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Abstract 
As the size of scientific data sets and the resources required for analysis increase, data locality becomes 
crucial to the efficient use of large scale distributed systems for scientific and data-intensive applications. 
In order to support interactive analysis of large quantities of data in many scientific disciplines, we 
propose a data diffusion approach, in which the resources required for data analysis are acquired 
dynamically, in response to demand. Acquired resources (compute and storage) can be “cached” for 
some time, thus allowing more rapid responses to subsequent requests. We define an abstract model for 
data-centric task farms as a common parallel pattern that drives the independent computational tasks, 
taking into consideration the data locality in order to optimize the performance of the analysis of large 
datasets. This approach can provide the benefits of dedicated hardware without the associated high costs. 
We will validate our abstract model through discrete-event simulations; we expect simulations to show 
the model is both efficient and scalable given a wide range of simulation parameters. To explore the 
practical realization of our abstract model, we have developed a Fast and Light-weight tasK executiON 
framework (Falkon). Falkon provides for dynamic acquisition and release of resources, data 
management capabilities, and the dispatch of analysis tasks via a data-aware scheduler. We have 
integrated Falkon into the Swift parallel programming system in order to leverage a large number of 
applications from various domains (astronomy, astro-physics, medicine, chemistry, economics, etc) which 
cover a variety of different datasets, workloads, and analysis codes. We believe our data-centric task 
farm model to generalize to many domains and applications, and could offer application end-to-end 
performance improvements, higher resource utilization, improved efficiency, and better application 
scalability. 

1 Introduction 
Scientific and data-intensive applications often require exploratory analysis on large datasets. Such 
analysis is often carried out on large scale distributed resources where data locality is crucial in achieving 
high system throughput and performance. [9] We propose a “data diffusion” [78, 79] approach that 
acquires resources for data analysis dynamically, schedules computations as close to data as possible, and 
replicates data in response to workloads. As demand increases, more resources (computer and associated 
storage, and data) are acquired and “cached” to allow faster response to subsequent requests. Resources 
are acquired either “locally” if available, or “remotely” if not; the location only matters in terms of 
associated cost tradeoffs. Both data and applications can diffuse from low-cost archival or slower disk 
storage to newly acquired resources for processing. If demand drops, resources can be released, allowing 
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for their use for other purposes. This approach can provide the benefits of dedicated hardware without the 
associated high costs, depending crucially on the nature of application workloads and the performance 
characteristics of the underlying infrastructure. 

This data diffusion concept is reminiscent of cooperative Web-caching [16] and peer-to-peer storage 
systems [14]. Other data-aware scheduling approaches assume static or dedicated resources [1, 2, 3, 4, 10, 
5, 70], which can be expensive and inefficient (in terms of resource utilization) if load varies 
significantly, where our dynamic resource allocation alleviates the problem. The challenges to our 
approach are that we need to co-allocate storage resources with computation resources in order to enable 
the efficient analysis of possibly terabytes of data without prior knowledge of the characteristics of 
application workloads. 

To explore the proposed data diffusion, we have developed Falkon [6, 11], which provides dynamic 
acquisition and release of resources (“executors”) and the dispatch of analysis tasks to those executors. 
We have extended Falkon to allow executors to cache data to local disks, and perform task dispatch via a 
data-aware scheduler. The integration of Falkon and the Swift parallel programming system [13] provides 
us with access to a large number of applications from astronomy [7, 8, 12, 13], astro-physics, medicine 
[13], and other domains, with varying datasets, workloads, and analysis codes.  

1.1 Motivations and Challenges 
In order to achieve the proposed data diffusion, we have identified three key concepts that must be present 
in the successful realization of data diffusion. These three concepts are: 1) task dispatch and execution, 2) 
dynamic resource provisioning, and 3) data caching. We believe that all these are necessary in the 
practical realization of data diffusion, and hence this sub-section covers the motivation and challenges 
presented by each.  

