodes
and networking technology employed, as opposed to the relatively small number of storage servers that are behind a
parallel file system or GridFTP [1] server.

We have identified various applications (as detailed in Table 1 and the rest of this section) from many disciplines that
demonstrate characteristics of MTC applications. These applications cover a wide range of domains, from astronomy,
physics, astrophysics, pharmaceuticals, bioinformatics, biometrics, neuroscience, medical imaging, chemistry, climate
modeling, economics, and data analytics. They often involve many tasks, ranging from tens of thousands to billions of
tasks, and have a large variance of task execution times ranging from hundreds of milliseconds to hours. Furthermore,
each task is involved in multiple reads and writes to and from files, which can range in size from kilobytes to gigabytes.
These characteristics made traditional resource management techniques found in HTC inefficient; also, although some
of these applications could be coded as HPC applications, due to the wide variance of the arrival rate of tasks from many
users, an HPC implementation would also yield poor utilization. Furthermore, the data intensive nature of these
applications can quickly saturate parallel file systems at even modest computing scales.

Astronomy: One of the first applications that motivated much of this work was called the “AstroPortal” [53, 2], which
offered a stacking service of astronomy images from the Sloan Digital Sky Survey (SDSS) dataset using grid resources.
Astronomical image collections usually cover an area of sky several times (in different wavebands, different times, etc).
On the other hand, there are large differences in the sensitivities of different observations: objects detected in one band
are often too faint to be seen in another survey. In such cases we still would like to see whether these objects can be
detected, even in a statistical fashion. There has been a growing interest to re-project each image to a common set of
pixel planes, then stacking images. The stacking improves the signal to noise, and after coadding a large number of
images, there will be a detectable signal to measure the average brightness/shape etc of these objects. This application
involved the SDSS dataset [41] (currently at 10TB with over 300 million objects, but these datasets could be petabytes in
size if we consider multiple surveys in both time and space) [26], many tasks ranging from 10K to millions of tasks, each
requiring 100ms to seconds of compute and 100KB to MB of input and output data. [3, 4, 5]

Another related application in astronomy is MONTAGE [54, 55], a national virtual observatory project [56] that stitches
tiles of images of the sky from various sky surveys (e.g. SDSS [41], etc) into a photorealistic single image. Execution times

per task range in the 100ms to 10s of seconds, and each task involves multiple input images and at least one image
output. This application is both compute intensive and data intensive, and has been run as both a HTC (using
Pegasus/DAGMan [30], and Condor [36]) and a HPC (using MPI) application, but we found its scalability to be limited

when run under HTC or HPC.

Table 1: Sample MTC Applications using the Swift and/or Falkon systems

Description

Characteristics

Status

Astronomy Creation of montages from many digital images Many 1-core tasks, much communication, complex Experimental
dependencies
Astronomy Stacking of cutouts from digital sky surveys Many 1-core tasks, much communication Experimental

Biochemistry*

Analysis of mass-spectrometer data for post-
translational protein modifications

10,000-100 million jobs for proteomic searches using
custom serial codes

In development

docking/screening

Biochemistry* Protein structure prediction using iterative fixing Hundreds to thousands of 1- to 1,000-core simulations | Operational
algorithm; exploring other biomolecular and data analysis
interactions

Biochemistry* Identification of drug targets via computational Up to 1 million 1-core docking operations Operational

*

Bioinformatics

Metagenome modeling

Thousands of 1-core integer programming problems

In development

Business
economics

Mining of large text corpora to study media bias

Analysis and comparison of over 70 million text files of
news articles

In development

Climate science

Ensemble climate model runs and analysis of
output data

Tens to hundreds of 100- to 1,000-core simulations

Experimental

Economics* Generation of response surfaces for various eco- | 1,000 to 1 million 1-core runs (10,000 typical), then Operational
nomic models data analysis
Neuroscience* Analysis of functional MRI datasets Comparison of images; connectivity analysis with Operational

structural equation modeling, 100,000+ tasks

Radiology Training of computer-aided diagnosis algorithms | Comparison of images; many tasks, much In development
communication
Radiology Image processing and brain mapping for neuro- Execution of MPI application in parallel In development

surgical planning research

Note: Asterisks indicate applications being run on Argonne National Laboratory’s Blue Gene/P (Intrepid) and/or the TeraGrid Sun Constellation at the University of Texas at Austin (Ranger).

Astrophysics: Another application is from astrophysics, which analyzes the Flash turbulence dataset (simulation data)
[75] from various perspectives, using volume rendering and vector visualization. The dataset is composed of 32 million
files (1000 time steps times 32K files) taking up about 15TB of storage resource, and contains both temporal and spatial
locality. In the physics domain, the CMS detector being built to run at CERN’s Large Hadron Collider [42] is expected to
generate over a petabyte of data per year. Supporting applications that can perform a wide range of analysis of the LHC
data will require novel support for data intensive applications.

Economic Modeling: An application from the economic modeling domain that we have investigated as a good MTC
candidate is Macro Analysis of Refinery Systems (MARS) [50], which studies economic model sensitivity to various
parameters. MARS models the economic and environmental impacts of the consumption of natural gas, the production
and use of hydrogen, and coal-to-liquids co-production, and seeks to provide insights into how refineries can become
more efficient through the capture of waste energy. Other economic modeling applications perform numerical
optimization to determine optimal resource assignment in energy problems. This application is challenging as the
parameter space is extremely large, which can produce millions, even billions of individual tasks, each with a relatively
short execution time of only seconds long.

Pharmaceutical Domain: In the pharmaceutical domain, there are applications that screen KEGG [57] compounds and
drugs against important metabolic protein targets using DOCK6 [49] to simulate the “docking” of small molecules, or
ligands, to the “active sites” of large macromolecules of known structure called “receptors”. A compound that interacts
strongly with a receptor (such as a protein molecule) associated with a disease may inhibit its function and thus act as a
beneficial drug. The economic and health benefits of speeding drug development by rapidly screening for promising
compounds and eliminating costly dead-ends is significant in terms of both resources and human life. The parameter
space is quite large, totaling to more than one billion computations that have a large variance of execution times from
seconds to hours, with an average of 10 minutes. The entire parameter space would require over 22,600 CPU years, or
over 50 days on a 160K processor Blue Gene/P supercomputer [24]. This application is challenging as there many tasks,
each task has a wide range of execution times with little to no prior knowledge about its execution time, and involves
significant 1/O for each computation as the compounds are typically stored in a database (i.e. 10s to 100s of MB large)
and must be read completely per computation.

Chemistry: Another application in the same domain is OOPS [58], which aims to predict protein structure and recognize
docking partners. In chemistry, specifically in molecular dynamics, we have an application MolDyn whose goal is to
calculate the solvation free energy of ligands and protein-ligand binding energy, with structures obtained from the NIST
Chemistry WebBook database [59]. Solvation free energy is an important quantity in Computational Chemistry with a
variety of applications, especially in drug discovery and design. These applications have similar characteristics as the
DOCK application previously discussed.

Bioinformatics: In bioinformatics, Basic Local Alignment Search Tool (BLAST), is a family of tools for comparing primary
biological sequence information (e.g. amino-acid sequences of proteins, nucleotides of DNA sequences). A BLAST search
enables one to compare a query sequence with a library or database of sequences, and identify library sequences that
resemble the query sequence above a certain threshold. [60]. Although the BLAST codes have been implemented in
both HTC and HPC, they are often both data and compute intensive, requiring multi-GB databases to be read for each
comparison (or kept in memory if possible), and each comparison can be done within minutes on a modern processor-
core. MTC and its support for data intensive applications are critical in scaling BLAST on large scale resources with
thousands to hundreds of thousands of processors.

Neuroscience Domain: In the neuroscience domain, we have the Computational Neuroscience Applications Research
Infrastructure (CNARI), which aims to manage neuroscience tools and the heterogeneous compute resources on which
they can enable large-scale computational projects in the neuroscience community. The analysis includes the aphasia
study, structural equation modeling, and general use of R for various data analysis. [61] The application workloads
involve many tasks, relatively short on the order of seconds, and each task containing many small input and output files
making the application meta-data intensive at large scale.

Cognitive Neuroscience: The fMRI application is a workflow from the cognitive neuroscience domain with a four-step
pipeline, which includes Automated Image Registration (AIR), Preprocessing and stats from NIH and FMRIB (AFNI and
FSL), and Statistical Parametric Mapping (SPM2) [62]. An fMRI Run is a series of brain scans called volumes, with a
Volume containing a 3D image of a volumetric slice of a brain image, which is represented by an Image and a Header.
Each volume can contain hundreds to thousands of images, and with multiple patients, the number of individual
analysis tasks can quickly grow. Task execution times were only seconds long, and the input and output files ranged
from kilobytes to megabytes in size. This application could run as an HTC one at small scales, but needs MTC support to
scale up.

Data Analytics: Data analytics and data mining is a large field that covers many different applications. Here, we outline
several applications that fit MTC well. One example is the analysis of log data from millions computations. Another set
of applications are ones commonly found in the MapReduce [63] paradigm, namely “sort” and “word count” [14]. Both
of these applications are essential to World Wide Web search engines, and are challenging at medium to large scale due
to their data intensive nature. All three applications involve many tasks, many input files (or many disjoint sub-sections
of few files), and are data intensive.

