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Abstract 
Our work addresses the enabling of the execution of highly 

parallel computations composed of loosely coupled serial jobs 
with no modifications to the respective applications, on large-
scale systems. This approach allows new-and potentially far 
larger-classes of application to leverage systems such as the IBM 
Blue Gene/P supercomputer and similar emerging petascale 
architectures. We present here the challenges of I/O performance 
encountered in making this model practical, and show results 
using both micro-benchmarks and real applications on two large-
scale systems, the BG/P and the SiCortex SC5832. Our 
preliminary benchmarks show that we can scale to 4096 
processors on the Blue Gene/P and 5832 processors on the 
SiCortex with high efficiency, and can achieve thousands of 
tasks/sec sustained execution rates for parallel workloads of 
ordinary serial applications. We measured applications from two 
domains, economic energy modeling and molecular dynamics. 

Keywords: high throughput computing, loosely coupled 
applications, petascale systems, Blue Gene, SiCortex, Falkon, 
Swift  

1. Introduction 
Emerging petascale computing systems are primarily 

dedicated to tightly coupled, massively parallel applications 
implemented using message passing paradigms. Such systems—
typified by IBM’s Blue Gene/P [1]—include fast integrated 
custom interconnects, multi-core processors, and multi-level I/O 
subsystems, technologies that are also found in smaller, lower-
cost, and energy-efficient systems such as the SiCortex SC5832 
[2]. These architectures are well suited for a large class of 
applications that require a tightly coupled programming approach. 
However, there is a potentially larger class of “ordinary” serial 
applications that are precluded from leveraging the increasing 
power of modern parallel systems due to the lack of efficient 
support in those systems for the “scripting” programming model 
in which application and utility programs are linked into useful 
workflows through the looser task-coupling model of passing data 
via files.  

With the advances in e-Sciences and the growing complexity 
of scientific analyses, more and more scientists and researchers 
are relying on various forms of application scripting systems to 
automate the workflow of process coordination, derivation 
automation, provenance tracking, and bookkeeping. Their 
approaches are typically based on a model of loosely coupled 

computation, exchanging data via files, databases or XML 
documents, or a combination of these. Furthermore, with 
technology advances in both scientific instrumentation and 
simulation, the volume of scientific datasets is growing 
exponentially. This vast increase in data volume combined with 
the growing complexity of data analysis procedures and 
algorithms have rendered traditional manual and even automated 
serial processing and exploration unfavorable as compared with 
modern high performance computing processes automated by 
scientific workflow systems.  

We focus in this paper on the ability to execute large scale 
applications leveraging existing scripting systems on petascale 
systems such as the IBM Blue Gene/P. Blue Gene-class systems 
have been traditionally called high performance computing (HPC) 
systems, as they almost exclusively execute tightly coupled 
parallel jobs within a particular machine over low-latency 
interconnects; the applications typically use a message passing 
interface (e.g. MPI) to achieve the needed inter-process 
communication. Conversely, high throughput computing (HTC) 
systems (which scientific workflows can more readily utilize) 
generally involve the execution of independent, sequential jobs 
that can be individually scheduled on many different computing 
resources across multiple administrative boundaries. HTC systems 
achieve this using various grid computing techniques, and almost 
exclusively use files, documents or databases rather than messages 
for inter-process communication.  

The hypothesis is that loosely coupled applications can be 
executed efficiently on today’s supercomputers; this paper 
provides empirical evidence to prove our hypothesis. The paper 
also describes the set of problems that must be overcome to make 
loosely-coupled programming practical on emerging petascale 
architectures: local resource manager scalability and granularity, 
efficient utilization of the raw hardware, shared file system 
contention, and application scalability. It describes how we 
address these problems, and identifies the remaining problems 
that need to be solved to make loosely coupled supercomputing a 
practical and accepted reality. Through our work, we have 
enabled the BG/P to efficiently support loosely coupled parallel 
programming without any modifications to the respective 
applications, enabling the same applications that execute in a 
distributed grid environment to be run efficiently on the BG/P and 
similar systems.  

We validate our hypothesis by testing and measuring two 
systems, Swift and Falkon, which have been used extensively to 
execute large-scale loosely coupled applications on clusters and 



 

grids. We present results of both micro-benchmarks and real 
applications executed on two representative large scale systems, 
the BG/P and the SiCortex SC5832. Focused micro-benchmarks 
show that we can scale to thousands of processors with high 
efficiency, and can achieve sustained execution rates of thousands 
of tasks per second. We investigate two applications from 
different domains, economic energy modeling and molecular 
dynamics, and show excellent speedup and efficiency as they 
scale to thousands of processors. 

2. Related Work 
Due to the only recent availability of parallel systems with 

10K cores or more, and the even scarcer experience or success in 
loosely-coupled programming at this scale, we find that there is 
little existing work with which we can compare. The Condor 
high-throughput system, and in particular its concept of glide-ins, 
has been compared to Falkon in previous papers [3]. This system 
was evaluated on the BG/L system [4] is currently being tested on 
the BG/P architecture, but performance measurements and 
application experiences are not yet published. Other local 
resource managers were evaluated in [3] as well. 

In the world of high throughput computing, systems such as 
Map-Reduce [5], Hadoop [6] and BOINC [7] have utilized highly 
distributed pools of processors, but the focus (and metrics) of 
these systems has not been on single highly-parallel machines 
such as those we focus on here. Map/reduce is typically applied to 
a data model consisting of name/value pairs, processed at the 
programming language level. It has several similarities to the 
approach we apply here, in particular its ability to spread the 
processing of a large dataset to thousands of processors. However, 
it is far less amenable to the utilization and chaining of exiting 
application programs, and often involves the development of 
custom filtering scripts. An approach by Reid called “task 
farming” [8], also at the programming language level, has been 
evaluated on the BG/L. 

Coordination languages developed in the 1980s and 1990s 
[9, 10, 11, 12], describe individual computation components and 
their ports and channels, and the data and event flow between 
them. They also coordinate the execution of the components, 
often on parallel computing resources. In the scientific community 
there are a number of emerging systems for scientific 
programming and computation [15, 5, 13, 14 Our work here 
builds on the Swift parallel programming system [16, 15], in large 
part because its programming model abstracts the unit of data 
passing as a dataset rather than directly exposing sets of files, and 
because its data-flow model exposes the information needed to 
efficiently compile it for a wide variety of architectures while 
maintaining a simple common programming model. Detailed data 
flow analysis towards automating the compilation of conventional 
in-memory programming models for thousands of cores is 
described by Hwu et. al [40], but this does not address the simpler 
and more accessible data flow approach taken by Swift for 
scripting loosely coupled applications, which leverages implicit 
parallelism as well. 