1.1.1 Task Dispatch & Execution 
Many interesting computations can be expressed conveniently as data-driven task graphs, in which 
individual tasks wait for input to be available, perform computation, and produce output. Systems such as 
DAGMan [18], Karajan [19], Swift [13], and VDS [[20] support this model. These systems have all been 
used to encode and execute thousands to hundreds of thousands of individual tasks. 

In such task graphs, as well as in the popular master-worker model [21], many tasks may be logically 
executable at once. Such tasks may be dispatched to a parallel compute cluster or (via the use of grid 
protocols [22]) to many such clusters. The batch schedulers used to manage such clusters receive 
individual tasks, dispatch them to idle processors, and notify clients when execution is complete. 

This strategy of dispatching tasks directly to batch schedulers has three disadvantages. First, because a 
typical batch scheduler provides rich functionality (e.g., multiple queues, flexible task dispatch policies, 
accounting, per-task resource limits), the time required to dispatch a task can be large—30 secs or more—
and the aggregate throughput relatively low (perhaps one task/sec). Second, while batch schedulers may 
support different queues and policies, the policies implemented in a particular instantiation may not be 
optimized for many tasks. For example, a scheduler may allow only a modest number of concurrent 
submissions for a single user. Third, the average wait time of grid jobs is higher in practice than the 
predictions from simulation-based research. [71] These factors can cause problems when dealing with 
application workloads that contain a large number of tasks. 

Full-featured local resource managers (LRMs) such as Condor [18], Condor-J2 [27], PBS [28], LSF [29] 
support client specification of resource requirements, data staging, process migration, check-pointing, 
accounting, and daemon fault recovery. These LRMs can maintain throughputs on the order of 0.5~2 
tasks/sec, while the latest development version of these same LRMs can do one order of magnitude better 
with 11~22 tasks/sec. 
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As part of our work, we propose a streamline task submission framework (Falkon) whose focus is solely 
the efficient task dispatch. This narrow focus is possible because Falkon can rely on LRMs for certain 
functions (e.g., accounting) and clients for others (e.g., recovery, data staging). In contrast with LRMs 
performance, Falkon achieves one to two orders of magnitude higher performance (487 tasks/sec) [6].  
With workload specific knowledge (i.e. task length distribution), the throughput can be increased further 
to over 2500 tasks/sec by amortizing the communication overhead over many tasks.  We have also 
experimented with a light-weight TCP-based communication protocol (as a replacement to Web 
Services), which we found to further improve throughput to about 5000 tasks/sec.  We also have ideas on 
how to parallelize the architecture, which should allow us to push the overall system throughput well 
beyond the levels we have achieved so far. 

In order to emphasize the need for such high throughputs, we showcase (Figure 1) the achieved resource 
efficiency at four different scales (small grid sites – 100 processors, medium size grid site – 1K 
processors, large Grid – 10K processors, and supercomputer – 100K processors) for various throughputs 
(1, 10, 100, 500, 1K, 10K, 100K, and 1M tasks/sec). It is worth noting that current production LRMs 
require relatively long tasks in order to maintain high efficiency. For example, even in a small Grid site 
with 100 processors, tasks need to be 100 seconds in duration just to get 90% efficiency; the task duration 
is increased to 900 seconds for a modest 1K processors, 10K seconds (~2.8 hours) for 10K processors, 
and more than 100K seconds (1+ days) for 100K processors just to maintain 90% efficiency. With 
throughputs in the range of 500 tasks/sec (which is obtainable with our proposed framework – Falkon), 
the same 90% efficiency can be reached with tasks of length 0.2 seconds, 1.9 seconds, 20 seconds, and 
200 seconds for the same four cases.    
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Figure 1: Resource Efficiency for various resource scales and workload characteristics 

It should be evident that the higher the throughput of tasks/sec that can be dispatched and executed over a 
set of resources, the higher the resource efficiency for the same workloads and the faster the applications 
turn-around times will be. Our work with Falkon seeks to reduce task dispatch time by using a 
streamlined dispatcher that eliminates support for features such as multiple queues, priorities, accounting, 
etc. Furthermore, we will investigate methods to distribute the dispatch functionality so that dispatch rates 
could grow further to efficiently manage computational resources in the largest Grids and supercomputers 
of tomorrow.  

