

Enabling Loosely-Coupled Serial Job Execution on the
IBM BlueGene/P Supercomputer and the SiCortex SC5832

Ioan Raicu*, Zhao Zhang+, Mike Wilde#+, Ian Foster#*+
*Department of Computer Science, University of Chicago, IL, USA

+Computation Institute, University of Chicago & Argonne National Laboratory, USA
#Math and Computer Science Division, Argonne National Laboratory, Argonne IL, USA

iraicu@cs.uchicago.edu, zhaozhang@uchicago.edu, wilde@mcs.anl.gov, foster@mcs.anl.gov

Abstract
Our work addresses the enabling of the execution of highly

parallel computations composed of loosely coupled serial jobs
with no modifications to the respective applications, on large-
scale systems. This approach allows new-and potentially far
larger-classes of application to leverage systems such as the IBM
Blue Gene/P supercomputer and similar emerging petascale
architectures. We present here the challenges of I/O performance
encountered in making this model practical, and show results
using both micro-benchmarks and real applications on two large-
scale systems, the BG/P and the SiCortex SC5832. Our
preliminary benchmarks show that we can scale to 4096
processors on the Blue Gene/P and 5832 processors on the
SiCortex with high efficiency, and can achieve thousands of
tasks/sec sustained execution rates for parallel workloads of
ordinary serial applications. We measured applications from two
domains, economic energy modeling and molecular dynamics.

Keywords: high throughput computing, loosely coupled
applications, petascale systems, Blue Gene, SiCortex, Falkon,
Swift

1. Introduction
Emerging petascale computing systems are primarily

dedicated to tightly coupled, massively parallel applications
implemented using message passing paradigms. Such systems—
typified by IBM’s Blue Gene/P [1]—include fast integrated
custom interconnects, multi-core processors, and multi-level I/O
subsystems, technologies that are also found in smaller, lower-
cost, and energy-efficient systems such as the SiCortex SC5832
[2]. These architectures are well suited for a large class of
applications that require a tightly coupled programming approach.
However, there is a potentially larger class of “ordinary” serial
applications that are precluded from leveraging the increasing
power of modern parallel systems due to the lack of efficient
support in those systems for the “scripting” programming model
in which application and utility programs are linked into useful
workflows through the looser task-coupling model of passing data
via files.

With the advances in e-Sciences and the growing complexity
of scientific analyses, more and more scientists and researchers
are relying on various forms of application scripting systems to
automate the workflow of process coordination, derivation
automation, provenance tracking, and bookkeeping. Their
approaches are typically based on a model of loosely coupled

computation, exchanging data via files, databases or XML
documents, or a combination of these. Furthermore, with
technology advances in both scientific instrumentation and
simulation, the volume of scientific datasets is growing
exponentially. This vast increase in data volume combined with
the growing complexity of data analysis procedures and
algorithms have rendered traditional manual and even automated
serial processing and exploration unfavorable as compared with
modern high performance computing processes automated by
scientific workflow systems.

We focus in this paper on the ability to execute large scale
applications leveraging existing scripting systems on petascale
systems such as the IBM Blue Gene/P. Blue Gene-class systems
have been traditionally called high performance computing (HPC)
systems, as they almost exclusively execute tightly coupled
parallel jobs within a particular machine over low-latency
interconnects; the applications typically use a message passing
interface (e.g. MPI) to achieve the needed inter-process
communication. Conversely, high throughput computing (HTC)
systems (which scientific workflows can more readily utilize)
generally involve the execution of independent, sequential jobs
that can be individually scheduled on many different computing
resources across multiple administrative boundaries. HTC systems
achieve this using various grid computing techniques, and almost
exclusively use files, documents or databases rather than messages
for inter-process communication.

The hypothesis is that loosely coupled applications can be
executed efficiently on today’s supercomputers; this paper
provides empirical evidence to prove our hypothesis. The paper
also describes the set of problems that must be overcome to make
loosely-coupled programming practical on emerging petascale
architectures: local resource manager scalability and granularity,
efficient utilization of the raw hardware, shared file system
contention, and application scalability. It describes how we
address these problems, and identifies the remaining problems
that need to be solved to make loosely coupled supercomputing a
practical and accepted reality. Through our work, we have
enabled the BG/P to efficiently support loosely coupled parallel
programming without any modifications to the respective
applications, enabling the same applications that execute in a
distributed grid environment to be run efficiently on the BG/P and
similar systems.

We validate our hypothesis by testing and measuring two
systems, Swift and Falkon, which have been used extensively to
execute large-scale loosely coupled applications on clusters and

grids. We present results of both micro-benchmarks and real
applications executed on two representative large scale systems,
the BG/P and the SiCortex SC5832. Focused micro-benchmarks
show that we can scale to thousands of processors with high
efficiency, and can achieve sustained execution rates of thousands
of tasks per second. We investigate two applications from
different domains, economic energy modeling and molecular
dynamics, and show excellent speedup and efficiency as they
scale to thousands of processors.

2. Related Work
Due to the only recent availability of parallel systems with

10K cores or more, and the even scarcer experience or success in
loosely-coupled programming at this scale, we find that there is
little existing work with which we can compare. The Condor
high-throughput system, and in particular its concept of glide-ins,
has been compared to Falkon in previous papers [3]. This system
was evaluated on the BG/L system [4] is currently being tested on
the BG/P architecture, but performance measurements and
application experiences are not yet published. Other local
resource managers were evaluated in [3] as well.

In the world of high throughput computing, systems such as
Map-Reduce [5], Hadoop [6] and BOINC [7] have utilized highly
distributed pools of processors, but the focus (and metrics) of
these systems has not been on single highly-parallel machines
such as those we focus on here. Map/reduce is typically applied to
a data model consisting of name/value pairs, processed at the
programming language level. It has several similarities to the
approach we apply here, in particular its ability to spread the
processing of a large dataset to thousands of processors. However,
it is far less amenable to the utilization and chaining of exiting
application programs, and often involves the development of
custom filtering scripts. An approach by Reid called “task
farming” [8], also at the programming language level, has been
evaluated on the BG/L.

Coordination languages developed in the 1980s and 1990s
[9, 10, 11, 12], describe individual computation components and
their ports and channels, and the data and event flow between
them. They also coordinate the execution of the components,
often on parallel computing resources. In the scientific community
there are a number of emerging systems for scientific
programming and computation [15, 5, 13, 14 Our work here
builds on the Swift parallel programming system [16, 15], in large
part because its programming model abstracts the unit of data
passing as a dataset rather than directly exposing sets of files, and
because its data-flow model exposes the information needed to
efficiently compile it for a wide variety of architectures while
maintaining a simple common programming model. Detailed data
flow analysis towards automating the compilation of conventional
in-memory programming models for thousands of cores is
described by Hwu et. al [40], but this does not address the simpler
and more accessible data flow approach taken by Swift for
scripting loosely coupled applications, which leverages implicit
parallelism as well.

3. Requirements and Implementation
Our goal of running loosely-coupled applications efficiently

and routinely on petascale systems requires that both HTC and

HPC applications be able to co-exist on systems such as the BG/P.
Petascale systems have been designed as HPC systems, so it is not
surprising that the naïve use of these systems for HTC
applications yields poor utilization and performance. The
contribution of the work we describe here is the ability to enable a
new class of applications – large-scale loosely-coupled – to
efficiently execute on petascale systems. This is accomplished
primarily through three mechanisms: 1) multi-level scheduling, 2)
efficient task dispatch, and 3) extensive use of caching to avoid
shared infrastructure (e.g. file systems and interconnects).

