

Page 1 of 16

Data Diffusion: Dynamic Resource Provision and
Data-Aware Scheduling for Data-Intensive Applications

Ioan Raicu1, Yong Zhao2, Ian Foster1,3,4, Alex Szalay 5

iraicu@cs.uchicago.edu, yozha@microsoft.com, foster@mcs.anl.gov, szalay@jhu.edu
1Department of Computer Science, University of Chicago, IL, USA

2Microsoft Corporation, Redmond, WA, USA
3Computation Institute, University of Chicago and Argonne National Laboratory, USA

4Mathematics and Computer Science Division, Argonne National Laboratory, Argonne IL, USA
5Department of Physics and Astronomy, The Johns Hopkins University, Baltimore MD, USA

ABSTRACT
Data intensive applications often involve the analysis
of large datasets that require large amounts of
compute and storage resources. While dedicated
compute and/or storage farms offer good task/data
throughput, they suffer low resource utilization
problem under varying workloads conditions. If we
instead move such data to distributed computing
resources, then we incur expensive data transfer cost.
In this paper, we propose a data diffusion approach
that combines dynamic resource provisioning, on-
demand data replication and caching, and data
locality-aware scheduling to achieve improved
resource efficiency under varying workloads. We
define an abstract “data diffusion model” that takes
into consideration the workload characteristics, data
accessing cost, application throughput and resource
utilization; we validate the model using a real-world
large-scale astronomy application. Our results show
that data diffusion can increase the performance index
by as much as 34X, and improve application response
time by over 506X, while achieving near-optimal
throughputs and execution times.

Keywords: Dynamic resource provisioning, data
diffusion, data caching, data management, data-aware
scheduling, data-intensive applications, Grid, Falkon

1. INTRODUCTION
The ability to analyze large quantities of data has
become increasingly important in many fields. To
achieve rapid turnaround, data may be distributed over
hundreds of computers. In such circumstances, data
locality has been shown to be crucial to the successful
and efficient use of large distributed systems for data-
intensive applications [7, 29].
One approach to achieving data locality—adopted, for
example, by Google [3, 10]—is to build large compute-
storage farms dedicated to storing data and responding
to user requests for processing. However, such
approaches can be expensive (in terms of idle
resources) if load varies significantly over the two
dimensions of time and/or the data of interest.

We previously outline [31] an alternative data diffusion
approach, in which resources required for data analysis
are acquired dynamically, in response to demand.
Resources may be acquired either “locally” or
“remotely”; their location only matters in terms of
associated cost tradeoffs. Both data and applications
are copied (they “diffuse”) to newly acquired resources
for processing. Acquired resources (computers and
storage) and the data that they hold can be “cached” for
some time, thus allowing more rapid responses to
subsequent requests. If demand drops, resources can be
released, allowing their use for other purposes. Thus,
data diffuses over an increasing number of CPUs as
demand increases, and then contracting as load
reduces. We have implemented the data diffusion
concept in Falkon, a Fast and Light-weight tasK
executiON framework [4, 11].
Data diffusion involves a combination of dynamic
resource provisioning, data caching, and data-aware
scheduling. The approach is reminiscent of cooperative
caching [16], cooperative web-caching [17], and peer-
to-peer storage systems [15]. (Other data-aware
scheduling approaches tend to assume static resources
[1, 2].) However, in our approach we need to acquire
dynamically not only storage resources but also
computing resources. In addition, datasets may be
terabytes in size and data access is for analysis (not
retrieval). Further complicating the situation is our
limited knowledge of workloads, which may involve
many different applications.
In principle, data diffusion can provide the benefit of
dedicated hardware without the associated high costs.
It can also overcome inefficiencies that arise when
executing data-intensive applications in distributed
environments, due to high costs of data movement
[29]: if workloads have sufficient internal locality of
reference [20], then it is feasible to acquire and use
remote resources despite high initial data movement
costs.
The performance achieved with data diffusion depends
crucially on the characteristics of application
workloads and the underlying infrastructure. As a first

Page 2 of 16

step towards quantifying these dependences, one of our
previous studies [31] conducted experiments with both
micro-benchmarks and a large scale astronomy
application, and showed that data diffusion improves
performance relative to alternative approaches, and
provides improved scalability and aggregated I/O
bandwidth.
Our previous results did not consider the dynamic
resource provisioning aspect of data diffusion. This
paper’s focus is to explore the effects of provisioning
on application performance, a central theme in data
diffusion. We also introduce here an abstract model
that formally defines data diffusion, and which can be
used to study its effects in different scenarios at a
theoretical level. Finally, we perform a preliminary
model validation study on results from a real large-
scale astronomy application. [6, 31]

2. RELATED WORK
The results presented here build on our past work on
resource provisioning [11] and task dispatching [4],
and data diffusion [23, 31]. This section is partitioned
in two, first covering related work in resource
provisioning (i.e. multi-level scheduling) and then data
management.
Multi-level scheduling has been applied at the OS level
[27, 30] to provide faster scheduling for groups of tasks
for a specific user or purpose by employing an overlay
that does lightweight scheduling within a heavier-
weight container of resources: e.g., threads within a
process or pre-allocated thread group.
Frey et al. pioneered the application of this principle to
clusters via their work on Condor “glide-ins” [35].
Requests to a batch scheduler (submitted, for example,
via Globus GRAM4 [34]) create Condor “startd”
processes, which then register with a Condor resource
manager that runs independently of the batch
scheduler. Others have also used this technique. For
example, Mehta et al. [38] embed a Condor pool in a
batch-scheduled cluster, while MyCluster [36] creates
“personal clusters” running Condor or SGE. Such
“virtual clusters” can be dedicated to a single
workload. Thus, Singh et al. find, in a simulation study
[37], a reduction of about 50% in completion time, due
to reduction in queue wait time. However, because they
rely on heavyweight schedulers to dispatch work to the
virtual cluster, the per-task dispatch time remains high.
In a different space, Bresnahan et al. [41] describe a
multi-level scheduling architecture specialized for the
dynamic allocation of compute cluster bandwidth. A
modified Globus GridFTP server varies the number of
GridFTP data movers as server load changes.
Appleby et al. [39] were one of several groups to
explore dynamic resource provisioning within a data
center. Ramakrishnan et al. [40] also address adaptive

resource provisioning with a focus primarily on
resource sharing and container level resource
management. Our work differs in its focus on resource
provisioning on non-dedicated resources managed by
local resource managers (LRMs).
Shifting our focus to data management, we believe
coupling it with resource management will be most
effective. Ranganathan et al. used simulation studies
[9] to show that proactive data replication can improve
application performance. The Stork [25] scheduler
seeks to improve performance and reliability when
batch scheduling by explicitly scheduling data
placement operations. However, while Stork can be
used with other system components to co-schedule
CPU and storage resources, there is no attempt to retain
nodes between tasks as in our work.
The GFarm team implemented a data-aware scheduler
in Gfarm using an LSF scheduler plugin [1, 21]. Their
performance results are for a small system (6 nodes,
300 jobs, 900 MB input files, 2640 second workload
without data-aware scheduling, 1650 seconds with
data-aware scheduling, 0.1–0.2 jobs/sec, 90MB/s to
180MB/s data rates); it is not clear that it scales to
larger systems. In contrast, we have tested our
proposed data diffusion with 75 nodes, 250K jobs,
input data ranging from 1B to 1GB, workflows
exceeding 1000 jobs/sec, and data rates exceeding
8750 MB/s. [31]
BigTable [19], Google File System (GFS) [3], and
MapReduce [10] (as well as Hadoop [24]) couple data
and computing resources to accelerate data-intensive
applications. However, these systems all assume a
static set of resources. Furthermore, the tight coupling
of execution engine (MapReduce, Hadoop) and file
system (GFS) means that applications that want to use
these tools must be modified. In our work, we further
extend this fusion of data and compute resource
management by also enabling dynamic resource
provisioning, which we assert can provide performance
advantages when workload characteristics change over
time. In addition, because we perform data movement
prior to task execution, we are able to run applications
unmodified.
The batch-aware distributed file system (BAD-FS) [26]
caches data transferred from centralized data storage
servers to local disks. However, it uses a capacity-
aware scheduler which is differentiated from a data-
aware scheduler by its focus on ensuring that jobs have
enough capacity to execute, rather than on placing jobs
to minimize cache-to-cache transfers. We expect BAD-
FS to produce more local area traffic than data
diffusion. Although BAD-FS addresses dynamic
deployment via multi-level scheduling, it does not
address dynamic reconfiguration during the lifetime of
the deployment, a key feature offered in Falkon, and

Page 3 of 16

essential in achieving good resource efficiency in time-
varying load workloads.