Data Mining: Another set of applications that perform data analysis can be classified in the “All-Pairs” class of
applications [64]. These applications aim to understand the behavior of a function on two sets, or to learn the
covariance of these sets on a standard inner product. Two common applications in All-Pairs are data mining and
biometrics. Data mining is the study of extracting meaning from large data sets; one phase of knowledge discovery is
reacting to bias or other noise within a set. Different classifiers work better or worse for varying data, and hence it is
important to explore many different classifiers in order to be able to determine which classifier is best for that type of
noise on a particular distribution of the validation set.

Biometrics: Biometrics aims to identifying humans from measurements of the body (e.g. photos of the face, recordings
of the voice, and measurements of body structure). A recognition algorithm may be thought of as a function that
accepts two images (e.g. face) as input and outputs a number between zero and one indicating the similarity between
the two input images. The application would then compare all images of a database and create a scoring matrix which
can later be easily searched to retrieve the most similar images. These All-Pairs applications are extremely challenging as
the number of tasks can rapidly grow in the millions and billions, with each task being hundreds of milliseconds to tens
of seconds, with multi-megabyte input data per task.

Molecular docking: The DOCK molecular dynamics application is run regularly on Intrepid to simulate the docking of
small ligand molecules to large macromolecules (receptors). A compound that interacts strongly with a receptor
associated with a disease may inhibit its function and thus prove useful in a beneficial drug. This application is

challenging because it involves many tasks, each with a wide range of execution times, and each computation involves
significant 1/0. Protein description files for docking range from tens to hundreds of megabytes and must be read for
each computation. Argonne biochemists use Falkon for molecular docking and surface screening, running at scales of up
to 64,000 cores in a single scripted workload.

Uncertainty in economic models: The University of Chicago-Argonne CIM-EARTH project for integrated social,
economic, and environmental modeling (www.cim-earth.org) uses Swift on petascale systems to execute parameter
sweeps of economic models that forecast energy use and other commodity demands to examine the effects of
uncertainty. CIM-EARTH researchers use the parallel scripting paradigm to refine several models for exploring
uncertainty through large-scale parallelism. Researchers analyzed thousands of samples from a perturbed input dataset
in parallel on Ranger and other parallel systems of thousands of cores each. The model evaluates relative sensitivity to
uncertainty (percent from the mean) for consumer and industrial demand for electricity in eight geographical regions.
The dark-blue and light-blue envelopes are one and two standard deviations from the mean.

Structural equation modeling: The University of Chicago’s Human Neuroscience Laboratory has developed a
computational framework for a data-driven approach to structural equation modeling8 (SEM) and has implemented
several parallel scripts for modeling functional MRI data within this framework. The Computational Neuroscience
Applications Research Infrastructure8 (CNARI, www.cnari.org) uses Swift to execute hundreds of thousands of
simultaneous processes running the R data analysis language, consisting of self-contained structural equation models,
on Ranger. These self-contained R processing jobs are data objects generated by OpenMx
(http://openmx.psyc.virginia.edu), a structural equation modeling package for R that can generate a single model object
containing the matrices and algebraic information necessary to estimate the model’s parameters. With the CNARI
framework, neuroscientists run OpenMx from Swift scripts to conduct exhaustive searches of the model space.

Posttranslational protein modification: The University of Chicago’s Ben May Department for Cancer Research is
applying petascale parallel scripting to the analysis of posttranslational protein modifications (PTMs), complex changes
to proteins that play essential roles in protein function and cellular physiology. The PTMap application takes in raw data
files from massspectrometry analysis of biological samples, along with the entire set of sequences of the organism’s
proteome, and searches them for statistically significant evidence of unidentified PTMs. The tool reads in a mass-
spectrometry file—typically 200 megabytes of data in mzXML format— and protein sequences in FASTA format. The
analysis of a mass-spectrometry run for a single proteome has abundant opportunities for parallelization at the extreme
scale. Researchers want to apply the latest version of PTMap to identify unknown PTMs across a wide range of
organisms including E. coli, yeast, cows, mice, and humans.

MPI Ensembles: Finally, another class of applications is managing an ensemble of MPI applications. One example is from
the climate modeling domain, which has been studying climate trends and predicting global warming [65], is already
implemented as an HPC MPI application. However, the current climate models could be run as ensemble runs (many
concurrent MPI applications) to quantify climate model uncertainty. This is challenging in large scale systems such as
supercomputers (a typical resource such models would execute on), as the local resource managers (e.g. Cobalt) favor
large jobs and have policy against running many jobs at the same time (i.e. where many is more than single digit number
of jobs per user).

All these applications pose significant challenges to traditional resource management found in HPC and HTC, from both
job management and storage management perspective, and are in critical need of MTC support as the scale of these
resources grows.

1.6. Proposed Work

This proposal aims to develop both the theoretical and practical aspects of building efficient and scalable support for
both compute-intensive and data-intensive MTC. To achieve this, we envision building a new distributed data-aware
execution fabric that scales to at least millions of processors and petabytes of storage, and will support HPC, MTC, and
HTC workloads concurrently and efficiently. Clients will be able to submit computational jobs into the execution fabric
by submitting to any compute node (as opposed to submitting to single point of failure gateway nodes), the fabric will
guarantee that jobs will execute at least once (jobs could be executed more than once under certain conditions such as
unusual delays or transient failures), and that it will optimize the data movement in order to maximize processor
utilization and minimize data transfer costs. The execution fabric will be elastic in which nodes will be able to join and
leave dynamically, and data will be automatically replicated throughout the distributed system for both redundancy and
performance.

We will employ a variety of semantic for the data access patterns, from full POSIX compliance for generality, to relaxed
semantics (e.g. eventual consistency on data modifications, write-once read-many data access patterns) to avoid
consistency issues and increase scalability. Achieving this level of scalability and transparency will allow the data-aware
execution fabric to revolutionize the types of applications that can be supported at petascale and future exascale levels.
We have to understand what disk storage organizations best match the needs of the applications we envisage.
Distributed storage systems provide detailed control on the location of data at file granularity, but entail potentially
expensive metadata transactions. Parallel file systems provide limited control of data layout but can significantly reduce,
potentially, metadata overheads. While continued support to a model of “one-file-per-process” with POSIX semantics is
necessary, it should be possible to bridge the gap between the two models for applications that use I/O libraries such as
HDF5 and netCDF.

Support for MTC workloads combines traditional batch oriented HPC workloads with more MTC-like workloads that
seeks fast response time on small tasks. With support for data-aware scheduling, coupled with a better handling of the
memory hierarchy and 1/0, we believe MTC could support interactive HPC (also known as ensemble MPI applications),
enabling the execution of thousands of parallel computations each involving many thousands of nodes and years of
compute time in minutes of wall-clock time. Efficient support for interactive HPC can significantly alter the use of HPC in
industry, as HPC applications that perform advanced simulations, parametric search and uncertainty quantification
become part of an interactive design cycle, rather than an overnight validation cycle. One example is from the climate
modeling domain, which has been studying climate trends and predicting global warming, is already implemented as an
HPC MPI application. However, the current climate models could be run as ensemble runs (many separate concurrent
MPI applications) to quantify climate model uncertainty in order to optimize the speedup and efficiency curves of the
particular application (e.g. when scalability is poor). This is challenging in large scale systems such as supercomputers, a
typical resource such models would execute on, as the local resource managers favor large jobs and have policy against
running many jobs at the same time. Even if scheduling policies would not be the bottleneck, many production resource
managers (e.g. Cobalt, SGE, PBS, Condor) have high scheduling and resource provisioning overheads which makes
executing ensemble MPI applications only tractable if they are long running. This has implications in both the
programming model, degree of parallelism, and reliability of application execution as the mean-time-to-failure (MTTF)
generally decreases dramatically as applications and physical resources scale increase. All these applications pose
significant challenges to traditional resource management found in HPC and HTC, from both job management and
storage management perspective, and are in critical need of MTC support as the scale of these resources grows. We
envision adding support for traditional HPC workloads to the Falkon middleware, such as support for MPI-based
applications. We will support arbitrary resource allocation sizes, in contrast to other production systems that impose a
limit on the smallest allocation size (e.g. for the IBM BlueGene/P at Argonne National Laboratory, the lower bound is
256 processors, and allocation sizes have to be multiples of 256). Furthermore, we will support sharing of data across
different MPI applications with direct node-to-node communication, in contrast with having to go through some global
file system, essentially leveraging all our work on data management from data diffusion.

We believe there is a wide range of applications that can be made possible, or at least be executed more efficiently, by
generalizing Falkon and data diffusion, and applying them to the largest scale distributed systems and applications of
today and tomorrow. Data locality is most critical at the largest scales, and it can lower the costs of new
supercomputers by reducing the need for monolithic parallel file systems as well as expensive and exotic network
interconnects, while increasing the reliance on distributed storage systems built on commodity hardware and network
interconnects. We believe this shift in large-scale architecture design will lead to improving application performance and
scalability for the most demanding data intensive applications as system scales continue to increase according to
Moore’s Law.