Multi-level scheduling is essential on a system such as the
BG/P because the local resource manager (LRM, Cobalt [17])
works at a granularity of processor-sets, or PSETs [18], rather
than individual computing nodes or processor cores. On the
BG/P, a PSET is a group of 64 compute nodes (each with 4
processor cores) and one I/O node. PSETs must be allocated in
their entirety to user application jobs by the LRM, which imposes
the constraint that the applications must make use of all 256 cores,
or waste valuable CPU resources. Tightly coupled MPI
applications are well suited for this constraint, but loosely-
coupled application workflows, on the other hand, generally have
many single processor jobs, each with possibly unique
executables and almost always with unique parameters. Naively
running such applications on the BG/P using the system’s Cobalt
LRM would yield, at worst case, a 1/256 utilization if the single
processor job is not multi-threaded, or 1/64 if it is. In the work we
describe here, we use multi-level scheduling to allocate compute
resources from Cobalt at the PSET granularity, and then make
these computational resources available to applications at a single
processor core granularity in order to enable single threaded jobs
to execute with up to 100% utilization. Using this multi-level
scheduling mechanism, we are able to launch a unique
application, or the same application with unique arguments, on
each core, and to launch such tasks repetitively throughout the
allocation period. This capability is made possible through Falkon
and its resource provisioning mechanisms.

A related obstacle to loosely coupled programming when
using the native BG/P LRM is the overhead of scheduling and
starting resources. The BG/P compute nodes are powered off
when not in use, and hence must be booted when allocated to a
job. As the compute nodes do not have local disks, the boot up
process involves reading a Linux (or POSIX-based ZeptOS [19])
kernel image from a shared file system, which can be expensive if
compute nodes are allocated and de-allocated frequently. Using
multi-level scheduling allows this high initial cost to be amortized
over many jobs, reducing it to an insignificant overhead. With the
use of multi-level scheduling, executing a job is reduced to its
bare and lightweight essentials: loading the application into
memory, executing it, and returning its exit code – a process that
can occur in milliseconds. We contrast this with the cost to reboot
compute nodes, which is on the order of multiple seconds (for a
single node) and can be as high as hundreds of seconds if many
compute nodes are rebooting concurrently.

The second mechanism that enables loosely-coupled
applications to be executed on the BG/P is a streamlined task
submission framework (Falkon [3]) which provides efficient task
dispatch. This is made possible through Falkon’s focus: it relies
on LRMs for many functions (e.g., reservation, policy-based
scheduling, accounting) and client frameworks such as workflow
systems or distributed scripting systems for others (e.g., recovery,

data staging, job dependency management). In contrast with
typical LRM performance, Falkon achieves several orders of
magnitude higher performance (607 to 3773 tasks/sec in a Linux
cluster environment, 3057 tasks/sec on the SiCortex, 1758
tasks/sec on BG/P).

To quantify the need and benefit of such high throughputs,
we analyze (in Figure 1 and Figure 2) the achievable resource
efficiency at two different supercomputer scales (the 4K
processors of the BG/P test system currently available to us, and
the ultimate size of the ALCF BG/P system – 160K processors [1,
20]) for various throughput levels (1, 10, 100, 1K, and 10K
tasks/sec). This graph shows the minimum task durations needed
to achieve a range of efficiencies up to 1.0 (100%), given the peak
task submission rates of the various actual and hypothetical task
scheduling facilities. In this analysis, efficiency is defined as
(achieved speedup) / (ideal speedup).

Small Supercomputer (4K processors)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.001 0.1 10 1000 100000
Task Length (sec)

Ef
fic

ie
nc

y

1 task/sec (i.e. PBS, Condor 6.8)
10 tasks/sec (i.e. Condor 6.9.2)
100 tasks/sec
1K tasks/sec (i.e. Falkon)
10K tasks/sec

Figure 1: Theoretical resource efficiency for both a small and
large supercomputer in executing 1M tasks of various lengths

at various dispatch rates

Large Supercomputer (160K Processors)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.001 0.1 10 1000 100000
Task Length (sec)

Ef
fic

ie
nc

y

1 task/sec (i.e. PBS, Condor 6.8)
10 tasks/sec (i.e. Condor 6.9.2)
100 tasks/sec
1K tasks/sec (i.e. Falkon)
10K tasks/sec

Figure 2: Theoretical resource efficiency for both a small and
large supercomputer in executing 1M tasks of various lengths

at various dispatch rates
We note that current production LRMs require relatively

long tasks in order to maintain high efficiency. For example, in
the small supercomputer case with 4096 processors, for a
scheduler that can submit 10 tasks/sec, tasks need to be 520
seconds in duration in order to get even 90% efficiency; for the
same throughput, the required task duration is increased to 30,000

seconds (~9 hours) for 160K processors in order to maintain 90%
efficiency. With throughputs of 1000 tasks/sec (which Falkon can
sustain on the BG/P), the same 90% efficiency can be reached
with tasks of length 3.75 seconds and 256 seconds for the same
two cases. Empirical results presented in a later section (Figure 8)
shows that on the BG/P with 2048 processors, 4 second tasks
yield 94% efficiency, and on the SiCortex with 5760 processors,
we need 8 second tasks to achieve the same 94% efficiency. The
calculations in this analysis show that the higher the throughput
rates (tasks/sec) that can be dispatched to and executed on a set of
resources, the higher the maximum resource utilization and
efficiency for the same workloads and the faster the applications
turn-around times will be, assuming the I/O needed for the
application scales with the number of processors.

Finally, the third mechanism we employ for enabling loosely
coupled applications to execute efficiently on the BG/P is
extensive use of caching to allow better application scalability by
avoiding shared file systems. As workflow systems frequently
employ files as the primary communication medium between data-
dependent jobs, having efficient mechanisms to read and write
files is critical. The compute nodes on the BG/P do not have local
disks, but they have both a shared file system (GPFS [21]) and
local filesystem implemented in RAM (“ramdisk”); the SiCortex
is similar as it also has a shared file system (NFS and PVFS), as
well as a local file system in RAM. We make extensive use of the
ramdisk local filesystem, to cache file objects such as application
scripts and binary executables, static input data which is constant
across many jobs running an application, and in some cases,
output data from the application until enough data is collected to
allow efficient writes to the shared file system. We found that
naively executing applications directly against the shared file
system yielded unacceptably poor performance, but with
successive levels of caching we were able to increase the
execution efficiency to within a few percent of ideal in many
cases.

3.1 Swift and Falkon
To harness a wide array of loosely coupled applications that

have already been implemented and executed in clusters and
grids, we decided to build upon existing systems (Swift [15] and
Falkon [3]). Swift is an emerging system that enables scientific
workflows through a data-flow-based functional parallel
programming model. It is a parallel scripting tool for rapid and
reliable specification, execution, and management of large-scale
science and engineering workflows. Swift takes a structured
approach to workflow specification, scheduling and execution. It
consists of a simple functional scripting language called
SwiftScript for concise specifications of complex parallel
computations based on dataset typing and iterators, and dynamic
dataset mappings for accessing complex, large scale datasets
represented in diverse data formats.

The runtime system in Swift relies on the CoG Karajan [22]
workflow engine for efficient scheduling and load balancing, and
it integrates with the Falkon [3] light-weight task execution
service for optimized task throughput and resource efficiency.
Falkon enables the rapid and efficient execution of many
independent jobs on large compute clusters. It combines two
techniques to achieve this goal: (1) multi-level scheduling with
separate treatments of resource provisioning and the dispatch of

user tasks to those resources [23, 24], and a streamlined task
dispatcher used to achieve order-of-magnitude higher task
dispatch rates than conventional schedulers [3] ; and (2) data
caching and the use of a data-aware scheduler to leverage the co-
located computational and storage resources to minimize the use
of shared storage infrastructure [25, 26, 27]. Note that we make
full use of the first technique on both the BG/P and SiCortex
systems. We will investigate harnessing the second technique
(data diffusion) to ensure loosely coupled applications have the
best opportunity to scale to the full BG/P scale of 160K
processors.