3. Requirements and Implementation 
Our goal of running loosely-coupled applications efficiently 

and routinely on petascale systems requires that both HTC and 

HPC applications be able to co-exist on systems such as the BG/P. 
Petascale systems have been designed as HPC systems, so it is not 
surprising that the naïve use of these systems for HTC 
applications yields poor utilization and performance. The 
contribution of the work we describe here is the ability to enable a 
new class of applications – large-scale loosely-coupled – to 
efficiently execute on petascale systems. This is accomplished 
primarily through three mechanisms: 1) multi-level scheduling, 2) 
efficient task dispatch, and 3) extensive use of caching to avoid 
shared infrastructure (e.g. file systems and interconnects). 

Multi-level scheduling is essential on a system such as the 
BG/P because the local resource manager (LRM, Cobalt [17]) 
works at a granularity of processor-sets, or PSETs [18], rather 
than individual computing nodes or processor cores. On the 
BG/P, a PSET is a group of 64 compute nodes (each with 4 
processor cores) and one I/O node. PSETs must be allocated in 
their entirety to user application jobs by the LRM, which imposes 
the constraint that the applications must make use of all 256 cores, 
or waste valuable CPU resources. Tightly coupled MPI 
applications are well suited for this constraint, but loosely-
coupled application workflows, on the other hand, generally have 
many single processor jobs, each with possibly unique 
executables and almost always with unique parameters. Naively 
running such applications on the BG/P using the system’s Cobalt 
LRM would yield, at worst case, a 1/256 utilization if the single 
processor job is not multi-threaded, or 1/64 if it is. In the work we 
describe here, we use multi-level scheduling to allocate compute 
resources from Cobalt at the PSET granularity, and then make 
these computational resources available to applications at a single 
processor core granularity in order to enable single threaded jobs 
to execute with up to 100% utilization. Using this multi-level 
scheduling mechanism, we are able to launch a unique 
application, or the same application with unique arguments, on 
each core, and to launch such tasks repetitively throughout the 
allocation period. This capability is made possible through Falkon 
and its resource provisioning mechanisms.  

A related obstacle to loosely coupled programming when 
using the native BG/P LRM is the overhead of scheduling and 
starting resources. The BG/P compute nodes are powered off 
when not in use, and hence must be booted when allocated to a 
job. As the compute nodes do not have local disks, the boot up 
process involves reading a Linux (or POSIX-based ZeptOS [19]) 
kernel image from a shared file system, which can be expensive if 
compute nodes are allocated and de-allocated frequently. Using 
multi-level scheduling allows this high initial cost to be amortized 
over many jobs, reducing it to an insignificant overhead. With the 
use of multi-level scheduling, executing a job is reduced to its 
bare and lightweight essentials: loading the application into 
memory, executing it, and returning its exit code – a process that 
can occur in milliseconds. We contrast this with the cost to reboot 
compute nodes, which is on the order of multiple seconds (for a 
single node) and can be as high as hundreds of seconds if many 
compute nodes are rebooting concurrently.  

The second mechanism that enables loosely-coupled 
applications to be executed on the BG/P is a streamlined task 
submission framework (Falkon [3]) which provides efficient task 
dispatch. This is made possible through Falkon’s focus: it relies 
on LRMs for many functions (e.g., reservation, policy-based 
scheduling, accounting) and client frameworks such as workflow 
systems or distributed scripting systems for others (e.g., recovery, 



 

data staging, job dependency management). In contrast with 
typical LRM performance, Falkon achieves several orders of 
magnitude higher performance (607 to 3773 tasks/sec in a Linux 
cluster environment, 3057 tasks/sec on the SiCortex, 1758 
tasks/sec on BG/P).  

To quantify the need and benefit of such high throughputs, 
we analyze (in Figure 1 and Figure 2) the achievable resource 
efficiency at two different supercomputer scales (the 4K 
processors of the BG/P test system currently available to us, and 
the ultimate size of the ALCF BG/P system – 160K processors [1, 
20]) for various throughput levels (1, 10, 100, 1K, and 10K 
tasks/sec). This graph shows the minimum task durations needed 
to achieve a range of efficiencies up to 1.0 (100%), given the peak 
task submission rates of the various actual and hypothetical task 
scheduling facilities. In this analysis, efficiency is defined as 
(achieved speedup) / (ideal speedup).  
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Figure 1: Theoretical resource efficiency for both a small and 
large supercomputer in executing 1M tasks of various lengths 

at various dispatch rates 
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Figure 2: Theoretical resource efficiency for both a small and 
large supercomputer in executing 1M tasks of various lengths 

at various dispatch rates 
We note that current production LRMs require relatively 

long tasks in order to maintain high efficiency. For example, in 
the small supercomputer case with 4096 processors, for a 
scheduler that can submit 10 tasks/sec, tasks need to be 520 
seconds in duration in order to get even 90% efficiency; for the 
same throughput, the required task duration is increased to 30,000 

seconds (~9 hours) for 160K processors in order to maintain 90% 
efficiency. With throughputs of 1000 tasks/sec (which Falkon can 
sustain on the BG/P), the same 90% efficiency can be reached 
with tasks of length 3.75 seconds and 256 seconds for the same 
two cases. Empirical results presented in a later section (Figure 8) 
shows that on the BG/P with 2048 processors, 4 second tasks 
yield 94% efficiency, and on the SiCortex with 5760 processors, 
we need 8 second tasks to achieve the same 94% efficiency.  The 
calculations in this analysis show that the higher the throughput 
rates (tasks/sec) that can be dispatched to and executed on a set of 
resources, the higher the maximum resource utilization and 
efficiency for the same workloads and the faster the applications 
turn-around times will be, assuming the I/O needed for the 
application scales with the number of processors. 

Finally, the third mechanism we employ for enabling loosely 
coupled applications to execute efficiently on the BG/P is 
extensive use of caching to allow better application scalability by 
avoiding shared file systems. As workflow systems frequently 
employ files as the primary communication medium between data-
dependent jobs, having efficient mechanisms to read and write 
files is critical. The compute nodes on the BG/P do not have local 
disks, but they have both a shared file system (GPFS [21]) and 
local filesystem implemented in RAM (“ramdisk”); the SiCortex 
is similar as it also has a shared file system (NFS and PVFS), as 
well as a local file system in RAM. We make extensive use of the 
ramdisk local filesystem, to cache file objects such as application 
scripts and binary executables, static input data which is constant 
across many jobs running an application, and in some cases, 
output data from the application until enough data is collected to 
allow efficient writes to the shared file system. We found that 
naively executing applications directly against the shared file 
system yielded unacceptably poor performance, but with 
successive levels of caching we were able to increase the 
execution efficiency to within a few percent of ideal in many 
cases. 