1.7. Technical Merit of Proposed Research
The intellectual merit of the proposed work is extremely high, as it will touch every branch of computer science research
that is intertwined with computational science by changing the way computing is performed, facilitating rapid analysis
at unprecedented speeds and scalability. The impacted application areas will include all traditionally compute intensive
disciplines from medicine, astronomy, bioinformatics, chemistry, aeronautics, analytics, economics, to new emerging
computational areas in the humanities, arts, and education which are increasingly dealing with ever growing large
datasets. We are qualified to pursue the proposed work as we have an in-depth understanding of the challenges and
potential solutions, due to our preliminary pioneer work in supporting MTC applications (Swift, Falkon, data diffusion),
as well as decades of experience in supporting HPC applications (MPI, PnetCDF, PVFS). We have access to five of the top
eight supercomputers in the world (using the June 2009 Top500 rankings) from all of the big supercomputing vendors

(Cray, SGI, IBM, and Sun). These five supercomputers represent the majority of supercomputer architectures and are
ideal for research and development of novel data management techniques at the frontier of the largest scales available
today. We also have access to the TeraGrid, the largest national cyberinfrastructure for open science research, as well as
the Open Science Grid. Both of these grids offer unique opportunities to explore data management techniques that not
only optimize data movement within tightly coupled systems, but also across geographic distribution that brings an
entire new range of issues and challenges. Our proposal of enabling MTC on the largest HPC resources of today and
tomorrow is controversial as it forces an outside the box thinking and changing the application landscape of high-end
computing dramatically from what it has been over the past several decades. However, the de-facto HPC programming
model (e.g. MPI-based) was designed in a time when supercomputers had parallelism in the tens or hundreds of
processors, and had the capacity that is less than today's hand-held devices. MPI-based applications are already facing
scalability walls at the largest scales due to the orders of magnitude larger parallelism, heterogeneous parallelism
brought on by the multi-core era, and a decreasing mean-time-to-failure (MTTF) due to increasing system complexity
and size. The proposed MTC paradigm has been defined and built with the scalability of tomorrows systems as a priority
and can address many of the HPC shortcomings at extreme scales. MTC also fits well with modern parallel programming
languages, which will help accelerate the uptake of new thinking methods that until recently were reserved for the
select few that were involved in large scale science on distributed systems. These new emerging parallel programming
languages will be critical in harnessing these massively parallel machines by non-experts and to allow maximal impact of
the many-core computing era.

1.8. Broader Impact

The quote -- “The users should be able to focus their attention on the information content of the data, rather than how
to discover, access, and use it.” -- from the Climate Change Science Program report (2003) underscores the broader
impact that new and improved data management techniques can have upon the scientific community. In essence, they
claim that one of the main objectives of future research programs should be to enhance the data management
infrastructure, which is closely aligned with a NSF report on “Research Challenges in Distributed Computing Systems”.
We believe that delivering innovative support for data-intensive large-scale applications will be an important step
forward to achieving the goals set out by the national agencies. By supporting compute intensive and data intensive
MTC, we will capitalize NSF’s and DOE's investments in the TeraGrid, some of the largest supercomputers available to
open science research, as well as to emerging scientific clouds. The challenges we believe we can overcome will only be
magnified with the new generation of supercomputers that are scheduled to come online in 2011 that will boast
millions of processors and tens of petaflops of compute power. The proposed work has a potential for high impact as it
addresses resource management challenges and solutions looking forward over ten years into exascale computing and
storage. These advancements will impact scientific discovery and economic development at the national level, and it will
strengthen a wide range of research and development activities by enabling efficient access, processing, storage, and
sharing of valuable scientific data. We will disseminate our results through open source software and publications in the
top conferences and journals (e.g. SC, HPDC, NSDI, JGC, and TPDS). Furthermore, this work will serve as the foundation
for numerous undergraduate and graduate courses for general computer science literacy across the university, as well
as for advanced topics for computer science majors.

1.9. Applicability of Proposed Work in other Domains

The ideas (and even implementations) that underpin our work in resource management at the largest scales can be
applied to new emerging paradigms, such as Cloud Computing [18]. The Cloud Computing concept surfaced in 2007,
although it is not a completely new concept; it has intricate connection to the thirteen-year established Grid Computing
paradigm, and other relevant technologies such as utility computing, cluster computing, and distributed systems in
general. In building the future Cloud Computing infrastructure, | believe it needs to support on-demand provisioning of
“virtual systems” providing the precise capabilities needed by an end-user, something we have been working on for
years in the more general context of distributed systems. There is a growing demand to define protocols that allow
users and service providers to discover and hand off demands to other providers, to monitor and manage their
reservations, and arrange payment. Tools need to be defined and implemented for managing both the underlying
resources and the resulting distributed computations. With Cloud Computing infrastructure being a potential significant
asset to the scientific community in the future, and the great similarities found between Cloud Computing and more
mature computing systems, we believe that our work in large-scale resource management to support compute intensive
and data intensive MTC workloads is directly applicable to Cloud Computing in practice.

Furthermore, with the advent of Many-Core Computing, some are predicting that desktop machines will reach
thousands of cores within a decade. This increase in parallelism will bring many challenges to end-users, with new
programming models and new thinking methods that until recently were reserved for the select few that were involved
in large scale science on distributed systems. Having new tools (e.g. parallel programming languages) to harness these
massively parallel machines by non-experts will be critical to allow maximal impact of the many-core computing era.
New programming models such as MapReduce have made good progress in this direction, however MapReduce by
definition is quite constrained, and cannot express a large number of scientific applications. Data-flow driven parallel
programming systems (also known as workflow systems in some communities) can express application control flow with
direct acyclic graphs (DAG), and are arguably more general than MapReduce. Given the right level of abstraction, these
parallel programming systems can provide the same level of ease of use as MapReduce, while being more general and
powerful for the scientific community at large.

2. Technical Approach and Tasks

Although the existing middleware (Falkon) and its data management capabilities (data diffusion) have shown to provide
significant performance and scalability improvements for a number of scientific applications, they also have several
limitations which can hinder wider adoption by the scientific community. These limitations include a centralized data-
aware scheduler that scales only to modest levels of thousands of processors, a naive decentralized scheduler that
performs sub-optimal in heterogeneous systems and does not perform data aware scheduling, assumptions on the data
access patterns (e.g. write once read many), the requirement that task definitions include input/output files metadata
(e.g. file names), the requirement that per task working set fit in local storage, the requirement of a Java virtual machine
(which is not typical supported by the largest supercomputers’ compute nodes), and the lack of support for HPC
workloads (e.g. MPl-based applications). Furthermore, the Swift parallel programming system currently only scales to
tens of thousands of processors, and hundreds of thousands of tasks, due to expensive in-memory state management at
a central location. We will discuss in depth the technical solutions we envision can address many of the current
shortcomings of the current state-of-the-art parallel programming systems and resource management frameworks.

We will achieve orders of magnitude higher levels of performance by re-architecting the existing centralized Falkon
framework to include a distributed queuing system, distributed metadata management, distributed storage systems,
and distributed data-aware scheduling. In order to achieve this performance, we will also relax some constraints to
ensure our system is able to scale well, such as adopting eventual consistency semantics of the metadata of the storage
system, and not guaranteeing ordering of jobs in the distributed queuing system.

2.1. Task 1: Distributed Resource Management

Distributed Queuing System

We will first address the distribution of the resource management framework. Our centralized solution performs quite
well (several orders of magnitude better) in comparison with existing production systems, improving throughputs from
single digit jobs/sec, to thousands of jobs/sec. However, a centralized solution has two limitations: 1) it has a single
point of failure, and 2) it has relatively low scalability as the system is bound to the resources (i.e. processors, memory,
network) of a single node to process all jobs. Figure 3 below shows the dispatch rates of Falkon on various systems from
a plain Linux cluster of 256 processors, to a 5732 processor SiCortex machine, to a 160K IBM BlueGene/P
supercomputer. We see that in all four instances, the throughput saturates early on with only 10s or 100s of processors.
Even when running on the full 160K processors on the BlueGene/P, the best throughput we can achieve is 3071
jobs/sec.

3500 | —*LinuxCluster
~=-SiCortex

-y
a
o
o

2000

1000 /(/// / 1500
500 / /)L‘_‘ 1223
/ / 0

0 T T

1 10 100 1000 10000
Number of Processors

-BG/P /—0—0-00
3000 +—) 5000
= L lust
g -e-Linux Cluster (Java) /’ & 4500
22500 & 4000
3 / £ 3500
£2000 £ 3000
3 2500
ES
(=]
=)
[
=
=

Throughput (

ANL/UC, Java ANL/UC,C SiCortex, C BlueGene/P, C BlueGene/P, C
200 CPUs 200 CPUs 5760 CPUs 4096 CPUs 163840 CPUs

1 service 1 service 1 service 1service 640 services
Executor Implementation and Various Systems

Figure 3: Task dispatch and execution throughput for trivial tasks with no 1/0 (sleep 0)

The fact that the throughput gets saturated means that at certain work granularity, our system will not operate
efficiently. Figure 4 shows the efficiency of various work granularity running on the BlueGene/P at different scales, from
1 to 2048 processors (using a single centralized dispatcher), and up to 160K processors running with the naive
distributed dispatchers.