We believe the synergy found between Swift and Falkon
offers a common generic infrastructures and platforms in the
science domain for workflow administration, scheduling,
execution, monitoring, provenance tracking etc. The science
community is demanding both specialized, domain-specific
languages to improve productivity and efficiency in writing
concurrent programs and coordination tools, and generic
platforms and infrastructures for the execution and management
of large scale scientific applications, where scalability and
performance are major concern. High performance computing
support has become an indispensable tool to address the large
storage and computing problems emerging in every discipline of
21st century e-science.

Both Swift [15, 28] and Falkon [3] have been used in a
variety of environments from clusters (i.e. TeraPort [29]), to
multi-site Grids (i.e. Open Science Grid [30], TeraGrid [31]), to
specialized large machines (SiCortex [2]), to supercomputers (i.e.
IBM BlueGene/P [1]). Large scale applications from many
domains (i.e. astronomy [32, 3], medicine [34, 3, 33], chemistry
[28], molecular dynamics [36], and economics [38, 37]) have
been run at scales of tens of thousands of jobs on thousands of
processors, with an order of magnitude larger scale on the
horizon.

3.2 Implementation Details
Significant engineering efforts were invested to get Falkon

and Swift to work on systems such as the SiCortex and the BG/P.
This section discusses extensions we made to both systems, and
the problems and bottlenecks they addressed.

3.2.1 Static Resource Provisioning
Falkon as presented in our previous work [3] has support for

dynamic resource provisioning, which allows the resource pool to
grow and shrink based on load (i.e. wait queue length at the
Falkon service). Dynamic resource provisioning in its current
implementation depends on GRAM4 [39] to allocate resources in
Grids and clusters. Neither the SiCortex nor the BG/P support
GRAM4; the SiCortex uses the SLURM LRM [2] while the BG/P
supports the Cobalt LRM [17]. As a first step, we implemented
static resource provisioning on both of these systems through the
respective LRM. With static resource provisioning the application
requests a number of processors for a fixed duration; resources are
allocated based on the requirements of the application. In future
work, we will port our GRAM4 based dynamic resource
provisioning to support SLURM and Cobalt and/or pursue
GRAM support on these systems.

3.2.2 Alternative Implementations
Performance depends critically on the behavior of our task

dispatch mechanisms; the number of messages needed to interact
between the various components of the system; and the hardware,
programming language, and compiler used. We implemented
Falkon in Java and use the Sun JDK to compile and run Falkon.
We use the GT4 Java WS-Core to handle Web Services
communications. [35] Running with Java-only components works
well on typical Linux clusters and Grids, but the lack of Java on
the BG/L, BG/P, and SiCortex execution environments prompted
us to replace two main pieces from Falkon.

The first change was the rewrite of the Falkon executor code
in C. This allowed us to compile and run on the target systems.
Once we had the executor implemented in C, we adapted it to
interact with the Falkon service. In order to keep the protocol as
lightweight as possible, we used a simple TCP-based protocol to
replace the existing WS-based protocol. The process of writing
the C executor was more complicated than the Java variation, and
required more debugging due to exception handling, memory
allocation, array handling, etc. Table 1 has a summary of the
differences between the two implementations.

Table 1: Feature comparison between the Java Executor
implementation and the new C implementation

Description Java C
Robustness high Medium

Security
GSITransport,

GSIConversation,
GSIMessageLevel

none
could support SSL

Communication
Protocol WS-based TCP-based

Error Recovery yes yes
Lifetime

Management yes no

Concurrent
Tasks yes no

Push/Pull
Model

PUSH
notification based PULL

Firewall no yes
NAT / Private

Networks
no in general

yes in certain cases yes

Persistent
Sockets

no - GT4.0
yes - GT4.2 yes

Performance Medium~High
600~3700 tasks/s

High
1700~3200 tasks/s

Scalability High ~ 54K CPUs Medium ~ 10K CPUs
Portability medium high (needs recompile)

Data Caching yes no
It was not sufficient to change the worker implementation, as

the service required corresponding revisions. In addition to the
existing support for WS-based protocol, we implemented a new
component called “TCPCore” to handle the TCP-based
communication protocol. TCPCore is a component to manage a
pool of threads that lives in the same JVM as the Falkon service,
and uses in-memory notifications and shared objects to
communicate with the Falkon service. In order to make the
protocol as efficient as possible, we implemented persistent TCP
sockets (which are stored in a hash table based on executor ID or
task ID, depending on what state the task is in). Figure 3 is the

TCPCore overview of the interaction between TCPCore and the
Falkon service, and between TCPCore and the executors.

TASK
QUEUE

2. GET TASK

3. REMOVE SOCKET

5. DISPATCH TASK

4.
 P

U
T

SO
C

K
ET

6. GET RESULT

7.
R

EM
O

V
E

SO
C

K
ET

8. PUT SOCKET

FALKON SERVICE

9. SEND RESULT

1.
 D

IS
PA

TC
H

 T
A

SK

EXECUTOR

EXECUTOR

SOCKET MAP
INDEXED BY

TASK ID

SOCKET MAP
INDEXED BY

EXECUTOR ID

Figure 3: The TCPCore overview, replacing the WS-Core

component from the GT4

3.3 Reliability Issues at Large Scale
We discuss reliability only briefly here, to explain how our

approach addresses this critical requirement. The BG/L has a
mean-time-to-failure (MTBF) of 10 days [4], which means that
MPI parallel jobs that span more than 10 days are almost
guaranteed to fail, as a single node failing would cause the entire
allocation and application to fail as well. As the BG/P will scale to
several orders of magnitude larger than the BG/L, we expect its
MTBF to continue to pose challenges for long-running
applications. When running loosely coupled applications via Swift
and Falkon, the failure of a single CPU or node only affects the
individual tasks that were being executed at the time of the failure.

Falkon has mechanisms to identify specific errors, and act
upon them with specific actions. Most errors are generally passed
back up to the application (Swift) to deal with them, but other
(known) errors can be handled by Falkon. For example we have
the "Stale NFS handle" error that Falkon will retry on. This error
is a fail-fast error which can cause many failures to happen in a
short period of time, however Falkon has the mechanisms in place
to suspend the offending node if it fails too many jobs.
Furthermore, Falkon retries any jobs that failed due to
communication errors between the service and the workers,
essentially any errors not caused due to the application or the
shared file system.

Swift also has persistent state that allows it to restart a
parallel application script from the point of failure, re-executing
only uncompleted tasks. There is no need for explicit check-
pointing as is the case with MPI applications; check-pointing

occurs inherently with every task that completes and is
communicated back to Swift. Compute node failures are all
treated independently, as each failure only affects the particular
task that it was executing at the time of failure.

4. Micro-Benchmarks Performance
We developed a set of micro-benchmarks to identify

performance characteristics and potential bottlenecks on systems
with massive numbers of cores. We describe these machines in
detail and measure both the task dispatch rates we can achieve for
synthetic benchmarks and the costs for various file system
operations (read, read+write, invoking scripts, mkdir, etc) on the
shared file systems that we use when running large-scale
applications (GPFS and NFS).

4.1 Testbeds Description
The latest IBM BlueGene/P Supercomputer [1] has quad

core processors with a total of 160K-cores, and has support for a
lightweight Linux kernel (ZeptOS [19]) on the compute nodes,
making it significantly more accessible to new applications. A
reference BG/P with 16 PSETs (1024 nodes, 4096 processors) has
been available to us for testing, and the full 640 PSET BG/P will
be online at Argonne National Laboratory (ANL) later this year
[20]. The BG/P architecture overview is depicted in Figure 4.