3.1 Swift and Falkon 
To harness a wide array of loosely coupled applications that 

have already been implemented and executed in clusters and 
grids, we decided to build upon existing systems (Swift [15] and 
Falkon [3]). Swift is an emerging system that enables scientific 
workflows through a data-flow-based functional parallel 
programming model. It is a parallel scripting tool for rapid and 
reliable specification, execution, and management of large-scale 
science and engineering workflows. Swift takes a structured 
approach to workflow specification, scheduling and execution. It 
consists of a simple functional scripting language called 
SwiftScript for concise specifications of complex parallel 
computations based on dataset typing and iterators, and dynamic 
dataset mappings for accessing complex, large scale datasets 
represented in diverse data formats.  

The runtime system in Swift relies on the CoG Karajan [22] 
workflow engine for efficient scheduling and load balancing, and 
it integrates with the Falkon [3] light-weight task execution 
service for optimized task throughput and resource efficiency. 
Falkon enables the rapid and efficient execution of many 
independent jobs on large compute clusters. It combines two 
techniques to achieve this goal: (1) multi-level scheduling with 
separate treatments of resource provisioning and the dispatch of 



 

user tasks to those resources [23, 24], and a streamlined task 
dispatcher used to achieve order-of-magnitude higher task 
dispatch rates than conventional schedulers [3] ; and (2) data 
caching and the use of a data-aware scheduler to leverage the co-
located computational and storage resources to minimize the use 
of shared storage infrastructure [25, 26, 27]. Note that we make 
full use of the first technique on both the BG/P and SiCortex 
systems. We will investigate harnessing the second technique 
(data diffusion) to ensure loosely coupled applications have the 
best opportunity to scale to the full BG/P scale of 160K 
processors. 

We believe the synergy found between Swift and Falkon 
offers a common generic infrastructures and platforms in the 
science domain for workflow administration, scheduling, 
execution, monitoring, provenance tracking etc. The science 
community is demanding both specialized, domain-specific 
languages to improve productivity and efficiency in writing 
concurrent programs and coordination tools, and generic 
platforms and infrastructures for the execution and management 
of large scale scientific applications, where scalability and 
performance are major concern. High performance computing 
support has become an indispensable tool to address the large 
storage and computing problems emerging in every discipline of 
21st century e-science. 

Both Swift [15, 28] and Falkon [3] have been used in a 
variety of environments from clusters (i.e. TeraPort [29]), to 
multi-site Grids (i.e. Open Science Grid [30], TeraGrid [31]), to 
specialized large machines (SiCortex [2]), to supercomputers (i.e. 
IBM BlueGene/P [1]). Large scale applications from many 
domains (i.e. astronomy [32, 3], medicine [34, 3, 33], chemistry 
[28], molecular dynamics [36], and economics [38, 37]) have 
been run at scales of tens of thousands of jobs on thousands of 
processors, with an order of magnitude larger scale on the 
horizon.  

3.2 Implementation Details 
Significant engineering efforts were invested to get Falkon 

and Swift to work on systems such as the SiCortex and the BG/P. 
This section discusses extensions we made to both systems, and 
the problems and bottlenecks they addressed. 

3.2.1 Static Resource Provisioning  
Falkon as presented in our previous work [3] has support for 

dynamic resource provisioning, which allows the resource pool to 
grow and shrink based on load (i.e. wait queue length at the 
Falkon service). Dynamic resource provisioning in its current 
implementation depends on GRAM4 [39] to allocate resources in 
Grids and clusters. Neither the SiCortex nor the BG/P support 
GRAM4; the SiCortex uses the SLURM LRM [2] while the BG/P 
supports the Cobalt LRM [17]. As a first step, we implemented 
static resource provisioning on both of these systems through the 
respective LRM. With static resource provisioning the application 
requests a number of processors for a fixed duration; resources are 
allocated based on the requirements of the application. In future 
work, we will port our GRAM4 based dynamic resource 
provisioning to support SLURM and Cobalt and/or pursue 
GRAM support on these systems. 

3.2.2 Alternative Implementations  
Performance depends critically on the behavior of our task 

dispatch mechanisms; the number of messages needed to interact 
between the various components of the system; and the hardware, 
programming language, and compiler used. We implemented 
Falkon in Java and use the Sun JDK to compile and run Falkon. 
We use the GT4 Java WS-Core to handle Web Services 
communications. [35] Running with Java-only components works 
well on typical Linux clusters and Grids, but the lack of Java on 
the BG/L, BG/P, and SiCortex execution environments prompted 
us to replace two main pieces from Falkon.  

The first change was the rewrite of the Falkon executor code 
in C. This allowed us to compile and run on the target systems. 
Once we had the executor implemented in C, we adapted it to 
interact with the Falkon service. In order to keep the protocol as 
lightweight as possible, we used a simple TCP-based protocol to 
replace the existing WS-based protocol. The process of writing 
the C executor was more complicated than the Java variation, and 
required more debugging due to exception handling, memory 
allocation, array handling, etc. Table 1 has a summary of the 
differences between the two implementations. 

Table 1: Feature comparison between the Java Executor 
implementation and the new C implementation 

Description Java C 
Robustness high Medium 

Security 
GSITransport, 

GSIConversation, 
GSIMessageLevel 

none 
could support SSL 

Communication 
Protocol WS-based TCP-based 

Error Recovery yes yes 
Lifetime 

Management yes no 

Concurrent 
Tasks yes no 

Push/Pull 
Model 

PUSH 
notification based PULL 

Firewall no yes 
NAT / Private 

Networks 
no in general 

yes in certain cases yes 

Persistent 
Sockets 

no - GT4.0 
yes - GT4.2 yes 

Performance Medium~High 
600~3700 tasks/s 

High 
1700~3200 tasks/s 

Scalability High ~ 54K CPUs Medium ~ 10K CPUs 
Portability medium high (needs recompile)

Data Caching yes no 
It was not sufficient to change the worker implementation, as 

the service required corresponding revisions. In addition to the 
existing support for WS-based protocol, we implemented a new 
component called “TCPCore” to handle the TCP-based 
communication protocol. TCPCore is a component to manage a 
pool of threads that lives in the same JVM as the Falkon service, 
and uses in-memory notifications and shared objects to 
communicate with the Falkon service. In order to make the 
protocol as efficient as possible, we implemented persistent TCP 
sockets (which are stored in a hash table based on executor ID or 
task ID, depending on what state the task is in). Figure 3 is the 



 

TCPCore overview of the interaction between TCPCore and the 
Falkon service, and between TCPCore and the executors. 
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Figure 3: The TCPCore overview, replacing the WS-Core 

component from the GT4 

3.3 Reliability Issues at Large Scale 
We discuss reliability only briefly here, to explain how our 

approach addresses this critical requirement. The BG/L has a 
mean-time-to-failure (MTBF) of 10 days [4], which means that 
MPI parallel jobs that span more than 10 days are almost 
guaranteed to fail, as a single node failing would cause the entire 
allocation and application to fail as well. As the BG/P will scale to 
several orders of magnitude larger than the BG/L, we expect its 
MTBF to continue to pose challenges for long-running 
applications. When running loosely coupled applications via Swift 
and Falkon, the failure of a single CPU or node only affects the 
individual tasks that were being executed at the time of the failure.  