3. DATA DIFFUSION ARCHITECTURE
We describe the practical realization of data diffusion
in the context of the Falkon task dispatch framework
[4, 31]. We also discuss the data-aware scheduler
design, algorithm, and various policies.

3.1 Falkon and Data Diffusion
To enable the rapid execution of many tasks on
distributed resources, Falkon combines (1) multi-level
scheduling [12, 13] to separate resource acquisition
(via requests to batch schedulers) from task dispatch,
and (2) a streamlined dispatcher to achieve several
orders of magnitude higher throughput (487 tasks/sec)
and scalability (54K executors, 2M queued tasks) than
other resource managers [4]. Recent work has achieved
throughputs in excess of 3750 tasks/sec and the
management of up to 1M simulated executors without
significant degradation of throughput. [32]
The Falkon architecture comprises a set of
(dynamically allocated) executors that cache and
analyze data; a dynamic resource provisioner (DRP)
that manages the creation and deletion of executors;
and a dispatcher that dispatches each incoming task to
an executor. The provisioner uses tunable allocation
and de-allocation policies to provision resources
adaptively. Individual executors manage their own
caches, using local eviction policies, and communicate
changes in cache content to the dispatcher. The
dispatcher sends tasks to nodes that have cached the
most needed data, along with the information on how
to locate needed data. An executor that receives a task
to execute will, if possible, access required data from
its local cache or request it from peer executors. Only if
no cached copy is available does the executor request a
copy from persistent storage.
3.1.1 Data Diffusion Architecture
To support location-aware scheduling, we implement a
centralized index within the dispatcher that records the
location of every cached data object. This index is
maintained loosely coherent with the contents of the
executor’s caches via periodic update messages
generated by the executors. In addition, each executor
maintains a local index to record the location of its
cached data objects. We believe that this hybrid
architecture provides a good balance between latency
to the data and good scalability; see our previous work
[31] for a deeper analysis in the difference between a
centralized index and a distributed one, and under what
conditions a distributed index is preferred.
Figure 1 shows the Falkon architecture, including both
the data management and data-aware scheduler
components. We start with a user which submits tasks
to the Falkon wait queue. The wait queue length

triggers the dynamic resource provisioning to allocate
resources via GRAM4 [34] from the available set of
resources, which in turn allocates the resources and
bootstraps the executors on the remote machines. The
black dotted lines represent the scheduler sending the
task to the compute nodes, along with the necessary
information about where to find input data. The red
thick solid lines represent the ability for each executor
to get data from remote persistent storage. The blue
thin solid lines represent the ability for each storage
resource to obtain cached data from another peer
executor. The current implementation runs a GridFTP
server [30] alongside each executor, which allows
other executors to read data from its cache.

Figure 1: Architecture overview of Falkon extended with
data diffusion (data management and data-aware
scheduler)

We assume that data is not modified after initial
creation, an assumption that we found to be true for
many data analysis applications. Thus, we can avoid
complicated and expensive cache coherence schemes.
We implement four well-known cache eviction policies
[16]: Random, FIFO (First In First Out), LRU (Least
Recently Used), and LFU (Least Frequently Used). The
experiments in this paper all use LRU; we will study
the effects of other policies in future work.

3.2 Data-Aware Scheduler Design
The data-aware scheduler is central to the success of
data diffusion, as harnessing the data-locality from
application access patterns is crucial to achieving good
performance and scalability for data-intensive
applications. This section covers the data-aware
scheduler and the parameters that affect its
performance.
We implement five task dispatch policies: 1) first-
available, 2) first-cache-available, 3) max-cache-hit, 4)
max-compute-util, and 5) good-cache-compute [27,
31]. We omit to discuss policy (2) as it does not have
any advantages over the other policies in practice.
The first-available policy ignores data location
information when selecting an executor for a task; it
simply chooses the first available executor, and
furthermore provides the executor with no information

Page 4 of 16

concerning the location of data objects needed by the
task. Thus, the executor must fetch all data needed by a
task from persistent storage on every access. This
policy is used for all experiments that do not use data
diffusion.
The max-cache-hit policy uses information about data
location to dispatch each task to the executor with the
largest number of data needed by that task. If that
executor is busy, task dispatch is delayed until the
executor becomes available. This strategy can be
expected to reduce data movement operations
compared to first-cache-available and max-compute-
util, but may lead to load imbalances where CPU
utilization will be sub optimal, especially if data
popularity is not uniform or nodes frequently join and
leave (i.e. this is the case for dynamic resource
provisioning under varying loads). This policy is most
suitable for data-intensive workloads.
The max-compute-util policy also leverages data
location information. This policy attempts to maximize
the resource utilization even at the potential higher cost
of data movement. It always sends a task to an
available executor, but if there are several candidates, it
chooses the one that has the most data needed by the
task. This policy is most suitable for compute-intensive
workloads.
We believe that a combination of policy (3) and (4)
will lead to good results in practice, as we also show in
the performance evaluation in this paper. We have two
heuristics to combine these two policies, into a new
policy called good-cache-compute, which attempts to
strike a good balance between these two policies. The
first heuristic is based on the CPU utilization, which
sets a threshold to decide when to use policy (3) and
when to use policy (4). A value of 90% works well in
practice as it keeps CPU utilization above 90% and it
gives the scheduler some flexibility to improve the
cache hit rates significantly when compared to the
max-compute-util policy (which has strict goals to
achieve 100% CPU utilization). The second heuristic is
the maximum replication factor, which will determine
how efficient the cache space utilization will be.
To aid in explaining the scheduling algorithm, we first
define several variables:
Q wait queue
Ti task at position i in the wait queue; position 0 is

the head and position n is the tail
Eset executor sorted set; element existence indicates

that the executor is registered and in one of three
states: free, busy, or pending

Imap file index hash map; the map key is the file logical
name and the value is an executor sorted set of
where the file is cached

Emap executor hash map; the map key is the executor
name, and the value is a sorted set of logical file
names that are cached at the respective executor

W scheduling window of tasks to consider from the
wait queue when making the scheduling decision

The scheduler is separated into two parts, one that
sends out a notification, and another that actually
decides what task to assign to what executor at the time
of work dispatch. The first part of the scheduler takes
input a task, and attempts to find the best executor that
is free, and notify it that there is work available for
pick-up. The pseudo code for this first part is:

Once an executor receives a notification to pick up a
task, assuming it tries to pick up more than one task,
the scheduler is invoked again, but this time trying to
optimize the lookup given an executor name, rather
than a task description. The scheduler then takes the
scheduling window size, and starts to build a per task
scoring cache hit function. If at any time, a task is
found that produces 100% cache hit local rates, the
scheduler removes this task from the wait queue and
adds it to the list of tasks to dispatch to this executor.
This is repeated until the maximum number of tasks
were retrieved and prepared to be sent to the executor.
If the entire scheduling window is exhausted and no
task was found with a cache hit local rate of 100%, the
m tasks with the highest cache hit local rates are
dispatched.
For the max-compute-util policy, if no tasks were
found that would yield any cache hit rates, then the top
m tasks are taken from the wait queue and dispatched
to the executor. For the max-cache-hit policy, no tasks
a returned, signaling that the executor is to return to the
free pool of executors. For the good-cache-compute
policy, the CPU utilization at the time of scheduling
decision will determine which action to take. The CPU
utilization is computed by dividing the number of busy
nodes with the number of all registered nodes. The
pseudo code for the second part is:

while (Q !empty)
 for (all files in T0)
 tempSet = Imap(filei)
 for (all executors in tempSet)
 candidates[tempSetj]++
 sort candidates[] according to values
 for all candidates
 if Eset(candidatei) = freeState
 Mark executor candidatei as pending

Remove T0 from wait queue and mark as pending
sendNotificatoin to candidatei to pick up T0
break

If no candidate is found in the freeState
 send notification to the next free executor

Page 5 of 16

The scheduler’s complexity varies with the policy
used. For the first-available policy, it is O(1) costs, as it
simply takes the first available executor and sends a
notification, and dispatches the first task in the queue.
The max-cache-hit, max-compute-util, and good-
cache-compute policies are more complex with a
complexity of O(|Ti| + replicationFactor + min(|Q|,
W)). This could equate to 1000s of operations for a
single scheduling decision in a worst case, depending
on the maximum size of the scheduling window and
wait queue length. However, since all data structures
used to keep track of executors and files are using hash
maps and sorted sets, performing many in-memory
operations is quite efficient. Section 5.1 investigated
the raw performance of the scheduler under various
policies, and we have measured the scheduler’s ability
to perform 1322 to 1666 scheduling decisions per
second for policies (3), (4) and (5) with a maximum
window size of 3200.