13.6 GF/s
8 MB EDRAM

4 processors

1 chip, 1x1x1

13.6 GF/s
2 GB DDR

(32 chips 4x4x2)
32 compute, 0-4 IO cards

435 GF/s
64 GB

32 Node Cards

32 Racks

500TF/s
64 TB

Cabled 8x8x16Rack

Baseline System

Node Card

Compute Card

Chip

14 TF/s
2 TB

Figure 4: BG/P Architecture Overview

The full BG/P at ANL will be 111 TFlops with 160K
PPC450 processors running at 850MHz, with a total of 80 TB of
main memory. The system architecture is designed to scale to 3
PFlops for a total of 4.3 million processors. The BG/P has both
GPFS and PVFS file systems available; in the final production
system, the GPFS will be able to sustain 80Gb/s I/O rates. All
experiment involving the BG/P were performed on the reference
pre-production implementation that had 4096 processors and
using the GPFS shared file system.

ANL also acquired a new 6 TFlop machine named the
SiCortex [2]; it has 6-core processors for a total of 5832-cores
each running at 500 MHz, has a total of 4TB of memory, and runs
a standard Linux environment with kernel 2.6. The system is
connected to a NFS shared file system which is only served by
one server, and can sustain only about 320 Mb/s read
performance. A PVFS shared file system is also planned that will
increase the read performance to 12,000 Mb/s, but that was not

available to us during out testing. All experiment on the SiCortex
were performed using the NFS shared file system, the only
available shared file system at the time of the experiments.

Figure 5: SiCortex Model 5832

In some experiments, we also used the ANL/UC Linux
cluster (a 128 node cluster from the TeraGrid), which consisted of
dual Xeon 2.4 GHz CPUs or dual Itanium 1.3GHz CPUs with
4GB of memory and 1Gb/s network connectivity. We also used
two other systems for some of the measurements involving the
SiCortex and the ANL/UC Linux cluster. One machine
(VIPER.CI) was a dual Xeon 3GHz with HT (4 hardware
threads), 2GB of RAM, Linux kernel 2.6, and 100 Mb/s network
connectivity. The other system (GTO.CI) was a dual Xeon 2.33
GHz with quad cores each (8-cores), 2GB of RAM, Linux kernel
2.6, and 100 Mb/s network connectivity. Both machines had a
network latency of less than 2 ms to and from both the SiCortex
compute nodes and the ANL/UC Linux cluster.

The various systems we used in the experiments conducted in
this paper are outlined in Table 2.

Table 2: Summary of testbeds used in section 5 and section 6

Name Nodes
CPUs

CPU
Type
Speed

RAM
File

System
Peak

Operating
System

BG/P 1024
4096

PPC450
0.85GHz 2TB GPFS

775Mb/s
Linux

(ZeptOS)

BG/P.Login 8
32

PPC
2.5GHz 32GB GPFS

775Mb/s
Linux

Kernel 2.6

SiCortex 972
5832

MIPS64
0.5GHz 3.5TB NFS

320Mb/s
Linux

Kernel 2.6

ANL/UC

98
196

Xeon
2.4GHz 0.4TB GPFS

3.4Gb/s
Linux

Kernel 2.4
62

124
Itanium
1.3GHz

0.25T
B

GPFS
3.4Gb/s

Linux
Kernel 2.4

VIPER.CI 1
2

Xeon
3GHz 2GB Local

800Mb/s
Linux

Kernel 2.6

GTO.CI 1
8

Xeon
2.3GHz 2GB Local

800Mb/s
Linux

Kernel 2.6

4.2 Falkon Task Dispatch Performance
One key component to achieving high utilization of large

scale systems is the ability to get high dispatch and execute rates.

In previous work [3] we measured that Falkon with the Java
Executor and WS-based communication protocol achieves 487
tasks/sec in a Linux cluster (ANL/UC) with 256 CPUs, where
each task was a “sleep 0” task with no I/O; the machine we used
in our previous study was VIPER.CI. We repeated the peak
throughput experiment on a variety of systems (ANL/UC Linux
cluster, SiCortex, and BG/P) for both versions of the executor
(Java and C, WS-based and TCP-base respectively); we also used
two different machines to run the service, GTO.CI and
BG/P.Login; see Table 2 for a description of each machine.

Figure 6 shows the results we obtained for the peak
throughput as measured while submitting, executing, and getting
the results from 100K tasks on the various systems. We see that
the ANL/UC Linux cluster is up to 604 tasks/sec from 487
tasks/sec (using the Java executor and the WS-based protocol); we
attribute the gain in performance solely due to the faster machine
GTO.CI (8-cores at 2.33GHz vs. 2 CPUs with HT at 3GHz each).
The test was performed on 200 CPUs, the most CPUs that were
available at the time of the experiment. The same testbed but
using the C executor and TCP-based protocol yielded 2534
tasks/sec, a significant improvement in peak throughput. We
attribute this to the lesser overhead of the TCP-based protocol (as
opposed to the WS-based protocol), and the fact that the C
executor is much simpler in logic and features than the Java
executor. The same peak throughput on the SiCortex with 5760
CPUs is even higher, 3186 tasks/sec; note that the SiCortex does
not support Java. Finally, the BG/P peak throughput was only
1758 tasks/sec for the C executor; similar to the SiCortex, Java is
not supported on the BG/P compute nodes. We attribute the lower
throughput of the BG/P as compared to the SiCortex to the
machine that was used to run the Falkon service. On the BG/P, we
used BG/P.Login (a 4-core PPC at 2.5GHz) while on the SiCortex
we used GTO.CI (a 8-core Xeon at 2.33GHz). These differences
in test harness were unavoidable due to firewall constraints.

604

3773

2534

3186

1758

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)

ANL/UC, Java
200 CPUs

ANL/UC, Java
Bundling 10
200 CPUs

ANL/UC, C
200 CPUs

SiCortex, C
5760 CPUs

BlueGene/P, C
1024 CPUs

Executor Implementation and Various Systems

Figure 6: Task dispatch and execution throughput for trivial
tasks with no I/O (sleep 0)

Note that there is also an entry for the ANL/UC Linux
cluster, with the Java executor and bundling attribute of 10. The
bundling refers to the dispatcher bundling 10 tasks in each
communication message that is sent to a worker; the worker then
unbundles the 10 tasks, puts them in a local queue, and executes
one task per CPU (2 in our case) at a time. This has the added
benefit of amortizing the communication overhead over multiple
tasks, which drastically improves throughput from 604 to 3773

tasks/sec (higher than all the C executors and TCP-based
protocol). Bundling can be useful when one knows a-priori the
task granularity, and expects the dispatch throughput to be a
bottleneck. The bundling feature has not been implemented in the
C executor, which means that the C executors were receiving each
task separately per executor.

In trying to understand the various costs leading to the
throughputs achieved in Figure 6, Figure 7 profiles the service
code, and breaks down the CPU time by code block. This test was
done on the VIPER.CI and the ANL/UC Linux cluster with 200
CPUs, with throughputs reaching 487 tasks/sec and 1021
tasks/sec for the Java and C implementations respectively. A
significant portion of the CPU time is spent in communication
(WS and/or TCP). With bundling (not shown in Figure 7), the
communication costs are reduced to 1.2 ms (down from 4.2 ms),
as well as other costs. Our conclusion is that the peak throughput
for small tasks can be increased by both adding faster processors,
more processor cores to the service host, and reducing the
communication costs by lighter weight protocols or by bundling
where possible.

0

1

2

3

4

5

6

JAVA C

C
PU

 T
im

e
pe

r T
as

k
(m

s)

Task Submit (Client -> Service)
Notification for Task Availability (Service -> Executor)
Task Dispatch (Service -> Executor)
Task Results (Executor -> Service)
Notifications for Task Results (Service -> Client)
WS communication / TCPCore (Service -> Executor & Executor -> Service)

Figure 7: Falkon profiling comparing the Java and C
implementation on VIPER.CI (dual Xeon 3GHz w/ HT)
Peak throughput performance only gives us a rough idea of

the kind of utilization and efficiency we can expect; therefore, to
better understand the efficiency of executing different workloads,
measured the efficiency of executing varying task lengths. We
measured on the ANL/UC Linux cluster with 200 CPUs, the
SiCortex with 5760 CPUs, and the BG/P with 2048 CPUs. We
varied the task lengths from 0.1 seconds to 256 seconds (using
sleep tasks with no I/O), and ran workloads ranging from 1K tasks
to 100K tasks (depending on the task lengths).