100% T——— | 0% . -
90% - — 32 seconds ‘

—
-~ 16 seconds \ 90% !
o 1] Tgseoonds N — A\ 2
70% + =2 2gggnd§ \ == 64 seconds
> -+ 1 second \ 70% 32 seconds
o 60% —_— -~ 16 seconds
s \ > 60% -8 seconds
2 50% < \ \ \ -~ 4 seconds
E;E, \ 2 509 -=-2 seconds
5 40% - E \ \ \ -+ 1 second
30% w 40%
20% 30% ANAN \b
o
o 20% \\ \
10% \\ \\\
0% - 10% —_——
NV e e PR P 0 P ® 0% : : : : :
N v 256 1024 4096 16384 65536 163840
Number of Processors Number of Processors

Figure 4: Left: Efficiency graph for the Blue Gene/P for 1 to 2048 processors and task lengths from 1 to 32 seconds using a single
dispatcher on a login node; Right: Efficiency graph for the Blue Gene/P for 256 to 160K processors and task lengths ranging from 1
to 256 seconds using N dispatchers with each dispatcher running on a separate 1/0 node

We see there are many workloads that operate efficiently at any scale (4 to 32 second long jobs at small scales, and 64
to 256 second long jobs at large scales), but there is certainly room for improvement. Specifically, it would be ideal if we
can achieve high efficiencies (90%+) for any workload with work granularity in seconds, at any scale of existing systems
(at least hundreds of thousands of processors). This involves improving performance by at least several orders of
magnitude from the existing state of the art system. We expect to be able to build an execution fabric that will scale
from millions to billions of processors, and handle throughputs of thousands to millions of jobs per second.

We envision building a new distributed data-aware execution fabric that scales to at least millions of processors and
tens of petabytes of storage, and will support HPC, MTC, and HTC workloads concurrently and efficiently. Clients will be
able to submit computational jobs into the execution fabric by submitting to any compute node (as opposed to
submitting to single point of failure gateway nodes), the fabric will guarantee that jobs will execute at least once (jobs
could be executed more than once under certain conditions such as unusual delays or transient failures), and that it will
optimize the data movement in order to maximize processor utilization and minimize data transfer costs. The execution
fabric will be elastic in which nodes will be able to join and leave dynamically, and data will be automatically replicated
throughout the distributed system for both redundancy and performance.

To keep overheads small, and to have the system as portable as possible (e.g. to run on many of the top 10 of the
Top500 supercomputers), we will use a general language such as C, general PThread libraries, proprietary
communication protocols running over UDP/IP and/or TCP/IP, advanced data-transport protocols such as UDT that can
achieve high performance over high latency links, and lightweight security libraries (e.g. ysSSL [70]) which have only KB
of memory overhead per connection. We will also use structured distributed has tables (DHTs) in order to maintain
efficient connectivity and membership information under extremely large scales of processor counts. The use of DHTs
will allow us to efficiently find jobs and data files throughout the system in logarithmic time in relation to the size of the

system. We will favor topologies that have many neighbors (e.g. 1000 closest neighbors), allowing us to traverse even
large systems of millions of processors in only several hops (e.g. log(1000000)10q0 = 2). We will investigate various DHTs
(e.g. Tapestry [71, 72], Chord [73, 74]) that have a certain set of desired properties. These properties include having a
scalable light-weight implementation that is compatible with high-end computing systems (e.g. being implemented in
C/C++, and having been tested on Linux). Other desirable properties include DHTs that take into account the natural
network topology of many high-end computing systems (e.g. 3D torus/mesh, tree, etc) when assigning communication
costs between compute nodes. This will help in choosing close neighbors, and to favor data communication with closer
nodes; this also addresses in part heterogeneous environments, and could be used to run such an execution fabric
across geographic locations.

We will build a system that has many queues distributed across all compute nodes/processors. There will be no ordering
requirement on unrelated items placed in the queues, and therefore we can avoid expensive synchronization overheads
among queues. However, we will support job dependencies, and the execution fabric will guarantee that dependent
jobs are executed in the correct order to satisfy the data-flow dependency. Clients will be able to submit work to any
queue, and each queue will have the choice of executing the work locally, or forwarding the work to another queue
based on some function it is optimizing. This function can optimize in the simplest case load balancing. In a more
complex case, it would optimize data movement, or perhaps both. We will also employ work stealing [66] techniques in
order to achieve good load balancing under light load conditions. Jobs will be replicated throughout the system to
ensure that node failures do not cause jobs to be lost; however, replicated jobs will only execute upon a failure of its
original job, hence not wasting computational resources. Upon completion of a job, or failure of a job that doesn't
involve a node failure, the replicated jobs would be removed from the system. The level of replication of jobs will
determine the probability of losing jobs in the system, given some node failure model. We have shown in previous work
[67] that the amount of replication can be tuned to achieve an expected level of mean-time-to-failure. In our prior work,
the replication was at the node level, but it is directly applicable to job-level replication as it is relatively straight forward
to replicate jobs and the costs are only incurred at the insertion in the execution fabric, as well as maintaining the state
about the replicated jobs.

Finally, we plan to have high-level specification of jobs at the client (e.g. execute job; from i=0..n), which would allow a
client to easily inject large amounts of jobs into the execution fabric but delegating the unrolling of the iterating jobs to
many remote distributed queues. We will also allow jobs to create new jobs effectively enabling dynamic DAGs to be
easily be created and refined at runtime. Clients will also persist running jobs to persistent storage, in order to avoid
having to keep in-memory state of all active tasks, which should allow clients to scale many orders of magnitude better
than current in-memory approaches. The drawback to this approach will be the complexity and costs of moving job
information back and forth between persistent storage and memory, and the performance penalty that might come
with such movement. We believe new storage technologies such as SSDs could help us achieve the level of performance
needed to sustain tens of thousands of job/sec throughputs from a single client.

Distributed Metadata Management and Storage Systems

Operations on parallel file systems (e.g. GPFS [45]) that involve metadata can be extremely inefficient at large scale.
Early experiments on the BlueGene/P system (see Figure 5) shows the various costs for file create, directory create, and
script invocation at scales from 256 processors to 16K processors. The times reported are the wall-clock time reported
by the remote processor interacting with the parallel file system. Ideal performance would be to have a flat line, as close
as possible to the black line indicating the overhead that Falkon has with no 1/0. Notice that script invocation performs
quite well, with little overhead. However, even a carefully tuned experiment which creates files or directories across
many different directories (to avoid expensive locking mechanisms in GPFS) still has many seconds of overheads, and
the overhead grows substantially up to 16K processors (a modest 10% of the overall system). If careful care is not taken
to avoid lock contention by spreading files or directories over many directories, performance degrades rapidly, to the
point where an operation (e.g. create directory) that took milliseconds on a single processor, takes over 1000 seconds at
16K processor scales. We want to achieve significantly lower overheads of accessing and modifying metadata at small
scales, and have a relatively flat overhead line as we scale the system. We want to ensure that the metadata
performance of the storage system is not the bottleneck of the system.

10000 Directory Create (single dir)
= & File Create (single dir)

Directory Create (across many dirs)
=& File Create (across many dirs)

§ 1000 i Script Invocation
L - ® Falkon Overhead (i.e. sleep 0)
c
= S A
® I Y
3 100 am
o .
@ e
o - ©
[R P mm e
E 10 ad E
= FE— P—— pa—

1

256 4096 8192 16384

Number of Processors

Figure 5: Time per operation (mkdir, touch, script execution) on GPFS on various number of processors (256-16384)

We plan to build a distributed storage system, which works at a file granularity, and has a global distributed hierarchical
filename space. The architecture of the distributed storage system will be that every compute node will have all three
roles, client, metadata server, and storage server. The metadata servers will be implemented on top of a distributed
hash table, which will allow us to disperse the metadata information throughout the system, allow nodes to dynamically
join and leave without compromising the metadata information, and allow us to locate files in the entire system in
logarithmic time in relation to the size of the system (in the number of nodes).

Parallel file-systems are easy to use as they provide a single global name space which allows applications to easily
manage and operate on large collections of data. However, they achieve this at a steep price, performance for the most
demanding data-intensive applications, due to the fact that these file-systems hide data locality information from
applications. Figure 6 shows a small cluster of 64 nodes performance between the GPFS parallel file system and the local
disk performance of the 64 nodes. In both experiments (left and right figures), GPFS performance saturates at around 8
nodes (4Gb/s read), while local disk performance continues to grow almost linearly to 64 nodes (62Gb/s read). Now we
have obtained performance of nearly 100Gb/s on large scale systems such as the BlueGene/P when using the GPFS
parallel file system of that machine, but the theoretical amount of local I/O bandwidth on such a machine with 40K
nodes is upwards of 40,000Gb/s (if each node can do a modest 1Gb/s to its local ramdisk). We believe we can harness a
significant fraction of this bandwidth for workloads that have data locality [12], as we have shown in previous work [15,
16, 31].