1.1.2 Dynamic Resource Provisioning 
Batch schedulers commonly used to manage access to parallel computing clusters are not typically 
configured to enable easy configuration of application-specific scheduling policies. In addition, their 
sophisticated scheduling algorithms can be relatively expensive to execute, as we discussed in the 
previous subsection. Furthermore, requests for resources that cannot be satisfied in their entirety can wait 
for long periods of time in wait queues, in many cases longer than the execution time itself. Figure 2 
shows the high variance of the queue wait times and the large percentage of time jobs spent in the waiting 
queue as opposed to executing at SDSC in 2004/2005 [37]. The results from Figure 2 are typical to what 
can be found in many busy Grid sites. Notice the average queue wait time of about 7.6 hours, while the 
average job run time was only 1.8 hours. Others have also found that the average wait time of grid jobs is 
higher in practice than the predictions from simulation-based research. [71] Finally, while batch 
schedulers may support different queues and policies, the policies implemented in a particular 
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instantiation may not be optimized for the particular workload producing the jobs. For example, a 
scheduler may allow only a modest number of concurrent submissions for a single user.    

To address these problems, we propose dynamic resource provisioning, in which we seek general 
techniques to acquire and/or release resources as application demand varies that would be transparent to 
the domain-specific application logic. We also seek to reduce the average queue wait times by amortizing 
high overhead of resource allocation over 
the execution of many tasks. In our 
preliminary studies [6, 11], 
microbenchmarks show that through 
dynamic resource provisioning, we can 
allocate resources on the order of 10s of 
seconds across multiple Grid sites and can 
reduce average queue wait times by up to 
95% (effectively yielding queue wait times 
within 3% of ideal); furthermore, 
applications (executed by the Swift parallel 
programming system) reduce end-to-end run 
time of up to 90% for large-scale astronomy 
and medical applications, relative to 
versions that execute tasks via separate 
scheduler submissions. 

1.1.3 Data Caching 
The data in Figure 1 were simplified by only investigating the effects of dispatch and execution 
throughputs on efficiency, not taking into consideration any data I/O. Many applications are composed of 
pieces that compute on some data, and hence it is worthwhile to look at a real production Grid, namely 
the TeraGrid (TG) distributed infrastructure [17]. 

The TG is the world's largest, most comprehensive distributed cyber-infrastructure for open scientific 
research. Currently, TG resources include more than 250 teraflops of computing capability (4.8K nodes 
with over 14K processors) and more than 1 petabyte of spinning disk and 30 petabytes of archival data 
storage, with rapid access and retrieval over high-performance networks (10~30 Gb/s links). Of the 4.8K 
nodes in the TG, 4.2K nodes have local dedicated disks that are underutilized (both in terms of storage 
and I/O bandwidth). With an average modest disk size of 67GB per node, this totals to 283TB of disk in 
addition to the 1PB of shared storage resources. The locally installed disks on most TG nodes have an 
aggregate theoretical peak throughput on the order of 4000+ Gb/s, in contrast with the shared storage 
resources that have an aggregate peak throughput on the order of 100 Gb/s.  Figure 3 shows actual 
measurements of a modest 64 node cluster, and the difference in performance between the GPFS shared 
file system and the theoretical local disk (3.4 Gb/s as opposed to 66 Gb/s read performance, and 1Gb/s as 
opposed to 25 Gb/s read/write performance). 