Figure 8 shows the efficiency we were able to achieve. Note
that on a relatively small cluster (200 CPUs), we can achieve
95%+ efficiency with 1 second tasks. Even with 0.1 second tasks,
using the C executor, we can achieve 70% efficiency on 200
CPUs. Efficiency can reach 99%+ with 16 second tasks. With
larger systems, with more CPUs to keep busy, it takes longer tasks
to achieve a given efficiency level. With 2048 CPUs (BG/P), we
need 4 second tasks to reach 94% efficiency, while with 5760
CPUs (SiCortex), we need 8 second tasks to reach the same
efficiency. With 64 second tasks, the BG/P achieves 99.1%
efficiency while the SiCortex achieves 98.5%.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.1 1 2 4 8 16 32 64 128 256
Task Length (sec)

Ef
fic

ie
nc

y

ANL/UC, Java, 200 CPUs
ANL/UC, C, 200 CPUs
SiCortex, C, 5760 CPUs
BG/P, C, 2048 CPUs

Figure 8: Efficiency graph of various systems (BG/P, SiCortex,
and Linux cluster) for both the Java and C worker
implementation for various task lengths (0.1 to 256 seconds)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

Number of Processors

Ef
fic

ie
nc

y

32 seconds
16 seconds
8 seconds
4 seconds
2 seconds
1 second

Figure 9: Efficiency graph for the BG/P for 1 to 2048

processors and task lengths ranging from 1 to 32 seconds
Figure 9 investigates more closely the effects of efficiency as

the number of processors increases from 1 to 2048. With 4 second
tasks, we can get high efficiency with any number of processors;
with 1 and 2 second tasks, we achieve high efficiency with a
smaller number of processors: 512 and 1024 respectively.

The previous several experiments all investigated the
throughput and efficiency of executing tasks which had a small
and compact description. For example, the task “/bin/sleep 0”
requires only 12 bytes of information. The following experiment
(Figure 10) investigates how the throughput is affected by
increasing the task description size. For this experiment, we
compose 4 different tasks, “/bin/echo ‘string’”, where string is
replaced with a different length string to make the task description
10B, 100B, 1KB, and 10KB. We ran this experiment on the
SiCortex with 1002 CPUs and the service on GTO.CI, and
processed 100K tasks for each case.

We see the throughput with 10B tasks is similar to that of
sleep 0 tasks on 5760 CPUs with a throughput of 3184 tasks/sec.
When the task size is increased to 100B, 1KB, and 10KB, the
throughput is reduced to 3011, 2001, and 662 tasks/sec
respectively. To better understand the throughput reduction, we
also measured the network level traffic that the service

experienced during the experiments. We observed that the
aggregate throughput (both received and sent on a full duplex
100Mb/s network link) increases from 2.9MB/s to 14.4MB/s as
we vary the task size from 10B to 10KB.

0

5000

10000

15000

20000

25000

30000

35000

10 100 1000 10000
Task Description Size (bytes)

Th
ro

ug
hp

ut
 (K

B
/s

)
B

yt
es

/T
as

k

0

500

1000

1500

2000

2500

3000

3500

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)

Throughput (tasks/sec)
Throughput (KB/s)
Bytes/Task

Figure 10: Task description size on the SiCortex and 1K CPUs

 The bytes/task varies from 934 bytes to 22.3 KB for the 10B
to 10KB tasks. The formula to compute the bytes per task is
2*task_size + overhead of TCP-based protocol (including TCP/IP
headers) + overhead of WS-based submission protocol (including
XML, SOAP, HTTP, and TCP/IP) + notifications of results from
executors back to the service, and from the service to the user. We
need to double the task size since the service first receives the task
description from the user (or application), and then dispatches it
to the remote executor. Only a brief notification with the task ID
and exit code of the application is sent back. We might assume
that the overhead is 934 – 2*10 = 914 bytes, but from looking at
the 10KB tasks, we see that the overhead is 22.3KB – 2*10KB =
2.3KB (higher than 0.9KB). We measured the number of TCP
packets to be 7.36 packets/task (10B tasks) and 28.67 packets/task
(10KB tasks). The difference in TCP overhead 853 bytes (with 40
byte headers for TCP/IP, 28.67*40 - 7.36*40) explains most of
the difference. We suspect that the remainder of the difference
(513 bytes) is due to extra overhead in XML/SOAP/HTTP when
submitting the tasks.

4.3 NFS/GPFS Performance
Another key component to getting high utilization and

efficiency on large scale systems is to understand the shared
resources well, and to make sure that the compute-to-I/O ratio is
proportional in order to achieve the desired performance. This
sub-section discusses the shared file system performance of the
BG/P. This is an important factor, as Swift uses files for inter-
process communication, and these files are transferred from one
node to another by means of the shared file system. Future work
will remove this bottleneck (i.e. using TCP pipes, MPI messages,
or data diffusion [25, 27]), but the current implementation is
based on files on shared file systems, and hence we believe it is
important to investigate and measure the performance of the
BG/P’s GPFS shared filesystem.

We conducted several experiments with various data sizes
(1B to 100MB) on a varying number of CPUs from 4 to 2048; we
conducted both read-only tests and read+write tests. Figure 11
shows the aggregate throughput in terms of Mb/s. Note that it

requires relatively large access sizes (1MB and larger) in order to
saturate the GPFS file system (and/or the I/O nodes that handle
the GPFS traffic). The peak throughput achieved for read tests
was 775 Mb/s with 1MB data sizes, and 326 Mb/s read+write
throughput with 10MB data sizes. At these peak numbers, 2048
CPUs are concurrently accessing the shared file system, so the
peak per processor throughput is a mere 0.379 Mb/s and 0.16
Mb/s for read and read+write respectively. This implies that care
must be taken to ensure that the compute to I/O ratio to and from
the shared file system is balanced in such a way that it fits within
the relatively low per processor throughput.

0.0001

0.001

0.01

0.1

1

10

100

1000

1B 1KB 10KB 100KB 1MB 10MB 100MB
Data Size

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

b/
s)

4 CPUs (read)
256 CPUs (read)
2048 CPUs (read)
4 CPUs (read+write)
256 CPUs (read+write)
2048 CPUs (read+write)

Figure 11: Aggregate throughput for GPFS on the BG/P

Figure 12 shows the same information as Figure 11, but
shows task length necessary to achieve 90% efficiency; we show
the task length required when reading from GPFS in solid lines
and read+write from GPFS in dotted lines.

0.1

1

10

100

1000

10000

100000

1B 1KB 10KB 100KB 1MB 10MB 100MB
Data Size

Ta
sk

 L
en

gt
hs

 (s
ec

) a
t 9

0%
 E

ffi
ci

en
cy

4 CPUs (read)
256 CPUs (read)
2048 CPUs (read)
4 CPUs (read+write)
256 CPUs (read+write)
2048 CPUs (read+write)

Figure 12: Minimum task lengths (sec) with varying input data
required to maintain 90% efficiency

Looking at the measures of 1 P-SET (blue) and 8 P-SETs
(red), we see that no matter how small the input/output data is (1B
~ 100KB), we need to have at least 60+ second tasks to achieve
90% efficiency. If we do both reads and writes, we need at least
129 sec tasks and 260 sec tasks for the 1 byte case for read and
read+write respectively. This paints a bleak picture of the BG/P's
performance when we need to access GPFS. It is essential that
these ratios (task length vs. data size) be considered when
implementing an application on the BG/P which needs to access

the data from the shared file system (using the loosely coupled
model under consideration).

Figure 13 shows another aspect of the GPFS performance on
the BG/P for 3 different scales, 4, 256, and 2048 processors. It
investigates 2 different benchmarks, the speed at which scripts can
be invoked from GPFS, and the speed to create and remove
directories on GPFS. We show both aggregate throughput and
time (ms) per operation per processor.