Furthermore, future designs of large scale supercomputers will likely incorporate SSDs in with compute nodes, making
the approach of distributing the data across many SSDs located on each compute node more attractive. The main
concern for many HPC applications is the interference that might be caused by having some resources from the
compute nodes and network interconnects be used for non-traditional 1/O. In today's HPC systems, compute node
resources are dedicated to the MPI-based application running, and the network interconnect is only used for MPI
messages. However, in a distributed system such as the one presented in this work, compute nodes will also have the
role of a metadata server and storage server, and some compute node resources would likely be consumed at all times
on each node servicing requests on behalf of other compute nodes. This kind of variability in both the compute node
resources and network interconnects might not be acceptable to some HPC applications, as it will cause their execution
times to be increased significantly due to the imbalance created due to non-dedicated resources. Some of these
concerns can be alleviated through dedicating certain resources (e.g. 1 core per node, 1 node per collection of 16 nodes)
to handle the new functions. Furthermore, adding additional commodity and inexpensive network interconnects
(Ethernet) could allow the traditional existing networks (e.g. torus, tree, barrier) to continue to be used exclusively for
MPI-based workloads.

70000 -| Model (local disk)
Model (parallel file system) 70.000 | ~®Model (local disk)
60000 =< FA Policy A ’ Model (parallel file system)
—_ MCU Policy (0% locality) @ 60.000 1| =< FA Policy
gsoooo == MCU Policy (100% locality) g ’ MCU Policy (0% locality)
?E: // _»5— 50,000 === MCU Policy (100% locality)
340000 g
> D 40,000
] 30000 -'=9
'_g / = 30,000
° £ d
§20000 % 20,000 Z
l §)
10000 J/‘/f, i & 10,000 4/“% 1
0o—2= : — — 1 0 —4— —t ¥
1 2 4 8 16 32 64 1 2 4 8 16 32 64
Number of Nodes Number of Nodes

Figure 6: Left: Read throughput (Mb/s) for large files (100MB) for seven configurations for 1 — 64 nodes; Right: Read+Write
throughput (Mb/s) for large files (LOOMB) for seven configurations and 1 — 64 nodes

We will implement a distributed storage system at the file level, which has a distributed metadata management, and a
flat file namespace. The distributed file system will be accessible through library calls, and through a standard POSIX
interface enabled by FUSE. As many current large-scale supercomputers do not have significantly amounts of local
storage on the compute nodes, we will initially support a user-level approach that assumes to have an available parallel
file system for persisting data, and the distributed storage system will be used for mainly scratch space to enable the
highest performance for data-intensive applications (see Figure 7). Once large-scale systems have enough local storage
(e.g. SSDs on each compute node), it is likely that such a system could stay online and be considered as a persistent
storage system, just as parallel file systems are today.

L A P PP
wg‘mmmm:Hmwmmmmu
= ~_Compute & Storage Resources-

SCNCS ;H\‘ 3‘ S

§ s NI = NI = N NI NS N

SERE SCOSTUSIUSTSA ST
%‘ﬁ Network Link(s) FEE - || g ohee fs e s d
e SOOI S
< NS NS ENIIS NS SIS ENDLES
%i;; SRS i
5 NS E NS E NS BN S E NS E NS
e e
T T T T P T P P T T

Figure 7: Overview of the proposed distributed storage system and distributed execution fabric

Distributed Data-Aware Scheduling

A challenge for data diffusion specifically has been scaling the centralized data-aware scheduler to extremely large
systems with extremely large number of objects. Our micro-benchmarks have shown data diffusion to scale well to
thousands of processors, but the data-aware scheduler becomes prohibitively expensive as we increase the number of
processors to tens and hundreds of thousands. However, the non-data-aware simple load balancing scheduler
parallelizes and performs well, as we have been able to scale it to 160K processors on the IBM Blue Gene/P running real
scientific codes; due to the naive implementation of the decentralized scheduler, it has utilization issues in
heterogeneous systems and/or configurations.

Furthermore, data-aware scheduling is even more expensive/complex than the non-data-aware scheduling, and
throughputs generally drop to about 1000 jobs/sec (see Figure 8) on a small cluster of only hundreds of processors;
these throughputs can be maintained to thousands of processors, but beyond this the centralized data-aware scheduler
costs begin to grow and the effective throughputs sink to single digit jobs/sec by tens of thousands of processors. We
want the data-aware scheduler to be able to scale to millions of processors or more, and handle workloads with
granularities on the order of seconds. This is many orders of magnitude higher performance than the existing data-
aware scheduler in Falkon using data diffusion.

Bl Task Submit
Notification for Task Availabili I 5000

Bl Task Dlspatchédata aware scheduler)
Task Results (data-aware scheduler)
Notification for Task Results

s WS Communication —r 4000

-= Throughput (tasks/sec)

o
\
1

N
4
I

r 3000

N
L

~ 2000

CPU Time per Task (ms)
w

Throughput (tasks/sec)

r 1000 £

;

first- first- max- max-cache- good-
available available compute-util hit cache-
without I/O with I1/0 compute

Figure 8: Data-aware scheduler performance and code profiling for the various scheduling policies

We will achieve this level of performance and scalability through the distribution of the data-aware schedulers to all
compute nodes. Every compute node will keep track of a local cache of files, and will be able to query the execution
fabric through the DHT about the location of needed files for tasks to be executed. The DHT will ensure that files will be
able to be located in logarithmic time with the size of the system. While it was important at centralized data-aware
scheduler to have high throughput in terms of jobs/sec, when the system has tens of thousands to millions of data-
aware schedulers, it will be sufficient if each scheduler only performs single digit jobs/sec, as the aggregate system
throughput will still be many orders of magnitude larger than the current state of the art.

Overlapping 1/0 with Computations
In previous work [38], we have successfully improved end-application performance by overlapping 1/O to parallel file-
systems with computations. Figure 9 shows the dramatic difference with 32 second long jobs, with different amounts of
1/0 per job, when overlapping the 1/O with computations (the dotted lines) and when not overlapping them (the solid
lines). Notice the significant difference in efficiency as the experiment scales to 96K processors with 1MB of 1/O per job
(5% efficiency vs. 90% efficiency).

100% L RN TRCRLALE S TrEEa
90% +—— R
80% e
o ﬁ\
> 0,
g 60% \ <
2 50% +—
3 —=— 325ec+GPFS(1KB \
£ o0 L 32sec+GPFS(16K
w 40% —— 325ec+GPFS(128KB)
. —e— 3256c+GPFS(1MB) \
30% — -m 32sec+ClO 1KB%
. 32sec+GIOM16K % \
20% +— -& 32sec+GIO(128K
o - & 325ec+GIOMB) N
) e
0%

256 2048 4096 8192 32768 98304
Number of Processors

Figure 9: CIO vs GPFS efficiency for 32 second tasks, varying data size (1KB to 1MB) for 256 to 96K processors.

This suggests that I/0 should be overlapped with computations whenever possible, and it should be done transparently
without applications being modified. Essentially, we propose that the proposed distributed storage system allows
applications to interact directly with the local file-systems which should allow write operations to occur at the fastest
and most scalable speed. Once a data file is written locally, it would be the responsibility of the distributed storage
system to propagate it asynchronously to other places in the distributed system where it might be needed, or perhaps
persist the file to a parallel file system, while the respective compute node would be free to continue computing the
next job(s). One was to achieve this transparency, which we have used in prior work [38], is to use symbolic links to
make the application believe it is interacting with a persistent parallel file system, yet data is written to local scratch
space, from which the distributed storage system will asynchronously move the data from local scratch to the persistent
storage on a parallel file system. We can also implement this optimization to be completely transparent through the use
of the user-level FUSE [68] interface that we can place on top of the proposed distributed storage system.

Generalization and Transparency

There are several road-blocks for wide-acceptance of a system like Falkon. One obstacle is the API Falkon exposes to
applications that want to run on top of Falkon, essentially a web-service interface. Most of these applications already
support other resource managers, such as PBS [51], Condor [36], SGE [52], Cobalt [47], and more abstract managers
such as GRAM [69]. Adding support for Falkon is generally a straight forward exercise as the semantics of a job is the
same in Falkon as it is in these other systems. One solution to avoid having each application adopt the new Falkon AP, is
to have adaptors in Falkon that allow Falkon to communicate with clients (applications) that were implemented to work
with other existing resource managers. As most existing resource managers are open source, building support for those
clients to interact with Falkon directly, using the other resource manager's APIs could be done at the expense of
performance. It is likely that this approach would only be suitable for early testing and experimentation to allow non-
Falkon enabled applications to take advantage of some of Falkon's innovative features and scalability. Every layer of
abstraction/conversion adds more overhead, so the most streamlined approach will likely perform best, arguing in favor
of applications adopting the new Falkon API to achieve the best performance possible.