0

500

1000

1500

2000

2500

3000

3500

4000

1E
-06

0.0
01 0.0

1 0.1 1 10 10
0

10
00

File Size (MB)

R
ea

d 
Th

ro
ug

hp
ut

 (M
b/

s)

64 Nodes
32 Nodes
16 Nodes
8 Nodes
4 Nodes
2 Nodes
1 Node

0

500

1000

1500

2000

2500

3000

3500

4000

1E
-06

0.0
01 0.0

1 0.1 1 10 10
0

10
00

File Size (MB)

R
ea

d+
W

rit
e 

Th
ro

ug
hp

ut
 (M

b/
s)

64 Nodes
32 Nodes
16 Nodes
8 Nodes
4 Nodes
2 Nodes
1 Node

0

10000

20000

30000

40000

50000

60000

70000

1E
-06

0.0
01 0.0

1 0.1 1 10 10
0

10
00

File Size (MB)

R
ea

d 
Th

ro
ug

hp
ut

 (M
b/

s)

64 Nodes
32 Nodes
16 Nodes
8 Nodes
4 Nodes
2 Nodes
1 Node

0

10000

20000

30000

40000

50000

60000

70000

1E
-06

0.0
01 0.0

1 0.1 1 10 10
0

10
00

File Size (MB)

R
ea

d+
W

rit
e 

Th
ro

ug
hp

ut
 (M

b/
s)

64 Nodes
32 Nodes
16 Nodes
8 Nodes
4 Nodes
2 Nodes
1 Node

 
Figure 3: Read and read/write performance for GPFS (first two) and local disk (last two) expressed 
in Mb/s; only the x-axis is logarithmic; 1-64 nodes; 1B – 1GB files 

Figure 2: Summary of queue wait times and job run times 
regarding 96,089 jobs submitted between March 2004 and March 
2005 to the San Diego Supercomputer Center (SDSC) DataStar
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We have experience with certain astronomy specific data access patterns on the TG that produce an order 
of magnitude difference in performance between processing data directly from local disk as opposed to 
accessing the data from shared storage resources (i.e. GPFS) [7, 8, 79, 94]. With more than an order of 
magnitude performance improvement when using local disks as well as better scalability with increasing 
number of compute resources, there is good motivation to have middleware capable of harnessing this 
relatively idle storage resource transparently for large scale scientific applications.   

It has been argued that data intensive applications cannot be executed efficiently in grid environments 
because of the high costs of data movement. But if data analysis workloads have internal locality of 
reference [95], then it can be feasible to acquire and use even remote resources, as high initial data 
movement costs can be offset by many subsequent data analysis operations performed on that data. We 
can imagine data diffusing over an increasing number of CPUs as demand increases, and then contracting 
as load reduces. 

We envision “data diffusion” as a process in which data is stochastically moving around in the system, 
and that different applications can reach a dynamic equilibrium this way. One can think of a 
thermodynamic analogy of an optimizing strategy, in terms of energy required to move data around 
(“potential wells”) and a “temperature” representing random external perturbations (“job submissions”) 
and system failures. We propose exactly such a stochastic optimizer. 

1.2 Hypothesis  
The analysis of large datasets typically follows a split/merge pattern, which includes an analysis query to 
be answered, which get split down into independent tasks to be computed, after which the results from all 
the tasks are merged back into a single aggregated result. The hypothesis is that significant performance 
improvements can be obtained in the analysis of large dataset by leveraging information about data 
analysis workloads rather than individual data analysis tasks. We define workloads to be a complex query 
that can be decomposed into simpler tasks, or a set of queries that together answer some broader analysis 
questions. As the size of scientific data sets and the resources required for analysis increase, data locality 
becomes crucial to the efficient use of large scale distributed systems for scientific and data-intensive 
applications [9]. We believe it is feasible to allocate large-scale computational resources and caching 
storage resources that are relatively remote from the original data location, co-scheduled together to 
optimize the performance of entire data analysis workloads.  