4. ABSTRACT MODEL
We define an abstract model for data-centric task farms
as a common parallel pattern that drives the
independent computational tasks, taking into
consideration the data locality in order to optimize the
performance of the analysis of large datasets. The data-
centric task farm model is the mirror image of our
practical realization in Falkon with its dynamic
resource provisioning capabilities and support for data
diffusion. Just as Falkon has been used successfully in
many domains and applications, we believe our data-
centric task farm model generalizes and is applicable to
many different domains as well. We claim that the
model could help study these concepts of dynamic
resource provisioning and data diffusion with greater
ease to determine an application end-to-end
performance improvements, resource utilization,
improved efficiency, and improved scalability. By
formally defining this model, we aim for the data
diffusion concept to live beyond its practical realization
in Falkon. More information on data-centric task farms
can be found in a technical report [27].

4.1 Base Definitions and Notations
A data-centric task farm has various components that
we will formally define in this sub-section.
Data stores: Persistent data stores are highly available,
scalable, and have large capacity; we assume that data

resides on a set of persistent data stores, Π, where
|Π|≥1. The set of transient data stores T, where |Τ| ≥
0, are smaller than the persistent data stores and are
only capable of storing a fraction of the persistent data
stores’ data objects. We assume that the transient data
stores T are co-located with compute resources, hence
yielding a lower latency data path than the persistent
data stores.
Data Objects:)(πφ represents the data objects found
in the persistent data store π, where Π∈π . Similarly,

)(τφ represents a transient data store’s locally cached
data objects. The set of persistent data stores
Π consists of a set of all data objects, ∆. For each data
object ∆∈δ ,)(δβ denotes the data object’s size and

)(δλ denotes the data object’s storage location(s).
Store Capacity: For each persistent data store, Π∈π ,
and transient data store Τ∈τ ,)(πσ and)(τσ denote
the persistent and transient data store’s capacity.
Compute Speed: For each transient resource, Τ∈τ ,

)(τχ denotes the compute speed.
Load: For any data store, we define load as the number
of concurrent read/write requests;)(τω and)(πω
denote the load on data stores Τ∈τ and Π∈π .
Ideal Bandwidth: For any persistent data store Π∈π ,
and transient data store Τ∈τ ,)(πν and)(τν denote
the ideal bandwidth for the persistent and transient
data store, respectively. These transient data stores will
have limited availability, and the bandwidth is lesser
than that of the persistent data stores,)()(πντν < . We
assume there are few high capacity persistent data
stores and many low capacity transient data stores,
such as ∑∑

Π∈Τ∈
≥

πτ
πντν)()(, given that |||| Π>>Τ .

Available Bandwidth: For any persistent data store
Π∈π , and transient data store Τ∈τ , we define

available bandwidth as a function of ideal bandwidth
and load; more formally, ()())(, πωπνη and

()())(, τωτνη will denote the available bandwidth for
the persistent and transient data store, respectively. The
relationship between the ideal and available bandwidth
is given by the following formula:

()() ()πνπωπνη <)(, , for 1)(≥πω and
()() ()πνπωπνη =)(, , for 0)(=πω .

Copy Time: For any data object ∆∈δ and transient
data store Τ∈τ , we define the time to copy a data
object between the object δ to τ by the function

⎩
⎨
⎧

ΤΠ∈∈∀→
Τ∈∈∀→

=
\),(,

),(,
),(

111

111
ππφδτπ

ττφδττ
τδζ , where τπτ →11,

denotes the source and destination data stores for the
copy operation. In an ideal case, ττ →1 can be

while (tasksInspected < W)
 fileSeti = all files in Ti
 cacheHiti = |intersection fileSeti and Emap(executor)|

depending on cacheHiti and CPU utilization, keep or discard
 keep: remove Ti from Q and add Ti to list to dispatch
 discard: do nothing
 if list of tasks to dispatch is long enough
 break

Page 6 of 16

computed by () ()
)(

],min[1
δβ

τντν , where ()1τν and ()τν

represent the source and destination ideal bandwidth,
respectively, and)(δβ represents the data object’s
size; the same definition applies to copy a data object
from τπ →1 . In reality, this is an oversimplification
since copy time),(τδζ is dependent on other factors
such as the load)(τω on some storage resource, the
latency between the source and destination, and the
error rates encountered during the transmission.
Assuming low error rates and low latency, the copy
time is then affected only by the data object’s size and
the available bandwidth ()())(, τωτνη as defined
above. More formally, ττ →1 is defined as

()() ()()
)(

])(,,)(,min[11
δβ

τωτνητωτνη .

Tasks: Let Κ denote the incoming stream of tasks.
For each task Κ∈κ , let µ(κ) denote the time needed
to execute the task κ on the computational resource

Τ∈τ ; let)(κθ denote the set of data objects that the
task κ requires, ∆⊆)(κθ ; let o(κ) denote the time to
dispatch the task κ and return a result.
Computational Resource State: If a compute resource

Τ∈τ is computing a task, then it is in the busy state,
denoted by τb; otherwise, it is in the free state, τf. Let
Tb denote the set of all compute resources in the busy
state, and Tf the set of all compute resources in the free
state; these two sets have the following property:

Τ=ΤΤ fb U .

4.2 The Execution Model
The execution model outlines the policies that control
various parts of the execution model and how they
relate to the definitions in the previous section. Each
incoming task Κ∈κ is dispatched to a transient
resource Τ∈τ , selected according to the dispatch
policy. If a response is not received after a time
determined by the replay policy, or a failed response is
received, the task is re-dispatched according to the
dispatch policy. A missing data object, ∆∈δ , that is
required by task κ ,)(κθδ ∈ , and does not exist on
the transient data store Τ∈τ ,)(τφδ ∉ , is copied from
transient or persistent data stores selected according to
the data fetch policy. If necessary, existing data at a
transient data store τ are discarded to make room for
the new data, according to the cache eviction policy.
Each computationκ is performed on the data objects

)(τφ found in a transient data store. We define a
resource acquisition policy that decides when, how
many, and for how long to acquire new transient
computational and storage resources for. Similarly, we

also define a resource release policy that decides when
to release some acquired resources.
Each incoming task Κ∈κ is dispatched to a transient
resource Τ∈τ , selected according to the dispatch
policy. We define five dispatch policies: 1) first-
available, 2) first-cache-available, 3) max-cache-hit, 4)
max-compute-util, and 5) good-cache-compute. We
focus on policy (3) and policy (4) as we already
covered the other policies in Section 3.2.
The max-cache-hit policy uses information about data
location to dispatch each task to executor that yield the
highest cache hits. If no preferred executors are free,
task dispatch is delayed until a preferred executor
becomes available. This policy aims at maximizing the
cache hit/miss ratio; a cache hit occurs when a transient
compute resource has the needed data on the same
transient data store, and a cache miss occurs when the
needed data is not the same computational resource’s
data store. Formally, we define a cache hit as follows:

Τ∈∃∈∀ τκθδ),(, such that)(τφδ ∈ .

Similarly, we define a cache miss as follows:
)(κθδ ∈∃ , such that)(, τφδτ ∉Τ∈∀ .

Let)(κhC denote the set of all cache hits, and)(κmC
denote the set of all cache misses for task Κ∈κ , such
that)()()(κθκκ =mh CC U . We define the max-
cache-hit dispatch policy as follows:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Κ∈∀)(
)(max

κ
κ

κ m

h
C
C .

The max-compute-util policy also leverages data
location information, but in a different way. It always
sends a task to an available executor, but if several
workers are available, it selects that one that has the
most data needed by the task. This policy aims to
maximize computational resource utilization.
We define a free cache hit as follows:

fΤ∈∃∈∀ τκθδ),(, such that)(τφδ ∈ .

Similarly, we define a free cache miss as follows:
)(, τφδτ ∉Τ∈∀ or bΤ∈∃τ , such that)(τφδ ∈ .

Let)(, κhfC denote the set of all free cache hits, and

)(, κmfC denote the set of all free cache misses for

task Κ∈κ , such that)()(, κκ hhf CC ⊆ and

)()(, κκ mfm CC ⊆ and)()()(,, κθκκ =mfhf CC U .

We define the max-compute-util dispatch policy as
follows:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Κ∈∀)(
)(

max
,

,

κ
κ

κ mf

hf

C
C .

The good-cache-compute policy is the combination of
max-compute-util and the max-cache-hit policy, which

Page 7 of 16

attempts to strike a good balance between the two
policies. This policy was discussed in Section 3.2.