32 44
91

41

6241

823

10

207585

125

2342

109

2488

1

10

100

1000

10000

100000

1000000

Invoke script
throughput
(ops/sec)

Invoke script
ms/op per
processor

mkdir/rm
throughput
(ops/sec)

mkdir/rm
ms/op per
processor

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)
m

s/
ta

sk
 p

er
 p

ro
ce

ss
or

4 256 2048

Figure 13: invoking simple script and mkdir/rm

Looking at the script invocation first (left two columns), we
see that we can only invoke scripts at 109 tasks/sec with 256
processors; it is interesting to note that if this script was on
ramdisk, we can achieve over 1700 tasks/sec. As we add extra
processors up to 2048 (also increasing I/O nodes from 1 to 8), we
get almost linear increase in throughput, with 823 tasks/sec. This
leads us to conclude that the I/O nodes are the main bottleneck for
invoking scripts from GPFS, and not GPFS itself. Also, note the
time increase per script invocation per processor, going from 4 to
256 processors increases from 32 ms to 2342 ms, a significant
overhead for relatively small tasks. The second microbenchmark
investigated the performance of creating and removing directories
(right two columns). We see that the aggregate throughput stays
relatively constant with 4 and 256 processors (within 1 PSET) at
44 and 41 tasks/sec, but drops significantly to 10 tasks/sec with
2048 processors. Note at 2048 processors, the time needed per
processor to create and remove a directory on GPFS is over 207
seconds, an extremely large overhead in comparison with a
ramdisk create/remove directory overhead that is in the range of
milliseconds.

It is likely that these numbers will improve with time, as the
BG/P moves from an early testing machine to a full-scale
production system. For example, the peak advertised GPFS
performance is rated at 80Gb/s, yet we only achieved 0.77Gb/s.
We only used 2048 processors (of the total 160K processors that
will eventually make up the ALCF BG/P), so if GPFS scales
linearly, we will achieve 61.6 Gb/s. It is possible that in the
production system with 160K processors, we will not require the
full machine to achieve the peak shared file system throughput (as
is typical in most large clusters with shared file systems).

5. Loosely Coupled Applications
Synthetic tests and applications offer a great way to

understand the performance characteristics of a particular system,
but they do not always trivially translate into predictions of how
real applications with real I/O will behave. We have worked with
two separate groups of scientists from different domains as a first
step to show that large-scale loosely-coupled applications can run
efficiently on the BG/P and the SiCortex systems. The
applications are from two domains, molecular dynamics and
economic modeling, and both show excellent speedup and
efficiency as they scale to thousands of processors.

5.1 Molecular Dynamics: DOCK
Our first application is DOCK Version 5 [36], which we

have run on both the BG/P and the SiCortex systems via Swift
[15, 28] and Falkon [3]. DOCK addresses the problem of
"docking" molecules to each other. In general, "docking" is the
identification of the low-energy binding modes of a small
molecule, or ligand, within the active site of a macromolecule, or
receptor, whose structure is known. A compound that interacts
strongly with, or binds, a receptor (such as a protein molecule)
associated with a disease may inhibit its function and thus act as a
beneficial drug.

Prior to running the real workload, which exhibits wide
variability in its job durations, we investigated the scalability of
the application under larger than normal I/O to compute ratios and
by reducing the number of variables. From the ligand search
space, we selected one that needed 17.3 seconds to complete. We
then ran a workload with this specific molecule (replicated to
many files) on a varying number of processors from 6 to 5760 on
the SiCortex. The ratio of I/O to compute was about 35 times
higher in this synthetic workload than the real workload whose
average task execution time was 660 seconds. Figure 14 shows
the results of the synthetic workload on the SiCortex system.

0

10

20

30

40

50

60

70

80

90

100

0 120 240 360 480 600 720
Time (sec)

Ex
ec

ut
io

n
Ti

m
e

pe
r T

as
k

(s
ec

)

1

10

100

1000

10000

6 12 24 48 96 19
2

38
4

76
8

15
36

30
72

57
60

Number of CPU Cores

Sp
ee

du
p

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ef
fic

ie
nc

y

Speedup
Ideal Speedup
Efficiency

Figure 14: Synthetic workload with deterministic job
execution times (17.3 seconds) while varying the number of
processors from 6 to 5760 on the SiCortex

Up to 1536 processors, the application had excellent
scalability with 98% efficiency, but due to shared file system
contention in reading the input data and writing the output data,
the efficiency dropped to below 70% for 3072 processors and
below 40% for 5760 processors. We concluded that shared file
system contention caused the loss in efficiency, due to the average
execution time per job and the standard deviation as we increased
the number of processors. Notice in the lower left corner of Figure
14 how stable the execution times are when running on 768
processors, 17.3 seconds average and 0.336 seconds standard
deviation. However, the lower right corner shows the performance
on 5760 processors to be an average of 42.9 seconds, and a
standard deviation of 12.6 seconds. Note that we ran another
synthetic workload that had no I/O (sleep 18) at the full 5760
processor machine scale, which showed an average of 18.1 second
execution time (0.1 second standard deviation), which rules out
the dispatch/execute mechanism. The likely contention was due to
the application’s I/O patterns to the shared file system.

The real workload of the DOCK application involves a wide
range of job execution times, ranging from 5.8 seconds to 4178
seconds, with a standard deviation of 478.8 seconds. This
workload (Figure 15 and Figure 16) has a 35X smaller I/O to
compute ratio than the synthetic workload presented in Figure 14.
Expecting that the application would scale to 5760 processors, we
ran a 92K job workload on 5760 processors. In 3.5 hours, we
consumed 1.94 CPU years, and had 0 failures throughout the
execution of the workload. We also ran the same workload on 102
processors to compute speedup and efficiency, which gave the
5760 processor experiment a speedup of 5650X (ideal being
5760) and an efficiency of 98.2%. Each horizontal green line
represents a job computation, and each black tick mark represents
the beginning and end of the computation. Note that a large part
of the efficiency was lost towards the end of the experiment as the
wide range of job execution times yielded the slow ramp-down of
the experiment and leaving a growing number of processors idle.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000

0
12

00
24

00
36

00
48

00
60

00
72

00
84

00
96

00
10

80
0

12
00

0

Time (sec)

Pr
oc

es
so

rs

0
10000
20000

30000
40000
50000
60000
70000
80000
90000
100000

Ta
sk

s

Idle CPUs
Busy CPUs
Wait Queue Length
Completed Micro-Tasks

Figure 15: DOCK application (summary view) on the

SiCortex; 92K jobs using 5760 processor cores
Despite the loosely coupled nature of this application, our

preliminary results show that the DOCK application performs and
scales well on thousands of processors. The excellent scalability
(98% efficiency when comparing the 5760 processor run with the
same workload executed on 102 processors) was achieved only
after careful consideration was taken to avoid the shared file
system, which included the caching of the multi-megabyte

application binaries, and the caching of 35MB of static input data
that would have otherwise been read from the shared file system
for each job. Note that each job still had some minimal read and
write operations to the shared file system, but they were on the
order of 10s of KB, with the majority of the computations being in
the 100s of seconds, with an average of 660 seconds.

Figure 16: DOCK application (per processor view) on the

SiCortex; 92K jobs using 5760 processor cores
To grasp the magnitude of DOCK application, the 92K jobs

we performed represents only 0.0092% of the search space being
considered by the scientists we are working with; simple
calculations projects a search over the entire parameter space to
need 20,938 CPU years, the equivalent of 4.9 years on today’s 4K
CPU BG/P, or 48 days on the 160K-core BG/P that will be online
later this year at Argonne National Laboratory. This is a large
problem, that cannot be solved in a reasonable amount of time (<1
year) without a system that has at least 10K processors or more,
but our loosely-coupled approach holds great promise for making
this problem tractable and manageable.