Falkon has mechanisms to identify specific errors, and act 
upon them with specific actions. Most errors are generally passed 
back up to the application (Swift) to deal with them, but other 
(known) errors can be handled by Falkon. For example we have 
the "Stale NFS handle" error that Falkon will retry on. This error 
is a fail-fast error which can cause many failures to happen in a 
short period of time, however Falkon has the mechanisms in place 
to suspend the offending node if it fails too many jobs. 
Furthermore, Falkon retries any jobs that failed due to 
communication errors between the service and the workers, 
essentially any errors not caused due to the application or the 
shared file system. 

Swift also has persistent state that allows it to restart a 
parallel application script from the point of failure, re-executing 
only uncompleted tasks. There is no need for explicit check-
pointing as is the case with MPI applications; check-pointing 

occurs inherently with every task that completes and is 
communicated back to Swift. Compute node failures are all 
treated independently, as each failure only affects the particular 
task that it was executing at the time of failure.  

4. Micro-Benchmarks Performance 
We developed a set of micro-benchmarks to identify 

performance characteristics and potential bottlenecks on systems 
with massive numbers of cores. We describe these machines in 
detail and measure both the task dispatch rates we can achieve for 
synthetic benchmarks and the costs for various file system 
operations (read, read+write, invoking scripts, mkdir, etc) on the 
shared file systems that we use when running large-scale 
applications (GPFS and NFS). 

4.1 Testbeds Description 
The latest IBM BlueGene/P Supercomputer [1] has quad 

core processors with a total of 160K-cores, and has support for a 
lightweight Linux kernel (ZeptOS [19]) on the compute nodes, 
making it significantly more accessible to new applications. A 
reference BG/P with 16 PSETs (1024 nodes, 4096 processors) has 
been available to us for testing, and the full 640 PSET BG/P will 
be online at Argonne National Laboratory (ANL) later this year 
[20]. The BG/P architecture overview is depicted in Figure 4.      
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4 processors

1 chip, 1x1x1
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(32 chips  4x4x2)
32 compute, 0-4 IO cards
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32 Node Cards

32 Racks
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Cabled 8x8x16Rack

Baseline System

Node Card

Compute Card

Chip
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Figure 4: BG/P Architecture Overview 

The full BG/P at ANL will be 111 TFlops with 160K 
PPC450 processors running at 850MHz, with a total of 80 TB of 
main memory. The system architecture is designed to scale to 3 
PFlops for a total of 4.3 million processors. The BG/P has both 
GPFS and PVFS file systems available; in the final production 
system, the GPFS will be able to sustain 80Gb/s I/O rates. All 
experiment involving the BG/P were performed on the reference 
pre-production implementation that had 4096 processors and 
using the GPFS shared file system. 

ANL also acquired a new 6 TFlop machine named the 
SiCortex [2]; it has 6-core processors for a total of 5832-cores 
each running at 500 MHz, has a total of 4TB of memory, and runs 
a standard Linux environment with kernel 2.6. The system is 
connected to a NFS shared file system which is only served by 
one server, and can sustain only about 320 Mb/s read 
performance. A PVFS shared file system is also planned that will 
increase the read performance to 12,000 Mb/s, but that was not 



 

available to us during out testing. All experiment on the SiCortex 
were performed using the NFS shared file system, the only 
available shared file system at the time of the experiments.  

 
Figure 5: SiCortex Model 5832 

In some experiments, we also used the ANL/UC Linux 
cluster (a 128 node cluster from the TeraGrid), which consisted of 
dual Xeon 2.4 GHz CPUs or dual Itanium 1.3GHz CPUs with 
4GB of memory and 1Gb/s network connectivity.  We also used 
two other systems for some of the measurements involving the 
SiCortex and the ANL/UC Linux cluster. One machine 
(VIPER.CI) was a dual Xeon 3GHz with HT (4 hardware 
threads), 2GB of RAM, Linux kernel 2.6, and 100 Mb/s network 
connectivity. The other system (GTO.CI) was a dual Xeon 2.33 
GHz with quad cores each (8-cores), 2GB of RAM, Linux kernel 
2.6, and 100 Mb/s network connectivity. Both machines had a 
network latency of less than 2 ms to and from both the SiCortex 
compute nodes and the ANL/UC Linux cluster.   

The various systems we used in the experiments conducted in 
this paper are outlined in Table 2.  

Table 2: Summary of testbeds used in section 5 and section 6 

Name Nodes
CPUs 

CPU 
Type 
Speed 

RAM 
File 

System 
Peak 

Operating 
System 

BG/P 1024  
4096 

PPC450 
0.85GHz 2TB GPFS 

775Mb/s 
Linux 

(ZeptOS) 

BG/P.Login 8  
32 

PPC 
2.5GHz 32GB GPFS 

775Mb/s 
Linux 

Kernel 2.6 

SiCortex 972 
5832 

MIPS64 
0.5GHz 3.5TB NFS 

320Mb/s 
Linux 

Kernel 2.6 

ANL/UC 

98 
196 

Xeon  
2.4GHz 0.4TB GPFS 

3.4Gb/s 
Linux 

Kernel 2.4 
62 

124 
Itanium 
1.3GHz 

0.25T
B 

GPFS 
3.4Gb/s 

Linux 
Kernel 2.4 

VIPER.CI 1  
2 

Xeon 
3GHz 2GB Local 

800Mb/s 
Linux 

Kernel 2.6 

GTO.CI 1 
8 

Xeon 
2.3GHz 2GB Local 

800Mb/s 
Linux 

Kernel 2.6 

4.2 Falkon Task Dispatch Performance 
One key component to achieving high utilization of large 

scale systems is the ability to get high dispatch and execute rates. 

In previous work [3] we measured that Falkon with the Java 
Executor and WS-based communication protocol achieves 487 
tasks/sec in a Linux cluster (ANL/UC) with 256 CPUs, where 
each task was a “sleep 0” task with no I/O; the machine we used 
in our previous study was VIPER.CI. We repeated the peak 
throughput experiment on a variety of systems (ANL/UC Linux 
cluster, SiCortex, and BG/P) for both versions of the executor 
(Java and C, WS-based and TCP-base respectively); we also used 
two different machines to run the service, GTO.CI and 
BG/P.Login; see Table 2 for a description of each machine. 