4.3 Model Performance and Efficiency
In this section, we investigate when we can achieve
good performance with this abstract model for data-
centric task farms, and under what assumptions. We
define various costs and efficiency related metrics.
Furthermore, we explore the relationships between the
different parameters in order to optimize efficiency.
Cost per task: For simplicity, let us assume initially
that each task requires a single data object,)(κθδ ∈ ,
and that all the data objects ∆ on persistent storage Π
and transient storage Τ are fixed; assume that we use
the max-resource-util dispatch policy, then the cost of
the execution of each task Κ∈κ dispatched to a
transient compute resource Τ∈τ can be characterized
as one of the following two costs: 1) cost if the
required data objects are cached at the corresponding
transient storage resource, and 2) cost if the required
data objects are not cached and must be retrieved from
another transient or persistent data store. In the first
case, we define the cost of the execution of a task to be
the time to dispatch the task plus the time to execute
the task plus the time to return the result. For the
second cost function in which the data objects do not
exist in the transient data store, we also incur an
additional cost to copy the needed data object from
either a persistent or a transient data store. More
formally, we define the cost per task)(κχ as:

⎪
⎩

⎪
⎨

⎧

∉++

∈+

=)(),,()()(

)(),()(
)(τφδτδζκµκο

τφδκµκο
κχ

Average Task Execution Time: We define the
average task execution time, Β , as the summation of
all the task execution times divided by the number of
tasks; more formally, we have ∑

Κ∈Κ
=Β

k
)(

||
1 κµ .

Computational Intensity: Let Α denote the arrival
rate of tasks; we define the computational intensity, Ι ,
as follows: ΑΒ=Ι * . If 1=Ι , then all nodes are fully
utilized; if 1>Ι , tasks are arriving faster than they can
be executed; finally, if 1<Ι , it indicates idle nodes.
Workload Execution Time: We define the workload
execution time, V , of our system as

||*1,
||

max Κ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΑΤ

=
BV .

Workload Execution Time with Overhead: In
general, the total execution time for a task Κ∈κ
includes overheads, which reduced efficiency by a
factor of

)(
)(

κχ
κµ . We define the workload execution time

with overhead, W , of our system as

||*1,
||

max Κ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΑΤ

Υ
=W , where Y is the average task

execution time including overheads defined as

⎪
⎪
⎩

⎪⎪
⎨

⎧

Ω∈∉++
Κ

Ω∈∈+
Κ=

∑

∑

Κ∈

Κ∈

δτφδτδζκκµ

δτφδκκµ

κ

κ

),(,)],()()([
||

1

),()],()([
||

1

o

o
Y

.

Efficiency: We define the efficiency, Ε , of a particular
workload as

W
V

=Ε . The expanded version of efficiency

is

||*1,
||

max

||*1,
||

max

Κ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΑΤ

Υ

Κ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΑΤ

=Ε

B
, which can be reduced to

⎪
⎪
⎩

⎪⎪
⎨

⎧

>⎟
⎠
⎞

⎜
⎝
⎛

Α
Τ

≤
=

AT
Y

YY
B

AT
Y

E 1
||

,
*

||,max

1
||

,1 .

We claim that for the caching mechanisms to be
effective, the aggregate capacity of our transient
storage resources Τ must be greater than our
workload’s working set, Ω , size; formally ||)(Ω≥∑

Τ∈τ
τσ

.
We claim that we can obtain 5.0>Ε if

),()()(τδζκοκµ +> , where)(κµ ,)(κο ,),(τδζ
are the time to execute and dispatch the task Κ∈κ ,
and copy the object δ to Τ∈τ , respectively.

Speedup: We define the speedup, S , of a particular
workload as ||* TES = .

Optimizing Efficiency: Having defined both
efficiency and speedup, it is possible to maximize for
either one. We optimize efficiency by finding the
smallest number of transient compute/storage
resources || Τ while maximizing speedup*efficiency.

4.4 Model Validation
We perform a preliminary validation of our abstract
model with results from a real large-scale astronomy
application [5, 6]. We found the model to be relatively
accurate for a wide range of empirical results we
obtained from an astronomy application. For 92
experiments from [31], the model error is good (5%
average and 5% median) with a standard deviation of
5%, and a worst case model error of 29%.
Figure 2 shows the details of the model error under the
various experiments. These experiments were from an
astronomy application which had a working set of
558,500 files (1.1TB compressed and 3.35TB
uncompressed). From this working set, various
workloads were defined that had certain data locality
characteristics, varying from the lowest locality of 1
(i.e., 1-1 mapping between objects and files) to the

Page 8 of 16

highest locality of 30 (i.e., each file contained 30
objects).
Figure 2 (left) shows the model error for experiments
that varied the number of CPUs from 2 to 128 with
locality of 1, 1.38, and 30. Note that each model error
point represents a workload that spanned 111K, 154K,
and 23K tasks for data locality 1, 1.38, and 30
respectively. The second set of results (Figure 2 - right)
fixed the number of CPUs at 128, and varied the data
locality from 1 to 30. The results show a larger model
error with an average of 8% and a standard deviation of
5%. We attribute the model errors to contention in the
shared file system and network resources that are only
captured simplistically in the current model.

Figure 2: Model error for varying # of CPU and data-
locality

The second set of results (Figure 2 - right) fixed the
number of CPUs at 128, and varied the data locality
from 1 to 30. The results here show a larger model
error with an average of 8% and a standard deviation of
5%. We attribute the model errors to contention in the
shared file system and network resources that are only
captured simplistically in the current model.
We also plan to do a thorough validation of the model
through discrete-event simulations that will allow us to
investigate a wider parameter space than we could in a
real world implementation. Through simulations, we
also hope to measure application performance in a
more dynamic set of variables that aren’t bound to
single static values, but could be complex functions
inspired from real world systems and applications. The
simulations will specifically attempt to model a Grid
environment comprising of computational resources,
storage resources, batch schedulers, various
communication technologies, various types of
applications, and workload models. We will perform
careful and extensive empirical performance
evaluations in order to create correct and accurate input
models to the simulator; the input models include 1)
Communication costs, 2) Data management costs, 3)
Task scheduling costs, 4) Storage access costs, and 5)
Workload models. The outputs from the simulations
over the entire considered parameter space will form
the datasets that will be used to statistically validate the
model using 2R statistic and graphical residual
analysis [33]

5. EMPIRICAL EVALUATION
We conducted several experiments to understand the
performance and overhead of the data-aware scheduler,
as well as to see the effect of dynamic resource
provisioning and data diffusion. The experiments ran
on the ANL/UC TeraGrid [18, 22] site using 64 nodes.
The Falkon service ran on gto.ci.uchicago.edu (8-core
Xeon @ 2.33GHz per core, 2GB RAM, Java 1.6) with
2 ms latency to the executor nodes.
We performed a wide range of experiments that
covered various scheduling policies and settings. In all
experiments, the data is originally located on a GPFS
[8] shared file system with sub 1ms latency. We
investigated the performance of 4 policies: 1) first-
available, 2) max-cache-hit, 3) max-compute-util, and
4) good-cache-compute. In studying the effects of
dynamic resource provisioning on data diffusion, we
also investigated the effects of the cache size, by
varying the per node cache size from 1GB, 1.5GB,
2GB, to 4GB.

5.1 Scheduler
In order to understand the performance of the data-
aware scheduler, we developed several micro-
benchmarks to test scheduler performance. We used
the first-available policy that performed no I/O as the
baseline scheduler, and tested the various scheduling
policies. We measured overall achieved throughput in
terms of scheduling decisions per second and the
breakdown of where time was spent inside the Falkon
service. We conducted our experiments using 32
nodes; our workload consisted of 250K tasks, where
each task accessed a random file (uniform distribution)
from a dataset of 10K files of 1B in size each. We use
files of 1 byte to measure the scheduling time and
cache hit rates with minimal impact from the actual I/O
performance of persistent storage and local disk. We
compare the first-available policy using no I/O (sleep
0), first-available policy using GPFS, max-compute-
util policy, max-cache-hit policy, and good-cache-
compute policy. The scheduling window size was set to
100X the number of nodes, or 3200. We also used 0.8
as the CPU utilization threshold in the good-cache-
compute policy to determine when to switch between
the max-cache-hit and max-compute-util policies.
Figure 3 shows the scheduler performance under
different scheduling policies. We see the throughput in
terms of scheduling decisions per second range
between 2981/sec (for first-available without I/O) to as
low as 1322/sec (for max-cache-hit).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 4 8 16 32 64 128
Number of CPUs

M
od

el
 E

rr
or

GPFS (GZ)
GPFS (FIT)
Data Diffusion (FIT) - Locality 1
Data Diffusion (GZ) - Locality 1
Data Diffusion (FIT) - Locality 1.38
Data Diffusion (GZ) - Locality 1.38
Data Diffusion (FIT) - Locality 30
Data Diffusion (GZ) - Locality 30

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 1.38 2 3 4 5 10 20 30
Data Locality

M
od

el
 E

rr
or

GPFS (GZ)
GPFS (FIT)
Data Diffusion (FIT)
Data Diffusion (GZ)

Page 9 of 16

Figure 3: Data-aware scheduler performance and code
profiling for the various scheduling policies

It is worth pointing out that for the first-available
policy, the cost of communication is significantly
larger than the rest of the costs combined, including
scheduling. The scheduling is quite inexpensive for this
policy as it simply load balances across all workers.
However, we see that with the 3 data-aware policies,
the scheduling costs (red and light blue areas) are more
significant.