Another obstacle Falkon has had with the data management component called data diffusion, has been the application
hints about the files that are to be accessed. Some applications (e.g. those implemented through Swift) are naturally
annotated with this information at run-time. However, other applications might be much more dynamic and would not
know a-priori the files it needs to access (e.g. the file access patterns logic lies deep in the application, and is not
configurable through application arguments); allowing these applications to still utilize the distributed storage system,
even with limited data locality information, would be a big advantage. We plan to expose our distributed storage system
through both I/0 libraries and a POSIX filesystem through FUSE. We can even take this a step further, and consider the
case where we the storage system could continuously compute the tradeoffs between transferring remote data to a
local cache for processing, and saving the state of the application and re-scheduling it on the remote resource that had
the needed data. This kind of process migration can be implemented through various virtualization technologies, or
through application level check-pointing. We will seek to model data movement costs to accurately estimate under
what conditions it will be justified to migrate a running job.

In summary, we'd like to achieve the same level of transparency that applications enjoy when running on top of existing
production resource managers and existing parallel file-systems, but to achieve many orders of magnitude better
performance and allow the efficient usage of tomorrow's largest distributed systems and supercomptuers.

2.2. Task 2: Interactive HPC

Support for MTC workloads combines traditional batch oriented HPC workloads with more MTC-like workloads that
seeks fast response time on small tasks. With support for data-aware scheduling, coupled with a better handling of the
memory hierarchy and 1/0, we believe MTC could support interactive HPC (also known as ensemble MPI applications),
enabling the execution of thousands of parallel computations each involving many thousands of cores and years of
compute time in minutes of wall-clock time. Efficient support for interactive HPC can significantly alter the use of HPC in
industry, as HPC applications that perform advanced simulations, parametric search and uncertainty quantification
become part of an interactive design cycle, rather than an overnight validation cycle. One example is from the climate
modeling domain, which has been studying climate trends and predicting global warming, is already implemented as an
HPC MPI application. However, the current climate models could be run as ensemble runs (many separate concurrent
MPI applications) to quantify climate model uncertainty in order to optimize the speedup and efficiency curves of the
particular application (e.g. when scalability is poor). This is challenging in large scale systems such as supercomputers, a
typical resource such models would execute on, as the local resource managers favor large jobs and have policy against
running many jobs at the same time. Even if scheduling policies would not be the bottleneck, many production resource
managers (e.g. Cobalt, SGE, PBS, Condor) have high scheduling and resource provisioning overheads which makes
executing ensemble MPI applications only tractable if they are long running. This has implications in both the
programming model, degree of parallelism, and reliability of application execution as the mean-time-to-failure (MTTF)
generally decreases dramatically as applications and physical resources scale increase. All these applications pose
significant challenges to traditional resource management found in HPC and HTC, from both job management and
storage management perspective, and are in critical need of MTC support as the scale of these resources grows.

Ensemble MPI-based applications
We envision adding support for traditional HPC workloads to the existing Falkon middleware, such as support for MPI-
based applications. We will support arbitrary resource allocation sizes, in contrast to other production systems that
impose a limit on the smallest allocation size (e.g. for the IBM BlueGene/P at Argonne National Laboratory, the lower

bound is 256 processors, and allocation sizes have to be multiples of 256). Furthermore, we will support sharing of data
across different MPI applications with direct node-to-node communication, in contrast with having to go through some
global file system, essentially leveraging all our work on data management from data diffusion. In the long-term, we will
add support for HPC workloads on the proposed distributed execution fabric, which will allow us to scale these
interactive HPC workloads (also known as ensemble MPI applications) to future exascale systems, as well as to leverage
the distributed storage system infrastructure which will be critical for data-intensive HPC workloads.

Dynamic Steering of HPC workloads
Dynamic DAG based applications are inherently steerable at run-time, where the results of computations can alter the
DAG's shape or branch that will be executed next. If DAG nodes can be composed of multi-processor MPI-based
applications, in addition to the traditional single processor/node applications, then by definition we are able to support
dynamic steering of HPC workloads.

3. Evaluation Strategy

We will perform an extensive performance evaluation of the execution fabric and the distributed storage system, using
both micro-benchmarks and real applications. We will address various important metrics, such as scalability,
throughput, speedup, efficiency, failure handling, endurance, robustness, 1/O capabilities, and metadata performance.
We will investigate a large class of applications, which fall under the following categories: bag-of-tasks, static and
dynamic DAGs, all-pairs, MapReduce, and interactive HPC. We plan to use many tools to evaluate the proposed work,
from simulations, to emulation, to real testing. We have access to five of the top eight supercomputers in the world
(using the June 2009 Top500 rankings) from all of the big supercomputing vendors (Cray, SGI, IBM, and Sun). These five
supercomputers represent the majority of supercomputer architectures and are ideal for research and development of
novel data management techniques at the frontier of the largest scales available today. We also have access to the
TeraGrid, the largest national cyberinfrastructure for open science research, as well as the Open Science Grid. Both of
these grids offer unique opportunities to explore data management techniques that not only optimize data movement
within tightly coupled systems, but also across geographic distribution that brings an entire new range of issues and
challenges. We plan to do our performance evaluation up to the largest systems available today, up to 200K processors.
Beyond this, we will use emulation to test system performance and scalability up to millions and tens of millions of
emulated processors. We will further use simulations to evaluate our proposed work up to billions of processors and
exascale of storage. We will also address the scalability and performance of our system through analytical models, and
prove that our scheduling algorithms are efficient within a certain factor of ideal. We already have theoretical results for
our centralized data-aware scheduler [15, 16], but we intend to extend that analysis to the distributed data-aware
scheduler as well.

Task 1: Distributed Execution Fabric Performance Evaluation
Scalability, Throughput, Speedup and Efficiency, Failure Handling, Endurance and Robustness

Task 2: Distributed Storage System Performance Evaluation
Scalability, Characterizing I/O Capabilities, Failure Handling, Endurance and Robustness, Metadata Performance

Task 3: Applications Performance Evaluation
Bag-of-Tasks benchmarks, DAG-based benchmarks: Static and Dynamic, All-Pairs benchmarks, MapReduce benchmarks:
TeraSort, PetaSort, WordCount, Interactive HPC benchmarks

4. Project Milestones

The timeline of proposed activities can be broken down into several major stages: explore, implement, evaluate, and
disseminate. Note that some of these stages can be overlapped, and the end-to-end time needed to complete all
proposed work is about 36 months.

* Explore: data-aware scheduling algorithms, solutions for intercepting 1/O calls, file based and block level
semantics, distributed file systems [12 months]

* Implement: distributed execution fabric and data-aware scheduler, 1/O interception, POSIX file access to
remote storage, MPl-support [24 months]

e Evaluate: micro-benchmarks of the data-aware execution fabric, interactive HPC workloads, real scientific
codes before/after performance [12 months]

* Disseminate: document implementation and produce user guides, publish in top venues (e.g. SC, HPDC, NSDI,
JGC, TPDS) [12 months]

5. Dissemination
| will disseminate the results of this work through various papers/proposals | plan to write this coming academic year:

* 11/06/09: Middleware for Many-Task Computing, Cluster Computing Journal

e 12/18/09: Topic TBD (perhaps preliminary ideas on a distributed file system based on a structured DHT),
USENIX Workshop on Peer-to-Peer Systems (IPTPS) 2010

e 01/15/10: Interactive HPC, ACM HPDC 2010

e 01/15/10: Distributed Data Management, Journal of Parallel and Distributed Computing 2010, Special Issue on
Data Intensive Computing

e 01/24/10: Cluster Computing on top of GPUs (high level ideas discussed with Nikos and Gokhan), USENIX
Workshop on Hot Topics in Parallelism (HotPar) 2010

* 04/10: Topic TBD, IEEE/ACM SuperComputing 2010

* 04/10: Data Intensive Many-Task Computing, NSF Hecura

* 05/03/10: Efficient moving of large datasets, TeraGrid 2010

I also plan to attend various conferences and workshops, if scheduling permits and there are enough funds:

* 10/20/09: Chicago IL
o Cloud Computing and its Applications (CCA) 2009
e 11/14/09-11/20/09: Portland OR
o IEEE/ACM Supercomputing 2009
o ACM Workshop on Many-Task Computing on Grids and Supercomputers (MTAGS) 2009, co-located
with Supercomputing 2009
e 02/22/10-02/23/10: Washington DC
o CRA Career Mentoring Workshop
* 04/28/10-04/30/10: San Jose CA
o USENIX Symposium on Networked Systems Design and Implementation (NSDI) 2010
o USENIX Workshop on Peer-to-Peer Systems (IPTPS) 2010
* 06/14/10-06/15/10: Berkeley CA
o USENIX Workshop on Hot Topics in Parallelism (HotPar) 2010
* 06/21/10-06/25/10: Chicago IL
o ACM High Performance Distributed Computing (HPDC) 2010
e 08/02/10-08/05/10: Pittsburgh PA
o TeraGrid 2010

In the past, we have organized various workshops, bird-of-feather sessions, and journal special issues that were highly
relevant to the proposed work. These activities include:

¢ ACM Workshop on Scientific Cloud Computing (ScienceCloud), 2010;
http://dsl.cs.uchicago.edu/ScienceCloud2010/

* |EEE Transactions on Parallel and Distributed Systems, Special Issue on Many-Task Computing, 2010;
http://dsl.cs.uchicago.edu/TPDS_MTC/

¢ ACM Workshop on Many-Task Computing on Grids and Supercomputers (MTAGS), 2009;
http://dsl.cs.uchicago.edu/MTAGS09/

* Cloud Computing and Its Applications (CCA) 2009; http://www.cca09.org/

e |EEE Workshop on Many-Task Computing on Grids and Supercomputers (MTAGS), 2008;
http://dsl.cs.uchicago.edu/MTAGS08/

e Megajobs: How to Run One Million Jobs, BOF at IEEE/ACM Supercomputing 2008;
http://gridfarm007.ucs.indiana.edu/megajobBOF/index.php/Main_Page

* Cloud Computing and Its Applications (CCA) 2008; http://www.cca08.org/

We plan to continue organizing the CCA, MTAGS, and ScienceCloud workshops as long as there is interest from the
community. If interest from the community grows significantly, we will consider expanding these workshops to stand-
alone conferences.