Figure 6 shows the results we obtained for the peak 
throughput as measured while submitting, executing, and getting 
the results from 100K tasks on the various systems. We see that 
the ANL/UC Linux cluster is up to 604 tasks/sec from 487 
tasks/sec (using the Java executor and the WS-based protocol); we 
attribute the gain in performance solely due to the faster machine 
GTO.CI (8-cores at 2.33GHz vs. 2 CPUs with HT at 3GHz each). 
The test was performed on 200 CPUs, the most CPUs that were 
available at the time of the experiment. The same testbed but 
using the C executor and TCP-based protocol yielded 2534 
tasks/sec, a significant improvement in peak throughput. We 
attribute this to the lesser overhead of the TCP-based protocol (as 
opposed to the WS-based protocol), and the fact that the C 
executor is much simpler in logic and features than the Java 
executor. The same peak throughput on the SiCortex with 5760 
CPUs is even higher, 3186 tasks/sec; note that the SiCortex does 
not support Java. Finally, the BG/P peak throughput was only 
1758 tasks/sec for the C executor; similar to the SiCortex, Java is 
not supported on the BG/P compute nodes. We attribute the lower 
throughput of the BG/P as compared to the SiCortex to the 
machine that was used to run the Falkon service. On the BG/P, we 
used BG/P.Login (a 4-core PPC at 2.5GHz) while on the SiCortex 
we used GTO.CI (a 8-core Xeon at 2.33GHz). These differences 
in test harness were unavoidable due to firewall constraints. 
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Figure 6: Task dispatch and execution throughput for trivial 
tasks with no I/O (sleep 0) 

Note that there is also an entry for the ANL/UC Linux 
cluster, with the Java executor and bundling attribute of 10. The 
bundling refers to the dispatcher bundling 10 tasks in each 
communication message that is sent to a worker; the worker then 
unbundles the 10 tasks, puts them in a local queue, and executes 
one task per CPU (2 in our case) at a time. This has the added 
benefit of amortizing the communication overhead over multiple 
tasks, which drastically improves throughput from 604 to 3773 



 

tasks/sec (higher than all the C executors and TCP-based 
protocol). Bundling can be useful when one knows a-priori the 
task granularity, and expects the dispatch throughput to be a 
bottleneck. The bundling feature has not been implemented in the 
C executor, which means that the C executors were receiving each 
task separately per executor. 

In trying to understand the various costs leading to the 
throughputs achieved in Figure 6, Figure 7 profiles the service 
code, and breaks down the CPU time by code block. This test was 
done on the VIPER.CI and the ANL/UC Linux cluster with 200 
CPUs, with throughputs reaching 487 tasks/sec and 1021 
tasks/sec for the Java and C implementations respectively.  A 
significant portion of the CPU time is spent in communication 
(WS and/or TCP). With bundling (not shown in Figure 7), the 
communication costs are reduced to 1.2 ms (down from 4.2 ms), 
as well as other costs. Our conclusion is that the peak throughput 
for small tasks can be increased by both adding faster processors, 
more processor cores to the service host, and reducing the 
communication costs by lighter weight protocols or by bundling 
where possible. 
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Figure 7: Falkon profiling comparing the Java and C 
implementation on VIPER.CI (dual Xeon 3GHz w/ HT) 
Peak throughput performance only gives us a rough idea of 

the kind of utilization and efficiency we can expect; therefore, to 
better understand the efficiency of executing different workloads, 
measured the efficiency of executing varying task lengths. We 
measured on the ANL/UC Linux cluster with 200 CPUs, the 
SiCortex with 5760 CPUs, and the BG/P with 2048 CPUs. We 
varied the task lengths from 0.1 seconds to 256 seconds (using 
sleep tasks with no I/O), and ran workloads ranging from 1K tasks 
to 100K tasks (depending on the task lengths). 

Figure 8 shows the efficiency we were able to achieve. Note 
that on a relatively small cluster (200 CPUs), we can achieve 
95%+ efficiency with 1 second tasks. Even with 0.1 second tasks, 
using the C executor, we can achieve 70% efficiency on 200 
CPUs. Efficiency can reach 99%+ with 16 second tasks. With 
larger systems, with more CPUs to keep busy, it takes longer tasks 
to achieve a given efficiency level. With 2048 CPUs (BG/P), we 
need 4 second tasks to reach 94% efficiency, while with 5760 
CPUs (SiCortex), we need 8 second tasks to reach the same 
efficiency. With 64 second tasks, the BG/P achieves 99.1% 
efficiency while the SiCortex achieves 98.5%.  
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Figure 8: Efficiency graph of various systems (BG/P, SiCortex, 
and Linux cluster) for both the Java and C worker 
implementation for various task lengths (0.1 to 256 seconds) 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

Number of Processors

Ef
fic

ie
nc

y

32 seconds
16 seconds
8 seconds
4 seconds
2 seconds
1 second

  
Figure 9: Efficiency graph for the BG/P for 1 to 2048 

processors and task lengths ranging from 1 to 32 seconds 
Figure 9 investigates more closely the effects of efficiency as 

the number of processors increases from 1 to 2048. With 4 second 
tasks, we can get high efficiency with any number of processors; 
with 1 and 2 second tasks, we achieve high efficiency with a 
smaller number of processors: 512 and 1024 respectively. 

The previous several experiments all investigated the 
throughput and efficiency of executing tasks which had a small 
and compact description. For example, the task “/bin/sleep 0” 
requires only 12 bytes of information. The following experiment 
(Figure 10) investigates how the throughput is affected by 
increasing the task description size. For this experiment, we 
compose 4 different tasks, “/bin/echo ‘string’”, where string is 
replaced with a different length string to make the task description 
10B, 100B, 1KB, and 10KB. We ran this experiment on the 
SiCortex with 1002 CPUs and the service on GTO.CI, and 
processed 100K tasks for each case.  

We see the throughput with 10B tasks is similar to that of 
sleep 0 tasks on 5760 CPUs with a throughput of 3184 tasks/sec. 
When the task size is increased to 100B, 1KB, and 10KB, the 
throughput is reduced to 3011, 2001, and 662 tasks/sec 
respectively. To better understand the throughput reduction, we 
also measured the network level traffic that the service 



 

experienced during the experiments. We observed that the 
aggregate throughput (both received and sent on a full duplex 
100Mb/s network link) increases from 2.9MB/s to 14.4MB/s as 
we vary the task size from 10B to 10KB.  
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Figure 10: Task description size on the SiCortex and 1K CPUs 

 The bytes/task varies from 934 bytes to 22.3 KB for the 10B 
to 10KB tasks. The formula to compute the bytes per task is 
2*task_size + overhead of TCP-based protocol (including TCP/IP 
headers) + overhead of WS-based submission protocol (including 
XML, SOAP, HTTP, and TCP/IP) + notifications of results from 
executors back to the service, and from the service to the user. We 
need to double the task size since the service first receives the task 
description from the user (or application), and then dispatches it 
to the remote executor. Only a brief notification with the task ID 
and exit code of the application is sent back. We might assume 
that the overhead is 934 – 2*10 = 914 bytes, but from looking at 
the 10KB tasks, we see that the overhead is 22.3KB – 2*10KB = 
2.3KB (higher than 0.9KB). We measured the number of TCP 
packets to be 7.36 packets/task (10B tasks) and 28.67 packets/task 
(10KB tasks). The difference in TCP overhead 853 bytes (with 40 
byte headers for TCP/IP, 28.67*40 - 7.36*40) explains most of 
the difference. We suspect that the remainder of the difference 
(513 bytes) is due to extra overhead in XML/SOAP/HTTP when 
submitting the tasks. 