1.3 Proposal 
In order to support interactive analysis of large quantities of data, we propose a data diffusion approach 
that leverages Grid [22] infrastructures to acquire resources required for data analysis dynamically, in 
response to demand. As request rates increase, more resources are acquired, and data and applications 
diffuse from low-cost archival storage to newly acquired resources. Acquired resources can be “cached” 
for some time, thus allowing more rapid responses to subsequent requests. If demand drops, resources can 
be released. In principle, this approach can provide the benefits of dedicated hardware without the 
associated high costs—depending crucially on the nature of application workloads and the performance 
characteristics of the underlying infrastructure. 

In order to explore the split/merge pattern introduced in the hypothesis combined with the proposed data 
diffusion, we define AMDASK, an Abstract Model for DAta-centric taSK farms. A data-centric task farm 
is a common parallel pattern that drives the independent computational tasks, taking into consideration 
the data locality in order to optimize the performance of the analysis of large datasets. This definition 
implies the integration of data semantics and application behavior to address critical challenges in the 
management of large scale datasets and the efficient execution of application workloads.  

In order to gain experience with the practical realization of AMDASK, we are developing a Fast and 
Light-weight tasK executiON framework (Falkon) [6], which provides for dynamic acquisition and 
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release of resources (“executors”) [11], data management capabilities [78, 79], and the dispatch of 
analysis tasks to those executors using various schedulers, including a data-aware scheduler. Furthermore, 
we intend to validate the AMDASK model through discrete-event simulations.  

We have integrated Falkon into the Swift parallel programming system [13, 19, 88] in order to leverage 
the large number of Swift-based applications, which can be executed over Falkon transparently. We will 
investigate the effectiveness and the flexibility of the AMDASK model on applications from various 
domains (astronomy [7, 8, 12], astro-physics [40], medicine [32], chemistry, and economics), covering a 
variety of different datasets, workloads, and analysis codes. We believe AMDASK is an important model 
that generalizes to many domains and applications, and could offer AMDASK-based systems and 
applications end-to-end performance improvements and higher resource utilization and efficiency. 

We intend to validate the AMDASK model more generally through simulations. We will implement the 
AMDASK model in a discrete event simulation that will allow us to investigate a wider parameter space 
than we could in a real world implementation and deployment. We expect the simulations to help us 
prove that the AMDASK model is both efficient and scalable given a wide range of simulation parameters 
(i.e. number of storage and computational resources, communication costs, management overhead, and 
workloads – including inter-arrival rates, query complexity, and data locality). The outputs from the 
simulations over the entire considered parameter space will form the datasets that will be used to 
statistically validate the model using 2R statistic and graphical residual analysis. [72] 

1.4 Contributions 
We see the dynamic analysis of large datasets to be important due to the ever growing datasets that need 
to be accessed by larger and larger communities. Attempting to address the storage and computational 
problems separately (essentially forcing much data movement between computational and storage 
resources) will not scale to tomorrow’s peta-scale datasets and will likely yield significant 
underutilization of the raw computational resources. We defined the abstract model for data-centric task 
farms (AMDASK) in order to address the integration of the storage and computational issues found in a 
class of applications which can be decomposed down into many independent computational tasks that 
operate on large datasets. We prove the abstract model to be efficient and scalable through simulations. 
Finally, we provide a reference implementation of the abstract model which is used to show the flexibility 
and effectiveness of it on real world applications.  

2 AMDASK: an Abstract Model for DAta-centric taSK farms 
Many analyses of large datasets follow a split/merge methodology, which includes an analysis query to be 
answered, the splitting down into independent tasks to be computed, and the merging of independent 
results into a single aggregated result. Based on this split/merge pattern, we propose AMDASK, an 
Abstract Model for DAta-centric taSK farms. The literature defines task farms as a common parallel 
pattern which drives the computation of independent tasks, where a task is a self contained computation. 
The data-centric component of the abstract model emphasizes the central role data plays in the task farm 
model we are proposing, and the fact that the task farm is optimized to take advantage of data cache 
storage and data locality found in many large datasets and typical application workloads. We define a 
data-centric task farm as a parallel pattern that drives the independent computational tasks taking into 
consideration data locality to optimize the performance of the analysis of large datasets. This definition 
implies the integration of data semantics and application behavior in order to address critical challenges in 
the management of large scale datasets and the efficient execution of application workloads. 