5.2 Provisioning
The key contribution of this paper is the study of
dynamic resource provisioning in the context of data
diffusion, and how it performs for data intensive
workloads. In choosing our workload, we set the I/O to
compute ratio large (10MB of I/O to 10ms of
compute). The dataset consists of 10K files, with
10MB per file. Each task reads one file chosen at
random from the dataset, and computes for 10ms. The
workload had an initial arrival rate of 1 task/sec, a
multiplicative increasing function by 1.3, 60 seconds
between increase intervals, and a maximum arrival rate
of 1000 tasks/sec. The increasing function is

[] 240,1000),3.1*(min 1 <≤= − iAceilingA ii , which varies
arrival rate A from 1 to 1000 in 24 distinct intervals
making up 250K tasks and spanning 1415 seconds to
complete. This workload is both data-intensive and has
good locality of reference, a good candidate to measure
the impact of data diffusion and resource provisioning.
Note that we needed a high I/O to compute ratio due to
the small testbed we used (64 nodes). For example, if
we were to set the ratio to a more balanced value, 1MB
I/O and 1 second compute, having 64 dual processor
nodes would achieve at most 128MB/s (1Gb/s). GPFS
can sustain 4Gb/s+ of read rates, which would have
meant that on our testbed, GPFS performance would
have been sufficient. When we get access to a larger
testbed and we scale up the experiments to 100s or
1000s of nodes, we’ll be able to explore more balanced
I/O to compute ratios while still requiring more
throughput than shared file systems can deliver.

5.2.1 Cache Size Effects on Data Diffusion
We begin the data diffusion results with the summary
view of several experiments showing the effects of the
cache size on the performance of executing the
workload. We also show the baseline execution of the
first-available policy, which does not use data
diffusion, and simply load balances across the nodes
tasks that work directly on the shared file system.
Several measured or computed metrics are relevant in
understanding the following set of graphs. These
include ideal throughput, throughput, number of nodes,
wait queue length, cache hit local/global %, and cache
miss %. They are defined as follows:

Ideal Throughput (Gb/s): throughput needed to
satisfy arrival rate; A*fileSize per some unit time
Throughput (Gb/s): measured aggregate throughput;
successfulTasks*fileSize per some unit time
Number of Nodes (N): number of registered nodes;
i.e., the maximum number of nodes that can execute
tasks at once (2 per node, 1 per CPU)
Wait Queue Length: number of tasks in the wait
queue
Cache Hit Global % (HRC): global cache hits are file
accesses that required the file to be transferred from
another worker cache; HRC = HC/(HL + HC + HS)
Cache Hit Local % (HRL): local cache hits are file
accesses that can be served entirely from local cache
(i.e. local disk); HRL = HL/(HL + HC + HS)
Cache Miss % (HRS): cache misses are file accesses
that are not found in any worker cache, and have to
be served from the shared file system (i.e. GPFS);
HRS = HS/(HL + HC + HS)

Figure 4 shows the baseline experiment (first-available
policy). This experiment ran the workload of 250K
tasks, where each task worked directly on the shared
file system (LAN GPFS), the common practice in
many scientific applications. We used dynamic
resource provisioning which allocated resources on
demand based on load. The load metric was the wait
queue length (denoted by the thin pink line); note that a
short wait queue length is desirable, indicating that the
resources are able to process tasks as they arrive. The
black monotonically increasing line denotes the
number of nodes provisioned. Finally, we have two
throughput metrics we show, one is the ideal (light blue
line) and the other is the measured aggregate
throughput (dark blue line). Recall that the ideal
throughout is the throughput needed to satisfy the
arrival rate.

0

1

2

3

4

5

first-
available

without I/O

first-
available
with I/O

max-
compute-util

max-cache-
hit

good-
cache-

compute

C
PU

 T
im

e
pe

r T
as

k
(m

s)

0

1000

2000

3000

4000

5000

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)

Task Submit
Notification for Task Availability
Task Dispatch (data-aware scheduler)
Task Results (data-aware scheduler)
Notification for Task Results
WS Communication
Throughput (tasks/sec)

Page 10 of 16

Figure 4: Summary view of 250K tasks executed via the
first-available policy directly on GPFS using dynamic
resource provisioning

Aggregate throughput matches the ideal throughput for
arrival rates ranging between 1 and 59 tasks/sec, but
the throughput remains flat at an average of 4.4Gb/s for
greater arrival rates. At the transition point when the
arrival rate increased beyond 59, the wait queue length
also started growing beyond the relatively small values,
to the eventual length of 198K tasks. The workload
execution time was 5011 seconds, which yielded 28%
efficiency (with ideal time being 1415 seconds).
Figure 5-8 (similar to Figure 4) summarizes results for
data diffusion with varying cache sizes per node (1GB,
1.5GB, 2GB, and 4GB) using the good-cache-compute
policy; recall that this policy is a combination between
the max-cache-hit and max-compute-util policy, which
attempts to optimize the cache hit performance as long
as processor utilization is high (80% in our case). The
dataset originally resided on the GPFS shared file
system, and was diffused to local disk caches with
every cache miss (the red area in the graphs); cache hit
global (file accesses from remote worker caches) rates
are shown in yellow, while the cache hit local (file
accesses satisfied from the local disk) rates are shown
in green.
Figure 5 is an interesting use case as it shows the
performance of data diffusion when the working set
does not fit in cache. In our case, the working set was
100GB, but the aggregate cache size was 64GB as we
had 64 nodes at the peak of the experiment. Notice that
throughput keeps up with the ideal throughput for a
little longer than the first-available policy, up to 101
tasks/sec arrival rates. At this point, the throughput
stabilizes at an average of 5.2Gb/s until 800 seconds
later when the cache hit rates increase due to the
working set caching reaching a steady state, when the
throughput at an average of 6.9Gb/s. The overall cache
hit rate was 31%, which in the end resulted in a 57%
higher throughput than what the first-available policy
was able to achieve using GPFS directly. Also, note
that the workload execution time is reduced to 3762

seconds, down from 5011 seconds for the first-
available policy; the efficiency when compared to the
ideal case is 38%.

Figure 5: Summary view of 250K tasks executed using data
diffusion and good-cache-compute policy with 1GB caches
per node and dynamic resource provisioning

Figure 6 increases the per node cache size from 1Gb to
1.5GB, which increases the aggregate cache size to
96GB, almost enough to hold the entire working set of
100GB.

Figure 6: Summary view of 250K tasks executed using data
diffusion and good-cache-compute policy with 1.5GB
caches per node and dynamic resource provisioning

Notice that the throughput hangs on further to the ideal
throughput, up to 132 tasks/sec when the throughput
increase stops and stabilizes at an average of 6.3Gb/s.
Within 350 seconds of this stabilization, the cache hit
performance increased significantly from 25% cache
hit rates to over 90% cache hit rates; this increase in
cache hit rates also results in the throughput increase
up to an average of 45.6Gb/s for the remainder of the
experiment. Overall, it achieved 78% cache hit rates,
1% cache hit rates to remote caches, and 21% cache
miss rates. Overall, the workload execution time was
reduced drastically from the 1GB per node cache size,
down to 1596 seconds; this yields a 89% efficiency
when compared to the ideal case.