4.3 NFS/GPFS Performance 
Another key component to getting high utilization and 

efficiency on large scale systems is to understand the shared 
resources well, and to make sure that the compute-to-I/O ratio is 
proportional in order to achieve the desired performance. This 
sub-section discusses the shared file system performance of the 
BG/P. This is an important factor, as Swift uses files for inter-
process communication, and these files are transferred from one 
node to another by means of the shared file system. Future work 
will remove this bottleneck (i.e. using TCP pipes, MPI messages, 
or data diffusion [25, 27]), but the current implementation is 
based on files on shared file systems, and hence we believe it is 
important to investigate and measure the performance of the 
BG/P’s GPFS shared filesystem. 

We conducted several experiments with various data sizes 
(1B to 100MB) on a varying number of CPUs from 4 to 2048; we 
conducted both read-only tests and read+write tests. Figure 11 
shows the aggregate throughput in terms of Mb/s. Note that it 

requires relatively large access sizes (1MB and larger) in order to 
saturate the GPFS file system (and/or the I/O nodes that handle 
the GPFS traffic). The peak throughput achieved for read tests 
was 775 Mb/s with 1MB data sizes, and 326 Mb/s read+write 
throughput with 10MB data sizes. At these peak numbers, 2048 
CPUs are concurrently accessing the shared file system, so the 
peak per processor throughput is a mere 0.379 Mb/s and 0.16 
Mb/s for read and read+write respectively. This implies that care 
must be taken to ensure that the compute to I/O ratio to and from 
the shared file system is balanced in such a way that it fits within 
the relatively low per processor throughput.   
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Figure 11: Aggregate throughput for GPFS on the BG/P 

Figure 12 shows the same information as Figure 11, but 
shows task length necessary to achieve 90% efficiency; we show 
the task length required when reading from GPFS in solid lines 
and read+write from GPFS in dotted lines.  
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Figure 12: Minimum task lengths (sec) with varying input data 
required to maintain 90% efficiency 

Looking at the measures of 1 P-SET (blue) and 8 P-SETs 
(red), we see that no matter how small the input/output data is (1B 
~ 100KB), we need to have at least 60+ second tasks to achieve 
90% efficiency. If we do both reads and writes, we need at least 
129 sec tasks and 260 sec tasks for the 1 byte case for read and 
read+write respectively. This paints a bleak picture of the BG/P's 
performance when we need to access GPFS. It is essential that 
these ratios (task length vs. data size) be considered when 
implementing an application on the BG/P which needs to access 



 

the data from the shared file system (using the loosely coupled 
model under consideration). 

Figure 13 shows another aspect of the GPFS performance on 
the BG/P for 3 different scales, 4, 256, and 2048 processors.  It 
investigates 2 different benchmarks, the speed at which scripts can 
be invoked from GPFS, and the speed to create and remove 
directories on GPFS.  We show both aggregate throughput and 
time (ms) per operation per processor.     
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Figure 13: invoking simple script and mkdir/rm 

Looking at the script invocation first (left two columns), we 
see that we can only invoke scripts at 109 tasks/sec with 256 
processors; it is interesting to note that if this script was on 
ramdisk, we can achieve over 1700 tasks/sec.  As we add extra 
processors up to 2048 (also increasing I/O nodes from 1 to 8), we 
get almost linear increase in throughput, with 823 tasks/sec.  This 
leads us to conclude that the I/O nodes are the main bottleneck for 
invoking scripts from GPFS, and not GPFS itself.  Also, note the 
time increase per script invocation per processor, going from 4 to 
256 processors increases from 32 ms to 2342 ms, a significant 
overhead for relatively small tasks.  The second microbenchmark 
investigated the performance of creating and removing directories 
(right two columns).  We see that the aggregate throughput stays 
relatively constant with 4 and 256 processors (within 1 PSET) at 
44 and 41 tasks/sec, but drops significantly to 10 tasks/sec with 
2048 processors.  Note at 2048 processors, the time needed per 
processor to create and remove a directory on GPFS is over 207 
seconds, an extremely large overhead in comparison with a 
ramdisk create/remove directory overhead that is in the range of 
milliseconds. 

It is likely that these numbers will improve with time, as the 
BG/P moves from an early testing machine to a full-scale 
production system. For example, the peak advertised GPFS 
performance is rated at 80Gb/s, yet we only achieved 0.77Gb/s. 
We only used 2048 processors (of the total 160K processors that 
will eventually make up the ALCF BG/P), so if GPFS scales 
linearly, we will achieve 61.6 Gb/s. It is possible that in the 
production system with 160K processors, we will not require the 
full machine to achieve the peak shared file system throughput (as 
is typical in most large clusters with shared file systems).  

5. Loosely Coupled Applications 
Synthetic tests and applications offer a great way to 

understand the performance characteristics of a particular system, 
but they do not always trivially translate into predictions of how 
real applications with real I/O will behave. We have worked with 
two separate groups of scientists from different domains as a first 
step to show that large-scale loosely-coupled applications can run 
efficiently on the BG/P and the SiCortex systems. The 
applications are from two domains, molecular dynamics and 
economic modeling, and both show excellent speedup and 
efficiency as they scale to thousands of processors. 

5.1 Molecular Dynamics: DOCK 
Our first application is DOCK Version 5 [36], which we 

have run on both the BG/P and the SiCortex systems via Swift 
[15, 28] and Falkon [3]. DOCK addresses the problem of 
"docking" molecules to each other. In general, "docking" is the 
identification of the low-energy binding modes of a small 
molecule, or ligand, within the active site of a macromolecule, or 
receptor, whose structure is known. A compound that interacts 
strongly with, or binds, a receptor (such as a protein molecule) 
associated with a disease may inhibit its function and thus act as a 
beneficial drug.  