The rest of this section covers the formal definition of the proposed abstract mode, the execution model, 
and the performance and efficiency of the defined model. 
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2.1 Base Definitions and Notations 
A data-centric task farm has various components (i.e. computational resource where the tasks are to 
execute, storage resources where the data needed by the tasks is stored, etc) that we will formally define 
in this sub-section. Since our model is a data-centric one, we assume that the computational tasks will 
need to work on some data. 

Persistent data stores: To simplify the model, we assume that this data resides on a set of persistent data 
stores, Π, where |Π| ≥ 1. This is a realistic assumption as most large datasets have a long lifespan due to 
various factors; these factors include 1) the cost of acquiring them, 2) the time needed to analyze the 
entire dataset by entire communities, and 3) the need to keep these datasets online for legacy applications 
and the repeatability of results after they have been completed.  

Transient data stores: We differentiate between the set of persistent data stores Π and the set of 
transient data stores, T, as they have different characteristics (performance, availability, scalability, 
capacity, etc.). For example, persistent data stores could be shared among many users and applications, 
and hence should offer improved scalability and performance; however, persistent data stores do not have 
computational resources available tightly coupled with the storage resource, and hence the latency 
incurred between the computational resource and the persistent storage resource is higher. Furthermore, 
persistent data stores are expected to be always available, which is achieved by data store backups that 
could be brought online if the primary persistent data store becomes unavailable. The set of transient data 
stores T, where |Τ| ≥ 0, are smaller than the persistent data stores and are only capable of storing a fraction 
of the persistent data stores’ data objects. 

Transient resources: We assume that the transient data stores T are co-located with compute resources, 
hence yielding a lower latency data path than the persistent data stores. Since storage and compute 
resources are co-located, we refine the definition of T to include computational resources as well. This 
definition of a transient data store and computational resource is consistent with real world distributed 
systems that have a pool of compute resources that are allocated and de-allocated by a resource manager 
based on some policies and requirements, hence the transient nature of the resources. The co-location of 
the storage resource and the computational resource is also consistent with real world system as most 
computational resources have attached storage resources as well. The relationship between the transient 
resources and the persistent data stores can be summarized by Π⊆Τ ; note that the reverse is not always 
true, as storage resources do not always have computational resources, which is why the persistent data 
store does not have a persistent computational resource co-located with it. 

Data Objects: )(πφ  represents the data objects found in the persistent data store π, where Π∈π . 
Similarly, )(τφ  represents a transient data store’s locally cached data objects. The set of persistent data 
stores Π consists of a set of all data objects, ∆. For each data object ∆∈δ , )(δβ  denotes the data 
object’s size and )(δλ  denotes the data object’s storage location(s).  

Store Capacity: For each persistent data store, Π∈π , and transient data store Τ∈τ , )(πσ  and )(τσ  
denote the persistent and transient data store’s capacity, respectively. 

Compute Speed: For each transient resource, Τ∈τ , )(τχ  denotes the compute speed.  

Load: For any data store, we define load as being the number of concurrent read/write requests; )(τω  and 
)(πω  denote the load on data stores Τ∈τ  and Π∈π , respectively. 

Ideal Bandwidth: For any persistent data store Π∈π , and transient data store Τ∈τ , )(πν  and )(τν  
denote the ideal bandwidth for the persistent and transient data store, respectively. These transient data 
stores will have limited availability, and the bandwidth will typically be lesser when compared to the 
persistent data stores, )()( πντν < . The organization in real world deployments of persistent and transient 
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data stores is that there are few high capacity persistent data stores and many low capacity transient data 
stores. Thus, we assume ∑∑

Π∈Τ∈
≥

πτ
πντν )()( , given that |||| Π>>Τ . 