0.001

0.01

0.1

1

10

100

1000

0
30

0
60

0
90

0
12

00
15

00
18

00
21

00
24

00
27

00
30

00
33

00
36

00
39

00
42

00
45

00
48

00
51

00

Time (sec)

N
um

be
r o

f N
od

es
Th

ro
ug

hp
ut

 (G
b/

s)
Q

ue
ue

 L
en

gt
h

(x
1K

)

Ideal Throughput (Gb/s) Throughput (Gb/s) Wait Queue Length Number of Nodes
0.001

0.01

0.1

1

10

100

1000

0
30

0
60

0
90

0
12

00
15

00
18

00
21

00
24

00
27

00
30

00
33

00
36

00

Time (sec)

N
um

be
r o

f N
od

es
A

gg
re

ga
te

 T
hr

ou
gh

pu
t (

G
b/

s)
Th

ro
ug

hp
ut

 p
er

 N
od

e
(M

B
/s

)
Q

ue
ue

 L
en

gt
h

(x
1K

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ac

he
 H

it/
M

is
s

%

Cache Hit Local % Cache Hit Global % Cache Miss %
Ideal Throughput (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes

0.001

0.01

0.1

1

10

100

1000

0
12

0
24

0
36

0
48

0
60

0
72

0
84

0
96

0
10

80
12

00
13

20
14

40
15

60

Time (sec)

N
um

be
r o

f N
od

es
A

gg
re

ga
te

 T
hr

ou
gh

pu
t (

G
b/

s)
Th

ro
ug

hp
ut

 p
er

 N
od

e
(M

B
/s

)
Q

ue
ue

 L
en

gt
h

(x
1K

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ac

he
 H

it/
M

is
s

%

Cache Hit Local % Cache Hit Global % Cache Miss %
Ideal Throughput (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes

Page 11 of 16

Figure 7 increases the cache size further to 2GB per
node, for a total of 128GB which was finally large
enough to hold the entire working set of 100GB. We
see the throughput is able to hold onto the ideal
throughput quite well for the entire experiment. The
great performance is attributed to the ability to cache
the entire working set, and schedule tasks to the nodes
that had the data cached approaching with cache hit
rates of 98%. Its also interesting to note that the queue
length never grew beyond 7K tasks long, which was
quite a feat given that the other experiments so far
(first-available policy, and good-cache-compute with
1GB and 1.5GB caches) all ended up with queues in
the 91K to 200K tasks long. With an execution time of
1436 seconds, the efficiency was 99% of the ideal case.

Figure 7: Summary view of 250K tasks executed using data
diffusion and good-cache-compute policy with 2GB caches
per node and dynamic resource provisioning

Investigating if it helps to increase the cache size
further to 4GB per node, we conduct the experiment
whose results are found in Figure 8. We see no
significant improvement in performance.

Figure 8: Summary view of 250K tasks executed using data
diffusion and good-cache-compute policy with 4GB caches
per node and dynamic resource provisioning

The execution time is reduced slightly to 1427 seconds
(99% efficient), and the overall cache hit rates are
improved to 88% cache hit rates, 6% remote cache hits,

and 6% cache misses. In order to show the need for the
good-cache-compute policy (the previous results from
Figure 5 through Figure 8), which is a combination of
the max-cache-hit and max-compute-util policy, it is
interesting to show the performance for each of these
two policies. We fixed the cache size per node at 4GB
in order to give both policies ample opportunity for
good performance.
Figure 9 shows the performance of the max-cache-hit
policy which always schedules tasks according to
where the data is cached, even if it has to wait for some
node to become available, leaving some nodes
processors idle. Notice a new metric measured (dotted
thin black line), the CPU utilization, which shows clear
poor CPU utilization that decreases with time as the
scheduler has difficulty scheduling tasks to busy nodes;
the average CPU utilization for the entire experiment
was 43%.

Figure 9: Summary view of 250K tasks executed using data
diffusion and max-cache-hit policy with 4GB caches per
node and dynamic resource provisioning

Its interesting to compare with the good-cache-
compute policy which achieved good cache hit rates
(88%) at the cost of only 4.5% idle CPUs. However,
it’s important to point out that the goal of the policy to
maximize the cache hit rates was met, as it achieved
94.5% cache hit rates and 5.5% cache miss rates. The
workload execution time was a bit disappointing (but
not surprising base on the CPU utilization) with 2888
seconds (49% of ideal).
Our final experiment looked at the max-compute-util
policy, which attempted to maximize the CPU
utilization at the expense of data movement. We see
the workload execution time is improved (compared to
max-cache-hit) down to 2037 seconds (69% efficient),
but it is still far from the good-cache-compute policy
that achieved 1436 seconds. The major difference here
is that the there are significantly more cache hits to
remote caches as tasks got scheduled to nodes that
didn’t have the needed cached data due to being busy
with other work. We were able to sustain high
efficiency with arrival rates up to 380 tasks/sec, with

0.001

0.01

0.1

1

10

100

1000

0
12

0
24

0
36

0
48

0
60

0
72

0
84

0
96

0
10

80
12

00
13

20
14

40

Time (sec)

N
um

be
r o

f N
od

es
A

gg
re

ga
te

 T
hr

ou
gh

pu
t (

G
b/

s)
Th

ro
ug

hp
ut

 p
er

 N
od

e
(M

B
/s

)
Q

ue
ue

 L
en

gt
h

(x
1K

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ac

he
 H

it/
M

is
s

%

Cache Hit Local % Cache Hit Global % Cache Miss %
Ideal Throughput (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes

0.001

0.01

0.1

1

10

100

1000

0
12

0
24

0
36

0
48

0
60

0
72

0
84

0
96

0
10

80
12

00
13

20
14

40

Time (sec)

N
um

be
r o

f N
od

es
A

gg
re

ga
te

 T
hr

ou
gh

pu
t (

G
b/

s)
Th

ro
ug

hp
ut

 p
er

 N
od

e
(M

B
/s

)
Q

ue
ue

 L
en

gt
h

(x
1K

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ac

he
 H

it/
M

is
s

%

Cache Hit Local % Cache Hit Global % Cache Miss %
Ideal Throughput (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes

0.001

0.01

0.1

1

10

100

1000

0
18

0
36

0
54

0
72

0
90

0
10

80
12

60
14

40
16

20
18

00
19

80
21

60
23

40
25

20
27

00
28

80

Time (sec)

N
um

be
r o

f N
od

es
A

gg
re

ga
te

 T
hr

ou
gh

pu
t (

G
b/

s)
Th

ro
ug

hp
ut

 p
er

 N
od

e
(M

B
/s

)
Q

ue
ue

 L
en

gt
h

(x
1K

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ac

he
 H

it/
M

is
s

%
C

PU
 U

til
iz

at
io

n
%

Cache Hit Local % Cache Hit Global % Cache Miss %
Ideal Throughput (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes CPU Utilization

Page 12 of 16

an average throughput for the steady part of the
experiment of 14.5 Gb/s. It is interesting to see the
cache hit local performance at time 1800~2000 second
range spiked from 60% to 98%, which results in a
spike in throughout from 14Gb/s to 40Gb/s. Although
we maintained 100% CPU utilization, due to the extra
costs of moving data from remote executors, the
performance was worse than the good-cache-compute
policy when 4.5% of the CPUs were left idle.

Figure 10: Summary view of 250K tasks executed in a LAN
using data diffusion and max-compute-util policy with 4GB
caches per node and dynamic resource provisioning

5.2.2 Cache Performance
Figure 11 shows cache performance over six
experiments involving data diffusion, the ideal case,
and the first-available policy which does not cache any
data.

Figure 11: Cache performance for both LAN and WAN

We see a clear separation in the cache miss rates (red)
for the cases where the working set fit in cache (1.5GB
and greater), and the case where it did not (1GB). For
the 1GB case, the cache miss rate was 70%, which is to
be expected considering only 70% of the working set
fit in cache at most, and cache thrashing was
hampering the scheduler’s ability to achieve better
cache miss rates. The other extreme, the 4GB cache
size cases, all achieved near perfect cache miss rates of
4%~5.5%.

5.2.3 Throughput
Figure 12 compares the throughputs (broken down into
three categories, local cache, remote cache, and GPFS)
of all 7 experiments presented in Figure 4 through
Figure 10, and how they compare to the ideal case. The
first-available policy had the lowest average
throughput of 4Gb/s, compared to between 5.3Gb/s and
13.9Gb/s for data diffusion, and 14.1Gb/s for the ideal
case. In addition to having much higher average
throughputs, data diffusion experiments also achieved
significantly higher peak throughputs (the black bar):
as high as 100Gb/s as opposed to 6Gb/s for the first-
available policy.