Prior to running the real workload, which exhibits wide 
variability in its job durations, we investigated the scalability of 
the application under larger than normal I/O to compute ratios and 
by reducing the number of variables. From the ligand search 
space, we selected one that needed 17.3 seconds to complete. We 
then ran a workload with this specific molecule (replicated to 
many files) on a varying number of processors from 6 to 5760 on 
the SiCortex. The ratio of I/O to compute was about 35 times 
higher in this synthetic workload than the real workload whose 
average task execution time was 660 seconds.  Figure 14 shows 
the results of the synthetic workload on the SiCortex system.  
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Figure 14: Synthetic workload with deterministic job 
execution times (17.3 seconds) while varying the number of 
processors from 6 to 5760 on the SiCortex 



 

Up to 1536 processors, the application had excellent 
scalability with 98% efficiency, but due to shared file system 
contention in reading the input data and writing the output data, 
the efficiency dropped to below 70% for 3072 processors and 
below 40% for 5760 processors. We concluded that shared file 
system contention caused the loss in efficiency, due to the average 
execution time per job and the standard deviation as we increased 
the number of processors. Notice in the lower left corner of Figure 
14 how stable the execution times are when running on 768 
processors, 17.3 seconds average and 0.336 seconds standard 
deviation. However, the lower right corner shows the performance 
on 5760 processors to be an average of 42.9 seconds, and a 
standard deviation of 12.6 seconds. Note that we ran another 
synthetic workload that had no I/O (sleep 18) at the full 5760 
processor machine scale, which showed an average of 18.1 second 
execution time (0.1 second standard deviation), which rules out 
the dispatch/execute mechanism. The likely contention was due to 
the application’s I/O patterns to the shared file system.  

The real workload of the DOCK application involves a wide 
range of job execution times, ranging from 5.8 seconds to 4178 
seconds, with a standard deviation of 478.8 seconds. This 
workload (Figure 15 and Figure 16) has a 35X smaller I/O to 
compute ratio than the synthetic workload presented in Figure 14. 
Expecting that the application would scale to 5760 processors, we 
ran a 92K job workload on 5760 processors. In 3.5 hours, we 
consumed 1.94 CPU years, and had 0 failures throughout the 
execution of the workload. We also ran the same workload on 102 
processors to compute speedup and efficiency, which gave the 
5760 processor experiment a speedup of 5650X (ideal being 
5760) and an efficiency of 98.2%. Each horizontal green line 
represents a job computation, and each black tick mark represents 
the beginning and end of the computation. Note that a large part 
of the efficiency was lost towards the end of the experiment as the 
wide range of job execution times yielded the slow ramp-down of 
the experiment and leaving a growing number of processors idle. 
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Figure 15: DOCK application (summary view) on the 

SiCortex; 92K jobs using 5760 processor cores 
Despite the loosely coupled nature of this application, our 

preliminary results show that the DOCK application performs and 
scales well on thousands of processors. The excellent scalability 
(98% efficiency when comparing the 5760 processor run with the 
same workload executed on 102 processors) was achieved only 
after careful consideration was taken to avoid the shared file 
system, which included the caching of the multi-megabyte 

application binaries, and the caching of 35MB of static input data 
that would have otherwise been read from the shared file system 
for each job. Note that each job still had some minimal read and 
write operations to the shared file system, but they were on the 
order of 10s of KB, with the majority of the computations being in 
the 100s of seconds, with an average of 660 seconds. 

 
Figure 16: DOCK application (per processor view) on the 

SiCortex; 92K jobs using 5760 processor cores 
To grasp the magnitude of DOCK application, the 92K jobs 

we performed represents only 0.0092% of the search space being 
considered by the scientists we are working with; simple 
calculations projects a search over the entire parameter space to 
need 20,938 CPU years, the equivalent of 4.9 years on today’s 4K 
CPU BG/P, or 48 days on the 160K-core BG/P that will be online 
later this year at Argonne National Laboratory. This is a large 
problem, that cannot be solved in a reasonable amount of time (<1 
year) without a system that has at least 10K processors or more, 
but our loosely-coupled approach holds great promise for making 
this problem tractable and manageable. 

5.2 Economic Modeling: MARS 
 The second application whose performance we evaluated on 

our target architectures was MARS – the Macro Analysis of 
Refinery Systems, an economic modeling application for 
petroleum refining developed by D. Hanson and J. Laitner at 
Argonne [38]. This modeling code performs a fast but broad-
based simulation of the economic and environmental parameters 
of petroleum refining, covering over 20 primary & secondary 
refinery processes. MARS analyzes the processing stages for six 
grades of crude oil (from low-sulfur light to high-sulfur very-
heavy and synthetic crude), as well as processes for upgrading 



 

heavy oils and oil sands. It includes eight major refinery products 
including gasoline, diesel and jet fuel, and evaluates ranges of 
product shares. It models the economic and environmental 
impacts of the consumption of natural gas, the production and use 
of hydrogen, and coal-to-liquids co-production, and seeks to 
provide insights into how refineries can become more efficient 
through the capture of waste energy. 

While MARS analyzes this large number of processes and 
variables, it does so at a coarse level without involving intensive 
numerics. It consists of about 16K lines of C code, and can 
process one iteration of a model execution in about 0.5 seconds of 
BG/P CPU time. Using the power of the BG/P we can perform 
detailed multi-variable parameter studies of the behavior of all 
aspects of petroleum refining covered by MARS. 

As a simple test of utilizing the BG/P for refinery modeling, 
we performed a 2D parameter sweep to explore the sensitivity of 
the investment required to maintain production capacity over a 4-
decade span on variations in the diesel production yields from low 
sulfur light crude and medium sulfur heavy crude oils. This 
mimics one possible segment of the many complex multivariate 
parameter studies that become possible with ample computing 
power.  A single MARS model execution involves an application 
binary of 0.5MB, static input data of 15KB, 2 floating point input 
variables and a single floating point output variable. The average 
micro-task execution time is 0.454 seconds. To scale this 
efficiently, we performed task-batching of 144 model runs into a 
single task, yielding a workload with 1KB of input and 1KB of 
output data, and an average execution time of 65.4 seconds. 

We executed a workload with 7 million model runs (49K 
tasks) on 2048 processors on the BG/P (Figure 17 and Figure 18). 
The experiment consumed 894 CPU hours and took 1601 seconds 
to complete. At the scale of 2048 processors, the per micro-task 
execution times were quite deterministic with an average of 0.454 
seconds and a standard deviation of 0.026 seconds; this can also 
be seen from Figure 18 where we see all processors start and stop 
executing tasks at about the same time, the banding effects in the 
graph) . As a comparison, a 4 processor experiment of the same 
workload had an average of 0.449 seconds with a standard 
deviation of 0.003 seconds. The efficiency of the 2048 processor 
run in comparison to the 4 processor run was 97.3% with a 
speedup of 1993 (compared to the ideal speedup of 2048).  