Available Bandwidth: For any persistent data store Π∈π , and transient data store Τ∈τ , we define 
available bandwidth as a function of ideal bandwidth and load; more formally, ( )( ))(, πωπνη  and 

( )( ))(, τωτνη  will denote the available bandwidth for the persistent and transient data store, respectively. 
The relationship between the ideal and available bandwidth is given by the following formula: 

( )( ) ( )πνπωπνη <)(, , for 1)( ≥πω  and ( )( ) ( )πνπωπνη =)(, , for 0)( =πω .  

Copy Time: For any data object ∆∈δ  and transient data store Τ∈τ , we define the time to copy a data 

object between the object δ  to τ  by the function 
⎩
⎨
⎧

ΤΠ∈∈∀→
Τ∈∈∀→

=
\),(,

),(,
),(

111

111
ππφδτπ

ττφδττ
τδζ , where τπτ →11,  

denotes the source and destination data stores for the copy operation. In an ideal case, ττ →1  can be 

computed by ( ) ( )
)(

],min[ 1
δβ

τντν , where ( )1τν  and ( )τν  represent the source and destination ideal bandwidth, 

respectively, and )(δβ  represents the data object’s size; the same definition applies to copy a data object 
from τπ →1 . In reality, this is an oversimplification since copy time ),( τδζ  is dependent on other factors 
such as the load )(τω  on some storage resource, the latency between the source and destination, and the 
error rates encountered during the transmission. Assuming low error rates and low latency (typical of a 
local area network environment), the copy time is then affected only by the data object’s size and the 
available bandwidth ( )( ))(, τωτνη  as defined above. More formally, in the realistic approach, we define 

ττ →1  as being ( )( ) ( )( )
)(

])(,,)(,min[ 11
δβ

τωτνητωτνη . 

Tasks: Let Κ  denote the incoming stream of tasks. For each task Κ∈κ ,  let µ(κ) denote the time needed 
to execute the task κ on the computational resource Τ∈τ ; let )(κθ  denote the set of data objects that the 
task κ requires, ∆⊆)(κθ ; let o(κ) denote the time to dispatch the task κ and return a result. In reality, 
there would also be some computational time needed to aggregate the results from various tasks, but for 
simplicity and to make the tasks truly independent as the definition of task farms dictates, we assume the 
time to aggregate the results is 0.  

Computational Resource State: If a compute resource Τ∈τ  is computing a task, then it is in the busy 
state, denoted by τb; otherwise, it is in the free state, τf. Let Tb denote the set of all compute resources in 
the busy state, and Tf the set of all compute resources in the free state; these two sets have the following 
property: Τ=ΤΤ fb U . 

2.2 The Execution Model 
The execution model outlines the respective policies that control various parts of the execution model and 
how they relate to the definitions in the previous section. Each incoming task Κ∈κ  is dispatched to a 
transient resource Τ∈τ , selected according to the dispatch policy discussed in the following sections. If a 
response is not received after a time determined by the replay policy, or a failed response is received, the 
task is re-dispatched according to the dispatch policy. A missing data object, ∆∈δ , that is required by 
task κ , )(κθδ ∈ , and does not exist on the transient data store Τ∈τ , )(τφδ ∉ , is copied from transient or 
persistent data stores selected according to the data fetch policy. If necessary, existing data at a transient 
data store τ  are discarded to make room for the new data, according to the cache eviction policy. Each 
computationκ  is performed on the data objects )(τφ  found in a transient data store. When all 
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computations are complete, the result is aggregated and returned; this aggregation of the results is 
assumed to be free to simplify the abstract model. 

We have repeatedly made the distinction between persistent data stores and transient 
storage/computational resources. The transient resources are an artifact of real world systems that are 
organized in such a fashion that resources are allocated and de-allocated from a pool of resources by some 
manager. This manager is basically coordinates the sharing of these resources among many consumers. 
We define a resource acquisition policy that decides when, how many, and for how long to acquire new 
transient computational and storage resources for. Similarly, we also define a resource release policy that 
decides when to release some acquired resources.  