6. Educational Aspects

Jeanette Wing had a famous quote in 2006 -- “Computational thinking will be a fundamental skill used by everyone in the
world by the middle of the 21st Century.” -- which we have adopted as a pivotal concept behind our teaching philosophy.
Computational thinking is the combination of analytical thinking commonly found in mathematics with fundamental computer
science skills (e.g. abstraction, codification, layering) while emphasizing interdisciplinary scientific computing. We believe that
over the course of the next decades, computer science will spread to all disciplines and become an applied computing
discipline. As computer science educators, we need to facilitate the right curriculum, to educate everyone from all disciplines
about computational thinking. Interdisciplinary teaching needs to be made the de facto standard, with fundamentals of
computer science being taught at all levels of education from primary school, undergraduate and graduate education,
spanning many years to allow the computational thinking we take for granted in computer science to be absorbed and
become second nature. Teaching of computing typically boils down to just information technology and how to use every day
software such as word processors or spread sheets; these are merely tools with significantly less potential of impact than if
computational thinking were a core part of all curricula. We will work with other faculty at the university level to help define
and implement the computational thinking across all disciplines.

We plan to enhance undergraduate education by introducing research early into the undergraduate computer science
curriculum and encouraging minorities and underrepresented to do research. Through research, young and diverse students
will learn important skills early in their undergraduate studies: teamwork, written and oral skills, computational thinking,
interdisciplinary skills, and experimental skills. Furthermore, participation in research groups can promote retention by
increasing personal attachment to the research group, research objectives and research advisor, and captivate more students
to pursue graduate degrees. We plan to establish an interdisciplinary undergraduate research program with computational
thinking at its core, which will extend our teaching goals to use research as a primary tool for education, and promote
computational thinking to the younger generation.

Our proposed work is extremely important in the future of many-core computing, a revolution that is currently underway,
which will put thousands of processors/cores/threads in every desktop in the next decade. Current programming paradigms
from workstations with several processor/cores do not map well to these highly parallel future systems. The techniques and
middleware we are proposing that will work at extreme scales of millions of processors will surely be applicable to the modest
scalability of future many-core systems. We believe data-flow driven programming languages that decompose its work in
DAGs are quite easy to represent in programming languages, yet they offer a powerful abstraction that maps well to highly
parallel architectures. Educating today's students to understand how to use these emerging programming paradigms is critical
to having an educated workforce in the coming decade when many-core systems will be common-place.

We conclude with an ancient proverb by the Chinese philosopher Confucius that is still very much true today in the 21
century: “If you think in terms of a year, plant a seed; if in terms of ten years, plant trees; if in terms of 100 years, teach the
people.” — Confucius, 551BC — 479BC. By teaching computational thinking to all disciplines and at all levels, far more people
will be computationally literate. This will enable new kinds of science and a new economic era of science-based innovation
that could dwarf the last decades of technology-based innovation. Just as our forefathers have etched in stone the many skills
we all take for granted, our belief is that | can be at the forefront of these exciting times, and help bring computational
thinking to all disciplines!

7. References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu, I. Foster, "The Globus Striped GridFTP
Framework and Server," IEEE/ACM SuperComputing (SC05), 2005

I. Raicu, I. Foster, A. Szalay. “Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy
Datasets”, IEEE/ACM SuperComputing (SC06), 2006

I. Raicu, I. Foster. “Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy Datasets”,
GSRP, Ames Research Center (ARC), NASA, 2006 -- Award funded 10/06 - 9/07

I. Raicu, I. Foster. “Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy Datasets: Year
1 Status and Year 2 Proposal”, GSRP, ARC, NASA, 2007 -- Award funded 10/07 - 9/08

I. Raicu, I. Foster. “Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy Datasets: Year
2 Status and Year 3 Proposal”, GSRP, ARC, NASA, 2008 -- Award funded 10/08 - 9/09

I. Raicu, C. Dumitrescu, |. Foster. “Dynamic Resource Provisioning in Grid Environments”, TeraGrid Conference
(TG07), 2007

I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M. Wilde. “Falkon: a Fast and Light-weight tasK executiON framework”,
IEEE/ACM SuperComputing (5SC07), 2007

I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M. Wilde. “Falkon: A Proposal for Project Globus Incubation”, Globus
Incubation Management Project, 2007 — Proposal accepted 11/10/07

I. Raicu, Y. Zhao, |. Foster, M. Wilde, Z. Zhang, B. Clifford, M. Hategan, S. Kenny. “Managing and Executing Loosely
Coupled Large Scale Applications on Clusters, Grids, and Supercomputers”, Extended Abstract, GlobusWorld08,
part of Open Source Grid and Cluster Conference 2008

I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K. Iskra, B. Clifford. “Towards Loosely-Coupled Programming on
Petascale Systems”, IEEE/ACM SuperComputing (SC08), 2008

I. Raicu, I. Foster, Y. Zhao. “Many-Task Computing for Grids and Supercomputers”, Invited Paper, IEEE Workshop
on Many-Task Computing on Grids and Supercomputers (MTAGS08), 2008

A. Szalay, J. Bunn, J. Gray, |. Foster, I. Raicu. “The Importance of Data Locality in Distributed Computing
Applications”, NSF Workflow Workshop 2006

I. Raicu, Y. Zhao, I. Foster, A. Szalay. “A Data Diffusion Approach to Large Scale Scientific Exploration”, Extended
Abstract, Microsoft Research eScience Workshop (MSES07) 2007

Q.T. Pham, A.S. Balkir, J. Tie, I. Foster, M. Wilde, |. Raicu. “Data Intensive Scalable Computing on TeraGrid: A
Comparison of MapReduce and Swift”, TeraGrid Conference (TG08) 2008

I. Raicu, I. Foster, Y. Zhao, P. Little, C. Moretti, A. Chaudhary, D. Thain. “The Quest for Scalable Support of Data
Intensive Workloads in Distributed Systems”, to appear at ACM HPDC09

I. Raicu, I. Foster, Y. Zhao, A. Szalay, P. Little, C.M. Moretti, A. Chaudhary, D. Thain. "Towards Data Intensive
Many-Task Computing”, book chapter in Data Intensive Distributed Computing: Challenges and Solutions for
Large-Scale Information Management, I1GI Global Publishers, 2009

Y. Zhao, I. Raicu, I. Foster, M. Hategan, V. Nefedova, M. Wilde. “Realizing Fast, Scalable and Reliable Scientific
Computations in Grid Environments”, Grid Computing Research Progress, Nova Publisher 2008

I. Foster, Y. Zhao, I|. Raicu, S. Lu. “Cloud Computing and Grid Computing 360-Degree Compared”, IEEE Grid
Computing Environments (GCE08) 2008

I. Raicu. "Many-Task Computing: Bridging the Gap between High Throughput Computing and High Performance
Computing", Doctorate Dissertation, Computer Science Department, University of Chicago, March 2009

I. Raicu. “Many-Task Computing: Bridging the Gap between High Throughput Computing and High Performance
Computing”, ISBN: 978-3-639-15614-0, VDM Verlag Dr. Muller Publisher, 2009

(21]

(22]

(23]

(24]
(25]
(26]

(27]
(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]
(36]

(37]

(38]

(39]

(40]

(41]
(42]
(43]

M. Wilde, I. Raicu, A. Espinosa, Z. Zhang, B. Clifford, M. Hategan, K. Iskra, P. Beckman, I. Foster. “Extreme-scale
scripting: Opportunities for large task-parallel applications on petascale computers”, Scientific Discovery through
Advanced Computing Conference (SciDAC09) 2009

M. Wilde, I. Foster, K. Iskra, P. Beckman, Z. Zhang, A. Espinosa, M. Hategan, B. Clifford, . Raicu. "Parallel Scripting
for App lications at the Petascale and Beyond", IEEE Computer Nov. 2009 Special Issue on Extreme Scale
Computing, 2009