Figure 12: Average and peak (99 percentile) throughput for
both LAN and WAN

Note also that GPFS file system load (the red portion
of the bars) is significantly lower with data diffusion
than for the GPFS-only experiments; in the worst case,
with 1GB caches where the working set did not fit in
cache, the load on GPFS is still high with 3.6Gb/s due
to all the cache misses, while GPFS-only tests had
4Gb/s load. However, as the cache sizes increased and
the working set fit in cache, the load on GPFS reached
as low as 0.4Gb/s. Even the network load due to
remote cache access was considerably low, with the
highest values of 1.5Gb/s for the max-compute-util
policy. All other experiments had less than 1Gb/s
network load due to remote cache access.
5.2.4 Performance Index and Speedup
The performance index attempts to capture the speedup
per CPU time achieved:

Speedup (SP): SP measures the improved
workload execution time (WET) for the data
diffusion (DD) approach as compared to the
baseline shared file system (GPFS) approach suing
the first-available policy; SP = WETGPFS/WETDD
CPU Time (CPUT): the amount of CPU time used
Performance Index (PI): attempts to capture the
performance per CPU hour achieved;
PI=SP/CPUT, and is normalized for values
between 0 and 1 for easier comparisons

0.001

0.01

0.1

1

10

100

1000

0
12

0
24

0
36

0
48

0
60

0
72

0
84

0
96

0
10

80
12

00
13

20
14

40
15

60
16

80
18

00
19

20
20

40

Time (sec)

N
um

be
r o

f N
od

es
Th

ro
ug

hp
ut

 (G
b/

s)
Q

ue
ue

 L
en

gt
h

(x
1K

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ac

he
 H

it/
M

is
s

%

Cache Hit Local % Cache Hit Global % Cache Miss %
Ideal Throughput (Gb/s) Throughput (Gb/s) Wait Queue Length
Number of Nodes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ideal first-
available

good-
cache-

compute,
1GB

good-
cache-

compute,
1.5GB

good-
cache-

compute,
2GB

good-
cache-

compute,
4GB

max-
cache-hit,

4GB

max-
compute-
util, 4GB

C
ac

he
 P

er
fo

rm
an

ce

Cache Miss %
Cache Global Hit %
Cache Local Hit %

0.1

1

10

100

Ideal first-
available

good-
cache-

compute,
1GB

good-
cache-

compute,
1.5GB

good-
cache-

compute,
2GB

good-
cache-

compute,
4GB

max-
cache-hit,

4GB

max-
compute-
util, 4GB

Th
ro

ug
hp

ut
 (G

b/
s)

Local Worker Caches (Gb/s)
Remote Worker Caches (Gb/s)
GPFS Throughput (Gb/s)

Page 13 of 16

Figure 13 shows PI and speedup data. Notice that while
both the good-cache-compute with 2GB and 4GB
caches achieves the highest speedup of 3.5X, the 4GB
case achieves a higher performance index of 1 as
opposed to 0.7 for the 2GB case. This is due to the fact
that fewer resources were used throughput the 4GB
experiment, 17 CPU hours instead of 24 CPU hours for
the 2GB case. This reduction in resource usage was
due to the larger caches, which in turn allowed the
system to perform better with fewer resources for
longer durations, and hence the wait queue didn’t grow
as fast, which resulted in less aggressive resource
allocation.

Figure 13: PI and speedup data for both LAN and WAN

For comparisons, we also ran the best performing
experiment (good-cache-compute with 4GB caches)
without dynamic resource provisioning, in which case
we allocated 64 nodes ahead of time outside the
experiment measurement and maintained 64 nodes
throughout the experiment. Notice the speedup is
identical to that of using dynamic resource
provisioning, we see the performance index is quite
low (0.33) due to the additional CPU time that was
consumed (46 CPU hours as opposed to 17 CPU hours
for the dynamic resource provisioning case). Finally,
notice the performance index of the first-available
policy which uses GPFS solely; although the speedup
gains with data diffusion compared to the first-
available policy are relatively modest (1.3X to 3.5X),
the performance index of data diffusion is much more,
from at least 2X to as high as 34X.
5.2.5 Slowdown
Speedup compares data diffusion to the base case of
the LAN GPFS, but does not tell us how well data
diffusion performed in relation to the ideal case. Recall
that the ideal case is computed from the arrival rate of
tasks, assuming zero communication costs and infinite
resources to handle tasks in parallel; in our case, the
ideal workload execution time is 1415 seconds. Figure
14 shows the slowdown for the LAN experiments as a
function of arrival rates. Slowdown (SL) measures the
factor by which the workload execution times are

slower than the ideal workload execution time; the
ideal workload execution time assumes infinite
resources and 0 cost communication, and is computed
from the arrival rate function; SL=WETpolicy/WETideal;
in our case, WETideal is 1415 seconds.
These results in Figure 14 clearly show the arrival rates
that could be handled by each approach, showing the
first-available policy (the GPFS only case) to saturate
the earliest at 59 tasks/sec denoted by the rising red
line. It is evident that larger cache sizes allowed the
saturation rates to be higher (essentially perfect for
some cases, such as the good-cache-compute with 4GB
caches). It interesting to point out the good-cache-
compute policy with 1.5GB caches slowdown increase
relatively early (similar to the 1GB case), but then
towards the end of the experiment the slowdown is
reduced from almost 5X back down to an almost ideal
1X. This sudden improvement in performance is
attributed to a critical part of the working set being
cached and the cache hit rates increasing significantly.
Also, note the odd slowdown (as high as 2X) of the
4GB cache DRP case at arrival rates 11, 15, and 20;
this slowdown matches up to the drop in throughput
between time 360 and 480 seconds in Figure 10 (the
detailed summary view of this experiment), which in
turn occurred when an additional resource was
allocated.

Figure 14: Slowdown for the LAN experiment as we varied
arrival rate

It is important to note that resource allocation takes on
the order of 30~60 seconds due to LRM’s overheads,
which is why it took the slowdown 120 seconds to
return back to the normal (1X), as the dynamic
resource provisioning compensated for the drop in
performance.
5.2.6 Response Time
The response time is probably one of the most
important metrics from an application’s point of view,
as it determines if interactivity is plausible for a given
workload, and can influence the performance
perception of the resource management and the
particular set of resources used. Average Response

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

first-
available

good-
cache-

compute,
1GB

good-
cache-

compute,
1.5GB

good-
cache-

compute,
2GB

good-
cache-

compute,
4GB

good-
cache-

compute,
4GB, SRP

max-
cache-hit,

4GB

max-
compute-
util, 4GB

Pe
rf

or
m

an
ce

 In
de

x

1

1.5

2

2.5

3

3.5

Sp
ee

du
p

(c
om

pa
re

d
to

 L
A

N
 G

PF
S)

Performance Index
Speedup (compared to first-available)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1 2 3 4 6 8 11 15 20 26 34 45 59 77 10
1

13
2

17
2

22
4

29
2

38
0

49
4

64
3

83
6
10

00

Arrival Rate per Second

Sl
ow

do
w

n

first-available
good-cache-compute, 1GB
good-cache-compute, 1.5GB
good-cache-compute, 2GB
good-cache-compute, 4GB
max-cache-hit, 4GB
max-compute-util, 4GB

Page 14 of 16

Time (ART) is the end-to-end time from task submission
to task completion notification; ART = WQT+ET+DT,
where ART is the average response time, WQT is the
wait queue time, ET is the task execution time, and DT
is the delivery time to deliver the result.
Figure 15 shows response time results across all 14
experiments in log scale. We see a significant different
between the best data diffusion response time (3.1
seconds per task) to the worst data diffusion (1084
seconds) and the worst GPFS (1870 seconds).

Figure 15: Average response time for LAN and WAN

That is over 500X difference between the data
diffusion good-cache-compute policy and the first-
available policy (GPFS only) response time. One of the
main factors that influences the average response time
is the time tasks spend in the Falkon wait queue. In the
worst (first-available) case, the queue length grew to
over 200K tasks as the allocated resources could not
keep up with the arrival rate. In contrast, the best
(good-cache-compute with 4GB caches) case only
queued up 7K tasks at its peak. The ability of the data
diffusion to keep the wait queue short allowed it to
achieve an average response time of only 3.1 seconds.

6. CONCLUSIONS
Dynamic analysis of large datasets is becoming
increasingly important in many domains. When
building systems to perform such analyses, we face
difficult tradeoffs. Do we dedicate computing and
storage resources to analysis tasks, enabling rapid data
access but wasting resources when analysis is not being
performed? Or do we move data to compute resources,
incurring potentially expensive data transfer costs?
We describe here a data diffusion approach to this
problem that seeks to combine elements of both
dedicated and on-demand approaches. The key idea is
that we respond to demands for data analysis by
allocating data and compute systems and migrating
code and data to those systems. We then retain these
dynamically allocated resources (and cached code and
data) for some time, so that if workloads feature data

locality, they will obtain the performance benefits of
dedicated resources.
To explore this approach, we have extended the Falkon
dynamic resource provisioning and task dispatch
system to cache data at executors and incorporate data-
aware scheduling policies at the dispatcher. In this
way, we leverage the performance advantages of high-
speed local disk and reduce access to persistent storage.
This paper has two contributions: 1) defining an
abstract model for “data diffusion” and validating it
against results from a real astronomy application; and
2) the exploration of the process of expanding a set of
resources based on demand, and the impact it has on
application performance. Our results show data
diffusion offering dramatic improvements in
performance achieved per resources used (34X) and
that it reduces application response time by as much as
506X when compared with data-intensive benchmarks
directly against a shared file system such as GPFS.
In future work, we plan to explore more sophisticated
algorithms that address, for example, what happens
when an executor is released; should we discard cached
data, should it be moved to another executor, or should
it be moved to persistent storage; do cache eviction
policies affect cache hit ratio performance? Answers to
these and other related questions will presumably
depend on workload and system characteristics.
We plan to use the Swift parallel programming system
to explore data diffusion performance with more
applications and workloads. We have integrated Falkon
into the Karajan workflow engine used by Swift [14,
28]. Thus, Karajan and Swift applications can use
Falkon without modification. Swift has been applied to
applications in the physical sciences, biological
sciences, social sciences, humanities, computer
science, and science education. We have already run
large-scale applications (fMRI, Montage, MolDyn,
DOCK, MARS) without data diffusion [4, 14, 28, 32],
which we plan to pursue as use cases for data diffusion.