5.2 Economic Modeling: MARS
 The second application whose performance we evaluated on

our target architectures was MARS – the Macro Analysis of
Refinery Systems, an economic modeling application for
petroleum refining developed by D. Hanson and J. Laitner at
Argonne [38]. This modeling code performs a fast but broad-
based simulation of the economic and environmental parameters
of petroleum refining, covering over 20 primary & secondary
refinery processes. MARS analyzes the processing stages for six
grades of crude oil (from low-sulfur light to high-sulfur very-
heavy and synthetic crude), as well as processes for upgrading

heavy oils and oil sands. It includes eight major refinery products
including gasoline, diesel and jet fuel, and evaluates ranges of
product shares. It models the economic and environmental
impacts of the consumption of natural gas, the production and use
of hydrogen, and coal-to-liquids co-production, and seeks to
provide insights into how refineries can become more efficient
through the capture of waste energy.

While MARS analyzes this large number of processes and
variables, it does so at a coarse level without involving intensive
numerics. It consists of about 16K lines of C code, and can
process one iteration of a model execution in about 0.5 seconds of
BG/P CPU time. Using the power of the BG/P we can perform
detailed multi-variable parameter studies of the behavior of all
aspects of petroleum refining covered by MARS.

As a simple test of utilizing the BG/P for refinery modeling,
we performed a 2D parameter sweep to explore the sensitivity of
the investment required to maintain production capacity over a 4-
decade span on variations in the diesel production yields from low
sulfur light crude and medium sulfur heavy crude oils. This
mimics one possible segment of the many complex multivariate
parameter studies that become possible with ample computing
power. A single MARS model execution involves an application
binary of 0.5MB, static input data of 15KB, 2 floating point input
variables and a single floating point output variable. The average
micro-task execution time is 0.454 seconds. To scale this
efficiently, we performed task-batching of 144 model runs into a
single task, yielding a workload with 1KB of input and 1KB of
output data, and an average execution time of 65.4 seconds.

We executed a workload with 7 million model runs (49K
tasks) on 2048 processors on the BG/P (Figure 17 and Figure 18).
The experiment consumed 894 CPU hours and took 1601 seconds
to complete. At the scale of 2048 processors, the per micro-task
execution times were quite deterministic with an average of 0.454
seconds and a standard deviation of 0.026 seconds; this can also
be seen from Figure 18 where we see all processors start and stop
executing tasks at about the same time, the banding effects in the
graph) . As a comparison, a 4 processor experiment of the same
workload had an average of 0.449 seconds with a standard
deviation of 0.003 seconds. The efficiency of the 2048 processor
run in comparison to the 4 processor run was 97.3% with a
speedup of 1993 (compared to the ideal speedup of 2048).

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 180 360 540 720 900 1080 1260 1440
Time (sec)

C
PU

 C
or

es

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000
0 180 360 540 720 900 1080 1260 1440

M
ic

ro
-T

as
ks

Idle CPUs
Busy CPUs
Wait Queue Length
Completed Micro-Tasks

Figure 17: MARS application (summary view) on the BG/P;

7M micro-tasks (49K tasks) using 2048 processor cores

Figure 18: MARS application (per processor view) on the

BG/P; 7M micro-tasks (49K tasks) using 2048 processor cores
The results presented in these figures are from a static

workload processed directly with Falkon. Swift on the other hand
can be used to make the workload more dynamic, reliable, and
provide a natural flow from the results of this application to the
input of the following stage in a more complex workflow. Swift
incurs its own overheads in addition to what Falkon experiences
when running the MARS application. These overheads include 1)
managing the data (staging data in and out, copying data from its
original location to a workflow-specific location, and back from
the workflow directory to the result archival location) , 2) creating
per-task working directories (via mkdir on the shared file system),
and 3) creation and tracking of status logs files for each task.

We also ran a 16K task (2.4M micro-tasks) workload on
2048 CPUs which took an end-to-end time of 739.8 seconds. The
per-micro-task time was higher than before – 0.602 seconds (up
from 0.454 seconds in the 1 node/4 CPU case without any Swift
or Falkon overhead). The efficiency between the average time per
micro-task is 75%, but due to the slower dispatch rates (about 100
tasks/sec) and the higher variability in execution times (which
yielded a slow ramp down of the experiment), the end-to-end
efficiency was only 70% with a speedup of 1434X (2048 being
ideal). The extra overhead (70% vs. 97% efficiency) between the
Swift+Falkon execution and Falkon only execution can be
attributed to the three things mentioned earlier (managing data,
creating sand-boxes, and keeping track of status files, all on a per
task basis).

It is interesting to note that Swift with the default settings
and implementation, yielded only 20% efficiency for this
workload. We investigated the main bottlenecks, and they seemed
to be shared file system related. We applied three distinct
optimizations to the Swift wrapper script: 1) the placement of
temporary directories in local ramdisk rather than the shared
filesystem; 2) copies the input data to the local ramdisk of the
compute node for each job execution; and 3) creates the per job
logs on local ramdisk and only copies them at the completion of
each job (rather than appending a file on shared file system at
each job status change). These optimizations allowed us to
increase the efficiency from 20% to 70% on 2048 processors for
the MARS application with task durations of 65.4 seconds (in
ideal case).

We will be working to narrow the gap between the
efficiencies found when running Swift and those when running
Falkon alone, and hope to get the Swift efficiencies up in the 90%
range without increasing the minimum task duration times per
task. A relatively straight forward approach to increasing
efficiency would be to increase the per task execution times,
which could amortize the per task overhead better. However, at
this stage of its development, 70% efficiency for a generic parallel
scripting system running on 2K+ cores with 65 second tasks is a
reasonable level of success.

6. Conclusions and Future Work
This paper focused on the ability to manage and execute

large scale applications on petascale class systems. Clusters with
50K+ processor cores are beginning to come online (i.e. TACC
Sun Constellation System - Ranger), Grids (i.e. TeraGrid) with a
dozen sites and 100K+ processors, and supercomputers with
160K processors (i.e. IBM BlueGene/P). Large clusters and
supercomputers have traditionally been high performance
computing (HPC) systems, as they are efficient at executing
tightly coupled parallel jobs within a particular machine with low-
latency interconnects; the applications typically use message
passing interface (MPI) to achieve the needed inter-process
communication. On the other hand, Grids have been the preferred
platform for more loosely coupled applications that tend to be
managed and executed through workflow systems. In contrast to
HPC (tightly coupled applications), the loosely coupled
applications are known to make up high throughput computing
(HTC). HTC systems generally involve the execution of
independent, sequential jobs that can be individually scheduled on
many different computing resources across multiple
administrative boundaries. HTC systems achieve this using
various grid computing techniques, and often times use files to
achieve the inter-process communication (as opposed to MPI for
HPC).

Our work shows that today’s existing HPC systems are a
viable platform to host loosely coupled HTC applications. We
identified challenges that arise in large scale loosely coupled
applications when run on petascale-precursor systems, which can
hamper the efficiency and utilization of these large scale systems.
These challenges vary from local resource manager scalability and
granularity, efficient utilization of the raw hardware, shared file
system contention and scalability, reliability at scale, application
scalability, and understanding the limitations of the HPC systems
in order to identify promising and scientifically valuable loosely-

coupled applications. This paper presented new research,
implementations, and applications experience in scaling loosely
coupled large-scale applications on the IBM BlueGene/P and the
SiCortex. Although our experiments are still on precursor systems
(4K processors for the BG/P and 5.8K processors for the
SiCortex), the experience we gathered is invaluable in planning to
scale these applications another one to two orders of magnitude
over the course of the next few months as the 160K processor
BG/P comes online. We expect to present results on 40K-160K
core systems in the final version of this paper.