A. Gara, et al. “Overview of the Blue Gene/L system architecture”, IBM Journal of Research and Development
49(2/3), 2005

IBM BlueGene/P (BG/P), http://www.research.ibm.com/bluegene/, 2008

J. Ousterhout, “Scripting: Higher Level Programming for the 21st Century”, IEEE Computer, March 1998

Y. Zhao, I. Raicu, I. Foster. “Scientific Workflow Systems for 21st Century e-Science, New Bottle or New Wine?”,
IEEE Workshop on Scientific Workflows 2008

J. Dean, S. Ghemawat. “MapReduce: Simplified data processing on large clusters.” In OSDI, 2004

Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, I. Raicu, T. Stef-Praun, M. Wilde. “Swift: Fast, Reliable,
Loosely Coupled Parallel Computation”, IEEE Workshop on Scientific Workflows 2007

I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M. Wilde. “Falkon: A Fast and Lightweight Task Execution Framework”,
IEEE/ACM SC, 2007

E. Deelman et al. “Pegasus: A Framework for Mapping Complex Scientific Workflows onto Distributed Systems”,
Scientific Programming Journal 13(3), 219-237, 2005

I. Raicu, Y. Zhao, |. Foster, A. Szalay. “Accelerating Large-Scale Data Exploration through Data Diffusion”, ACM
International Workshop on Data-Aware Distributed Computing 2008

M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly. “Dryad: Distributed Data-Parallel Programs from Sequential
Building Blocks”, European Conference on Computer Systems (EuroSys), 2007

R. Pike, S. Dorward, R. Griesemer, S. Quinlan. “Interpreting the Data: Parallel Analysis with Sawzall”, Scientific
Programming Journal, Special Issue on Grids and Worldwide Computing Programming Models and Infrastructure
13(4), pp. 227-298, 2005

M. Livny, J. Basney, R. Raman, T. Tannenbaum. “Mechanisms for High Throughput Computing”, SPEEDUP Journal
1(1), 1997

M. Flynn. “Some Computer Organizations and Their Effectiveness”, IEEE Trans. Comput. C-21, pp. 948, 1972

D. Thain, T. Tannenbaum, M. Livny, “Distributed Computing in Practice: The Condor Experience”, Concurrency
and Computation: Practice and Experience 17(2-4), pp. 323-356, 2005

J. Appavoo, V. Uhlig, A. Waterland. “Project Kittyhawk: Building a Global-Scale Computer”, ACM Sigops Operating
System Review, 2008

Z. Zhang, A. Espinosa, K. Iskra, I. Raicu, I. Foster, M. Wilde. “Design and Evaluation of a Collective I/0 Model for
Loosely-coupled Petascale Programming”, IEEE Workshop on Many-Task Computing on Grids and
Supercomputers (MTAGS08) 2008

Top500, June 2008, http://www.top500.0rg/lists/2008/06, 2008

T. Hey, A. Trefethen. “The data deluge: an e-sicence perspective”, Gid Computing: Making the Global
Infrastructure a Reality, Wiley, 2003

SDSS: Sloan Digital Sky Survey, http://www.sdss.org/, 2008

CERN’s Large Hadron Collider, http://lhc.web.cern.ch/lhc, 2008

C. Catlett, et al. “TeraGrid: Analysis of Organization, System Architecture, and Middleware Enabling New Types of
Applications”, HPC 2006

[44]
(45]
(46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

(54]

(55]

(56]
(57]
(58]
(59]
(60]

(61]

(62]
(63]

(64]

(65]

(66]

(67]

Open Science Grid (0SG), http://www.opensciencegrid.org/, 2008
F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System for Large Computing Clusters”, FAST 2002

A. Bialecki, M. Cafarella, D. Cutting, O. O’Malley. “Hadoop: A Framework for Running Applications on Large
Clusters Built of Commodity Hardware”, http://lucene.apache.org/hadoop/, 2005

N. Desai. “Cobalt: An Open Source Platform for HPC System Software Research”, Edinburgh BG/L System
Software Workshop, 2005

J. Frey, T. Tannenbaum, |. Foster, M. Frey, S. Tuecke. “Condor-G: A Computation Management Agent for Multi-
Institutional Grids”, Cluster Computing, 2002

D.T. Moustakas et al. “Development and Validation of a Modular, Extensible Docking Program: DOCK 5”, J.
Comput. Aided Mol. Des. 20, pp. 601-619, 2006

D. Hanson. “Enhancing Technology Representations within the Stanford Energy Modeling Forum (EMF) Climate
Economic Models”, Energy and Economic Policy Models: A Reexamination of Fundamentals, 2006

B. Bode, D.M. Halstead, R. Kendall, Z. Lei, W. Hall, D. Jackson. “The Portable Batch Scheduler and the Maui
Scheduler on Linux Clusters”, Usenix, 4th Annual Linux Showcase & Conference, 2000

W. Gentzsch, “Sun Grid Engine: Towards Creating a Compute Power Grid”, 1st International Symposium on
Cluster Computing and the Grid, 2001

I. Raicu, I. Foster, A. Szalay, G. Turcu. “AstroPortal: A Science Gateway for Large-scale Astronomy Data Analysis”,
TeraGrid Conference 2006

G.B. Berriman, et al., “Montage: a Grid Enabled Engine for Delivering Custom Science-Grade Image Mosaics on
Demand”, SPIE Conference on Astronomical Telescopes and Instrumentation. 2004

J.C. Jacob, et al. “The Montage Architecture for Grid-Enabled Science Processing of Large, Distributed Datasets”,
Earth Science Technology Conference 2004

US National Virtual Observatory (NVO), http://www.us-vo.org/index.cfm, 2008

KEGG’s Ligand Database: http://www.genome.ad.jp/kegg/ligand.html, 2008

PL protein library, http://protlib.uchicago.edu/, 2008

NIST Chemistry WebBook database, http://webbook.nist.gov/chemistry/, 2008

S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman. “Basic Local Alignment Search Tool”, J Mol Biol 215 (3):
403-410, 1990

Computational Neuroscience Applications Research Infrastructure,
http://www.ci.uchicago.edu/wiki/bin/view/CNARI/WebHome, 2008

The Functional Magnetic Resonance Imaging Data Center, http://www.fmridc.org/, 2007

J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing on Large Clusters”, Symposium on Operating
System Design and Implementation (OSDI'04), 2004

C. Moretti, J. Bulosan, D. Thain, and P. Flynn. “All-Pairs: An Abstraction for Data-Intensive Cloud Computing”,
IPDPS 2008

D. Bernholdt, S. Bharathi, D. Brown, K. Chanchio, M. Chen, A. Chervenak, L. Cinquini, B. Drach, I. Foster, P. Fox, J.
Garcia, C. Kesselman, R. Markel, D. Middleton, V. Nefedova, L. Pouchard, A. Shoshani, A. Sim, G. Strand, and D.
Williams, “The Earth System Grid: Supporting the Next Generation of Climate Modeling Research”, Proceedings of
the IEEE, 93 (3), p 485-495, 2005

James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy, Jarek Nieplocha. "Scalable Work Stealing",
IEEE/ACM Supercomputing 2009

Nithin Nakka, Alok Choudhary. "Failure data-driven selective node-level duplication to improve MTTF in High
Performance Computing Systems", High Performance Computing Symposium 2009

(68]
(69]
(70]
(71]
(72]
(73]

(74]
[75]

(76]
(77]

(78]

M. Szeredi. File System in User Space. http://sourceforge.net/apps/mediawiki/fuse/index.php?title=Main_Page,
2009

M. Feller, I. Foster, and S. Martin. “GT4 GRAM: A Functionality and Performance Study”, TeraGrid Conference
2007

yaSSL, http://yassl.com/, 2009

Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph, and John D. Kubiatowicz. "Tapestry:
A Resilient Global-Scale Overlay for Service Deployment", IEEE Journal on Selected Areas in Communication, VOL.
22, NO. 1, January 2004

Tapestry, http://current.cs.ucsb.edu/projects/chimera/, 2009

lon Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan, Chord: A Scalable Peer-to-
peer Lookup Service for Internet Applications, ACM SIGCOMM 2001, San Deigo, CA, August 2001, pp. 149-160
Chord, http://pdos.csail.mit.edu/chord/, 2009

ASC / Alliances Center for Astrophysical Thermonuclear Flashes, http://www.flash.uchicago.edu/website/home/,
2008

Catalin Dumitrescu, loan Raicu, lan Foster. "Experiences in Running Workloads over Grid3", The 4th International
Conference on Grid and Cooperative Computing (GCC 2005)

Catalin Dumitrescu, loan Raicu, lan Foster. "The Design, Usage, and Performance of GRUBER: A Grid uSLA-based
Brokering Infrastructure", International Journal of Grid Computing, 2007

loan Raicu, Catalin Dumitrescu, Matei Ripeanu, lan Foster. "The Design, Performance, and Use of DiPerF: An
automated Distributed PERformance testing Framework", International Journal of Grid Computing, Special Issue
on Global and Peer-to-Peer Computing, 2006