7. ACKNOWLEDGEMENTS
This work was supported in part by the NASA Ames
Research Center GSRP Grant Number NNA06CB89H
and by the Mathematical, Information, and
Computational Sciences Division subprogram of the
Office of Advanced Scientific Computing Research,
Office of Science, U.S. Dept. of Energy, under
Contract DE-AC02-06CH11357. We also thank
TeraGrid and the Computation Institute at University
of Chicago for hosting the experiments reported in this
paper.

8. REFERENCES
[1] W. Xiaohui, et al. “Implementing data aware

scheduling in Gfarm using LSF scheduler plugin

1084

230 287

3.1

114

1569

3.4

1

10

100

1000

10000

first-
available

good-
cache-

compute,
1GB

good-
cache-

compute,
1.5GB

good-
cache-

compute,
2GB

good-
cache-

compute,
4GB

max-cache-
hit, 4GB

max-
compute-
util, 4GB

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(s
ec

)

Page 15 of 16

mechanism”, 2005 International Conference on
Grid Computing and Applications, pp.3-10, 2005

[2] P. Fuhrmann. “dCache, the commodity cache,”
IEEE Mass Storage Systems and Technologies
2004

[3] S. Ghemawat, H. Gobioff, S.T. Leung. “The
Google file system,” ACM SOSP 2003, pp. 29-43

[4] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M.
Wilde. “Falkon: a Fast and Light-weight tasK
executiON framework”, IEEE/ACM SC 2007

[5] I. Raicu, I. Foster, A. Szalay. “Harnessing Grid
Resources to Enable the Dynamic Analysis of
Large Astronomy Datasets”, IEEE/ACM SC 2006

[6] I. Raicu, I. Foster, A. Szalay, G. Turcu.
“AstroPortal: A Science Gateway for Large-scale
Astronomy Data Analysis”, TeraGrid Conf. 2006

[7] A. Szalay, J. Bunn, J. Gray, I. Foster, I. Raicu.
“The Importance of Data Locality in Distributed
Computing Applications”, NSF Workflow
Workshop 2006

[8] F. Schmuck, R. Haskin, “GPFS: A Shared-Disk
File System for Large Computing Clusters,” FAST
2002

[9] K. Ranganathan, I. Foster, “Simulation Studies of
Computation and Data Scheduling Algorithms for
Data Grids”, Journal of Grid Computing, 2003

[10] J. Dean, S. Ghemawat. “MapReduce: Simplified
Data Processing on Large Clusters”, OSDI 2004

[11] I. Raicu, C. Dumitrescu, I. Foster. “Dynamic
Resource Provisioning in Grid Environments”,
TeraGrid Conference 2007

[12] G. Banga, et al. “Resource Containers: A New
Facility for Resource Management in Server
Systems.” USENIX OSDI 1999

[13] J.A. Stankovic, et al. “The Spring System:
Integrated Support for Complex Real-Time
Systems”, Real-Time Systems, 1999

[14] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von
Laszewski, I. Raicu, T. Stef-Praun, M. Wilde.
“Swift: Fast, Reliable, Loosely Coupled Parallel
Computation”, IEEE Workshop on Scientific
Workflows 2007

[15] R. Hasan, et al. “A Survey of Peer-to-Peer Storage
Techniques for Distributed File Systems”, ITCC
2005

[16] S. Podlipnig, L. Böszörmenyi. “A survey of Web
cache replacement strategies”, ACM Computing
Surveys, 2003

[17] R. Lancellotti, et al. “A Scalable Architecture for
Cooperative Web Caching”, Workshop in Web
Engineering, Networking 2002

[18] C. Catlett, et al. “TeraGrid: Analysis of
Organization, System Architecture, and
Middleware Enabling New Types of
Applications,” HPC 2006

[19] F. Chang, et al. “Bigtable: A Distributed Storage
System for Structured Data”, USENIX OSDI 2006

[20] I. Raicu, I. Foster. “Characterizing Storage
Resources Performance in Accessing the SDSS
Dataset,” Tech. Report, Univ of Chicago, 2006

[21] X. Wei, W.W. Li, O. Tatebe, G. Xu, L. Hu, and J.
Ju. “Integrating Local Job Scheduler – LSF with
Gfarm”, Parallel and Distributed Processing and
Applications, Springer Berlin, Vol. 3758/2005, pp
196-204, 2005

[22] ANL/UC TeraGrid Site Details,
http://www.uc.teragrid.org/tg-docs/tg-tech-
sum.html, 2007

[23] I. Raicu, Y. Zhao, I. Foster, A. Szalay. “A Data
Diffusion Approach to Large Scale Scientific
Exploration,” Microsoft eScience Workshop 2007

[24] A. Bialecki, M. Cafarella, D. Cutting, O.
O’Malley. “Hadoop: a framework for running
applications on large clusters built of commodity
hardware”, http://lucene.apache.org/hadoop/, 2005

[25] T. Kosar. “A New Paradigm in Data Intensive
Computing: Stork and the Data-Aware
Schedulers”, IEEE CLADE 2006

[26] J. Bent, D. Thain, et al. “Explicit control in a
batch-aware distributed file system.”
USENIX/ACM NSDI 2004

[27] I. Raicu. “Harnessing Grid Resources with Data-
Centric Task Farms”, Technical Report, University
of Chicago, 2007

[28] Y. Zhao, I. Raicu, I. Foster, M. Hategan, V.
Nefedova, M. Wilde. “Realizing Fast, Scalable and
Reliable Scientific Computations in Grid
Environments”, Grid Computing Research
Progress, Nova Pub. 2008

[29] J. Gray. “Distributed Computing Economics”,
Technical Report MSR-TR-2003-24, Microsoft
Research, Microsoft Corporation, 2003

[30] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link,
C. Dumitrescu, I. Raicu, I. Foster. “The Globus
Striped GridFTP Framework and Server”,
ACM/IEEE SC05, 2005

[31] I. Raicu, Y. Zhao, I. Foster, A. Szalay.
"Accelerating Large-scale Data Exploration
through Data Diffusion", ACM/IEEE Workshop
on Data-Aware Distributed Computing 2008.

[32] I. Raicu, Z. Zhang, M. Wilde, I. Foster. “Towards
Loosely-Coupled Programming on Petascale
Systems”, under review at SC 2008

Page 16 of 16

[33] NIST/SEMATECH e-Handbook of Statistical
Methods,
http://www.itl.nist.gov/div898/handbook/, 2007

[34] M. Feller, I. Foster, and S. Martin. “GT4 GRAM:
A Functionality and Performance Study”,
TeraGrid Conference 2007

[35] J. Frey, T. Tannenbaum, I. Foster, M. Frey, S.
Tuecke, “Condor-G: A Computation Management
Agent for Multi-Institutional Grids,” Cluster
Computing, 2002.

[36] E. Walker, J.P. Gardner, V. Litvin, E.L. Turner,
“Creating Personal Adaptive Clusters for
Managing Scientific Tasks in a Distributed
Computing Environment”, Workshop on
Challenges of Large Applications in Distributed
Environments, 2006.

[37] G. Singh, C. Kesselman E. Deelman.
“Performance Impact of Resource Provisioning on
Workflows”, USC ISI Technical Report 2006.

[38] G. Mehta, C. Kesselman, E. Deelman. “Dynamic
Deployment of VO-specific Schedulers on

Managed Resources,” USC ISI Technical Report,
2006.

[39] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt,
M. Kalantar, S. Krishnakumar, D. Pazel, J.
Pershing, and B. Rochwerger, “Oceano - SLA
Based Management of a Computing Utility,” 7th
IFIP/IEEE International Symposium on Integrated
Network Management, 2001.

[40] L. Ramakrishnan, L. Grit, A. Iamnitchi, D. Irwin,
A. Yumerefendi, J. Chase. “Toward a Doctrine of
Containment: Grid Hosting with Adaptive
Resource Control,” IEEE/ACM International
Conference for High Performance Computing,
Networking, Storage, and Analysis (SC06), 2006.

[41] J. Bresnahan. “An Architecture for Dynamic
Allocation of Compute Cluster Bandwidth”, MS
Thesis, Department of Computer Science,
University of Chicago, December 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