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 180 360 540 720 900 1080 1260 1440
Time (sec)

C
PU

 C
or

es

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000
0 180 360 540 720 900 1080 1260 1440

M
ic

ro
-T

as
ks

Idle CPUs
Busy CPUs
Wait Queue Length
Completed Micro-Tasks

 
Figure 17: MARS application (summary view) on the BG/P; 

7M micro-tasks (49K tasks) using 2048 processor cores 

 
Figure 18: MARS application (per processor view) on the 

BG/P; 7M micro-tasks (49K tasks) using 2048 processor cores 
The results presented in these figures are from a static 

workload processed directly with Falkon. Swift on the other hand 
can be used to make the workload more dynamic, reliable, and 
provide a natural flow from the results of this application to the 
input of the following stage in a more complex workflow. Swift 
incurs its own overheads in addition to what Falkon experiences 
when running the MARS application. These overheads include 1) 
managing the data (staging data in and out, copying data from its 
original location to a workflow-specific location, and back from 
the workflow directory to the result archival location) , 2) creating 
per-task working directories (via mkdir on the shared file system), 
and 3) creation and tracking of status logs files for each task.  

We also ran a 16K task (2.4M micro-tasks) workload on 
2048 CPUs which took an end-to-end time of 739.8 seconds. The 
per-micro-task time was higher than before – 0.602 seconds (up 
from 0.454 seconds in the 1 node/4 CPU case without any Swift 
or Falkon overhead). The efficiency between the average time per 
micro-task is 75%, but due to the slower dispatch rates (about 100 
tasks/sec) and the higher variability in execution times (which 
yielded a slow ramp down of the experiment), the end-to-end 
efficiency was only 70% with a speedup of 1434X (2048 being 
ideal). The extra overhead (70% vs. 97% efficiency) between the 
Swift+Falkon execution and Falkon only execution can be 
attributed to the three things mentioned earlier (managing data, 
creating sand-boxes, and keeping track of status files, all on a per 
task basis).  



 

It is interesting to note that Swift with the default settings 
and implementation, yielded only 20% efficiency for this 
workload. We investigated the main bottlenecks, and they seemed 
to be shared file system related.  We applied three distinct 
optimizations to the Swift wrapper script: 1) the placement of 
temporary directories in local ramdisk rather than the shared 
filesystem; 2) copies the input data to the local ramdisk of the 
compute node for each job execution; and 3) creates the per job 
logs on local ramdisk and only copies them at the completion of 
each job (rather than appending a file on shared file system at 
each job status change).  These optimizations allowed us to 
increase the efficiency from 20% to 70% on 2048 processors for 
the MARS application with task durations of 65.4 seconds (in 
ideal case).   

We will be working to narrow the gap between the 
efficiencies found when running Swift and those when running 
Falkon alone, and hope to get the Swift efficiencies up in the 90% 
range without increasing the minimum task duration times per 
task. A relatively straight forward approach to increasing 
efficiency would be to increase the per task execution times, 
which could amortize the per task overhead better. However, at 
this stage of its development, 70% efficiency for a generic parallel 
scripting system running on 2K+ cores with 65 second tasks is a 
reasonable level of success.  

6. Conclusions and Future Work 
This paper focused on the ability to manage and execute 

large scale applications on petascale class systems. Clusters with 
50K+ processor cores are beginning to come online (i.e. TACC 
Sun Constellation System - Ranger), Grids (i.e. TeraGrid) with a 
dozen sites and 100K+ processors, and supercomputers with 
160K processors (i.e. IBM BlueGene/P). Large clusters and 
supercomputers have traditionally been high performance 
computing (HPC) systems, as they are efficient at executing 
tightly coupled parallel jobs within a particular machine with low-
latency interconnects; the applications typically use message 
passing interface (MPI) to achieve the needed inter-process 
communication. On the other hand, Grids have been the preferred 
platform for more loosely coupled applications that tend to be 
managed and executed through workflow systems. In contrast to 
HPC (tightly coupled applications), the loosely coupled 
applications are known to make up high throughput computing 
(HTC). HTC systems generally involve the execution of 
independent, sequential jobs that can be individually scheduled on 
many different computing resources across multiple 
administrative boundaries. HTC systems achieve this using 
various grid computing techniques, and often times use files to 
achieve the inter-process communication (as opposed to MPI for 
HPC).  

Our work shows that today’s existing HPC systems are a 
viable platform to host loosely coupled HTC applications. We 
identified challenges that arise in large scale loosely coupled 
applications when run on petascale-precursor systems, which can 
hamper the efficiency and utilization of these large scale systems. 
These challenges vary from local resource manager scalability and 
granularity, efficient utilization of the raw hardware, shared file 
system contention and scalability, reliability at scale, application 
scalability, and understanding the limitations of the HPC systems 
in order to identify promising and scientifically valuable loosely-

coupled applications. This paper presented new research, 
implementations, and applications experience in scaling loosely 
coupled large-scale applications on the IBM BlueGene/P and the 
SiCortex. Although our experiments are still on precursor systems 
(4K processors for the BG/P and 5.8K processors for the 
SiCortex), the experience we gathered is invaluable in planning to 
scale these applications another one to two orders of magnitude 
over the course of the next few months as the 160K processor 
BG/P comes online. We expect to present results on 40K-160K 
core systems in the final version of this paper. 

For future work, we plan to implement and evaluate 
enhancements, such as task pre-fetching, alternative technologies, 
improved data management, and a three-tier architecture. Task 
pre-fetching is commonly done in manager-worker systems, where 
executors can request new tasks before they complete execution of 
old tasks, thus overlapping communication and execution. Many 
Swift applications read and write large amounts of data. Our 
efforts will in large part be focused on having all data 
management operations avoid the use of shared filesystem 
resources when local file-systems can handle the scale of data 
involved.  

As we have seen in the results of this paper, data access is the 
main bottleneck as applications scale. We expect that data 
caching, proactive data replication, and data-aware scheduling 
will offer significant performance improvements for applications 
that exhibit locality in their data access patterns. [26] We have 
already implemented a data-aware scheduler, and support for 
caching in the Falkon Java executor. In previous work, we have 
shown that in both micro-benchmarks and a large-scale astronomy 
application, that a modest small Linux cluster (128 CPUs) can 
achieve aggregate I/O data rates of tens of Gb/s of I/O throughput 
[25, 27]. We plan to port the same data caching mechanisms from 
the Java executor to the C executor so we can use these 
techniques on the BG/P. Finally, we plan on evolving the Falkon 
architecture from the current 2-Tier architecture to a 3-Tier one. 
We are expecting that this architecture change will allow us to 
introduce more parallelism and distribution of the currently 
centralized management component in Falkon, and hence offer 
higher dispatch and execution rates than Falkon currently 
supports, which will be critical as we scale to the entire 160K-
core BG/P and we get data caching implemented and running 
efficiently to avoid the shared file system overheads.  
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