For future work, we plan to implement and evaluate
enhancements, such as task pre-fetching, alternative technologies,
improved data management, and a three-tier architecture. Task
pre-fetching is commonly done in manager-worker systems, where
executors can request new tasks before they complete execution of
old tasks, thus overlapping communication and execution. Many
Swift applications read and write large amounts of data. Our
efforts will in large part be focused on having all data
management operations avoid the use of shared filesystem
resources when local file-systems can handle the scale of data
involved.

As we have seen in the results of this paper, data access is the
main bottleneck as applications scale. We expect that data
caching, proactive data replication, and data-aware scheduling
will offer significant performance improvements for applications
that exhibit locality in their data access patterns. [26] We have
already implemented a data-aware scheduler, and support for
caching in the Falkon Java executor. In previous work, we have
shown that in both micro-benchmarks and a large-scale astronomy
application, that a modest small Linux cluster (128 CPUs) can
achieve aggregate I/O data rates of tens of Gb/s of I/O throughput
[25, 27]. We plan to port the same data caching mechanisms from
the Java executor to the C executor so we can use these
techniques on the BG/P. Finally, we plan on evolving the Falkon
architecture from the current 2-Tier architecture to a 3-Tier one.
We are expecting that this architecture change will allow us to
introduce more parallelism and distribution of the currently
centralized management component in Falkon, and hence offer
higher dispatch and execution rates than Falkon currently
supports, which will be critical as we scale to the entire 160K-
core BG/P and we get data caching implemented and running
efficiently to avoid the shared file system overheads.

7. References
[1] IBM BlueGene/P (BG/P),

http://www.research.ibm.com/bluegene/, 2008
[2] SiCortex, http://www.sicortex.com/, 2008
[3] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M. Wilde.

“Falkon: a Fast and Lightweight Task Execution
Framework”, IEEE/ACM SC, 2007

[4] A. Gara, et al. ”Overview of the Blue Gene/L system
architecture”, IBM Journal of Research and Development,
Volume 49, Number 2/3, 2005

[5] J. Dean, S. Ghemawat. “MapReduce: Simplified data
processing on large clusters”. In OSDI, 2004

[6] A. Bialecki, M. Cafarella, D. Cutting, O. O’Malley.
“Hadoop: a framework for running applications on large

clusters built of commodity hardware”,
http://lucene.apache.org/hadoop/, 2005

[7] D.P. Anderson. “BOINC: A System for Public-Resource
Computing and Storage.” 5th IEEE/ACM International
Workshop on Grid Computing, 2004

[8] F.J.L. Reid, “Task farming on Blue Gene”, EEPC, Edinburgh
University, 2006

[9] S. Ahuja, N. Carriero, and D. Gelernter. “Linda and
Friends”, IEEE Computer 19 (8), 1986, pp. 26-34

[10] M.R. Barbacci, C.B. Weinstock, D.L. Doubleday, M.J.
Gardner, R.W. Lichota. “Durra: A Structure Description
Language for Developing Distributed Applications”,
Software Engineering Journal, IEEE, pp. 83-94, March 1996

[11] I. Foster. “Compositional Parallel Programming Languages”,
ACM Transactions on Programming Languages and Systems
18 (4), 1996, pp. 454-476

[12] I. Foster, S. Taylor. “Strand: New Concepts in Parallel
Programming”, Prentice Hall, Englewood Cliffs, N. J. 1990

[13] “The Fortress Programming Language”,
http://fortress.sunsource.net/, 2008

[14] “Star-P”, http://www.interactivesupercomputing.com, 2008

[15] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von
Laszewski, I. Raicu, T. Stef-Praun, M. Wilde. “Swift:
Fast, Reliable, Loosely Coupled Parallel
Computation”, IEEE Workshop on Scientific
Workflows 2007

[16] “Swift Workflow System”: www.ci.uchicago.edu/swift, 2007
[17] N. Desai. “Cobalt: An Open Source Platform for HPC

System Software Research”, Edinburgh BG/L System
Software Workshop, 2005

[18] J.E. Moreira, et al. “Blue Gene/L programming and operating
environment”, IBM Journal of Research and Development,
Volume 49, Number 2/3, 2005

[19] “ZeptoOS: The Small Linux for Big Computers”,
http://www-unix.mcs.anl.gov/zeptoos/, 2008

[20] R. Stevens. “The LLNL/ANL/IBM Collaboration to Develop
BG/P and BG/Q”, DOE ASCAC Report, 2006

[21] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File
System for Large Computing Clusters,” FAST 2002

[22] G.v. Laszewski, M. Hategan, D. Kodeboyina. “Java CoG Kit
Workflow”, in Taylor, I.J., Deelman, E., Gannon, D.B. and
Shields, M. eds. Workflows for eScience, 2007, 340-356

[23] J.A. Stankovic, K. Ramamritham,, D. Niehaus, M.
Humphrey, G. Wallace. “The Spring System: Integrated
Support for Complex Real-Time Systems”, Real-Time
Systems, May 1999, Vol 16, No. 2/3, pp. 97-125

[24] J. Frey, T. Tannenbaum, I. Foster, M. Frey, S. Tuecke.
“Condor-G: A Computation Management Agent for
Multi-Institutional Grids,” Cluster Computing, 2002

[25] I. Raicu, Y. Zhao, I. Foster, A. Szalay. “A Data Diffusion
Approach to Large Scale Scientific Exploration,” Microsoft
eScience Workshop at RENCI 2007

[26] A. Szalay, A. Bunn, J. Gray, I. Foster, I. Raicu. “The
Importance of Data Locality in Distributed Computing
Applications”, NSF Workflow Workshop 2006

[27] I. Raicu, Y. Zhao, I. Foster, A. Szalay. "Accelerating Large-
scale Data Exploration through Data Diffusion", to appear at
International Workshop on Data-Aware Distributed
Computing 2008

[28] Y. Zhao, I. Raicu, I. Foster, M. Hategan, V. Nefedova, M.
Wilde. “Realizing Fast, Scalable and Reliable Scientific
Computations in Grid Environments”, Grid Computing
Research Progress, Nova Pub. 2008

[29] TeraPort Cluster, http://teraport.uchicago.edu/, 2007
[30] Open Science Grid (OSG), http://www.opensciencegrid.org/,

2008

[31] C. Catlett, et al. “TeraGrid: Analysis of Organization,
System Architecture, and Middleware Enabling New
Types of Applications,” HPC 2006

[32] J.C. Jacob, et al. “The Montage Architecture for Grid-
Enabled Science Processing of Large, Distributed
Datasets,” Earth Science Technology Conference 2004

[33] T. Stef-Praun, B. Clifford, I. Foster, U. Hasson, M. Hategan,
S. Small, M. Wilde and Y. Zhao. “Accelerating Medical
Research using the Swift Workflow System”, Health Grid ,
2007

[34] The Functional Magnetic Resonance Imaging Data
Center, http://www.fmridc.org/, 2007

[35] I. Foster, “Globus Toolkit Version 4: Software for
Service-Oriented Systems,” Conference on Network
and Parallel Computing, 2005

[36] D.T. Moustakas, et al. “Development and Validation of a
Modular, Extensible Docking Program: DOCK 5”, J.
Comput. Aided Mol. Des., 2006, 20, 601-619

[37] T. Stef-Praun, G. Madeira, I. Foster, R. Townsend.
“Accelerating solution of a moral hazard problem with
Swift”, e-Social Science, 2007

[38] D. Hanson. “Enhancing Technology Representations within
the Stanford Energy Modeling Forum (EMF) Climate
Economic Models”, Workshop on Energy and Economic
Policy Models: A Reexamination of Fundamentals, 2006

[39] M. Feller, I. Foster, and S. Martin. “GT4 GRAM: A
Functionality and Performance Study”, TeraGrid Conference
2007

[40] W. Hwu et. Al. “Implicitly Parallel Programming Models for
Thousand-Core Microprocessors”, Design Automation
Conference, (DAC-44), 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