2.2.1 Dispatch Policy 
Each incoming task Κ∈κ  is dispatched to a transient resource Τ∈τ , selected according to the dispatch 
policy. We define four dispatch policies: 1) next-available, 2) first-available, 3) max-cache-hit, and 4) 
max-compute-util.  

The next-available policy ignores any data location information when selecting an executor for a task; it 
simply chooses the next available executor. Thus, all data needed by a task must be transferred from the 
globally accessible storage resource. 

The first-available policy ignores data location information when selecting an executor for a task, but it 
does include data location information along with each task. Thus, all data needed by a task must, with 
high probability, be transferred from the globally accessible storage resource, or another storage resource 
that has the data cached. 

The max-cache-hit policy uses information about data location to dispatch each task to the executor with 
the largest number of data needed by that task. If that executor is busy, task dispatch is delayed until the 
executor becomes available. This strategy can be expected to reduce data movement operations relative to 
first-available, but may lead to load imbalances, especially if data popularity is not uniform. This policy 
aims at maximizing the cache hit/miss ratio, where a cache is the same as the transient data store; a cache 
hit occurs when a transient compute resource has the needed data on the same transient data store, and a 
cache miss occurs when the needed data is not the same computational resource’s data store.  

Formally, we define a cache hit as follows:  

Τ∈∃∈∀ τκθδ ),( , such that )(τφδ ∈ .  

Similarly, we define a cache miss as follows:  

)(κθδ ∈∃ , such that )(, τφδτ ∉Τ∈∀ .  

Let )(κhC  denote the set of all cache hits, and )(κmC  denote the set of all cache misses for task Κ∈κ , 
such that )()()( κθκκ =mh CC U .  

We define the max-cache-hit dispatch policy as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Κ∈∀ )(

)(max
κ
κ

κ m

h
C
C . 

Note that this policy will cause the dispatcher to wait for compute resources to become free if all the 
compute resources that have the needed cached data are busy.  

The max-compute-util policy also leverages data location information, but in a different way. It always 
sends a task to an available executor, but if several workers are available, it selects that one that has the 
most data needed by the task. This policy aims to maximize computational resource utilization.  
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We define a free cache hit as follows: 

fΤ∈∃∈∀ τκθδ ),( , such that )(τφδ ∈ .  

Similarly, we define a free cache miss as follows:  

)(, τφδτ ∉Τ∈∀  or bΤ∈∃τ , such that )(τφδ ∈ .  

Let )(, κhfC  denote the set of all free cache hits, and )(, κmfC  denote the set of all free cache misses for 
task Κ∈κ , such that )()(, κκ hhf CC ⊆  and )()( , κκ mfm CC ⊆  and )()()( ,, κθκκ =mfhf CC U .  

We define the max-compute-util dispatch policy as follows: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Κ∈∀ )(
)(

max
,

,

κ
κ

κ mf

hf

C
C

. 

This policy would always send a task to any free computational resource, giving preferences to the 
computational resources that have the needed data objects in their data stores. 

2.2.2 Replay Policy 
The replay policy is fairly straight forward, but it is needed to ensure the correctness of the abstract model 
in realistic settings. It would determine the time to wait after the dispatch policy had been invoked and 
before determining to invoke the replay policy. It would also dispatch a failed task according to the 
dispatch policy. 

2.2.3 Data Fetch Policy 
There are two data fetch policies we define: 1) Just-in-Time Pre-Fetching and 2) Spatial Locality Pre-
Fetching. 

Just-in-Time Pre-Fetching: This is the simplest data fetch policy invoked by the transient data store τ  
to copy the needed data objects δ  to the local data store. Formally, if )(τφδ ∉  then ),( τδζ .  

Spatial Locality Pre-Fetching: This data fetch policy builds on top of the copy the Just-in-Time Pre-
Fetching in the sense that it attempts to populate transient data stores with data objects that are likely to be 
needed in the future. Spatial locality pre-fetching targets those applications access patterns that request a 
contiguous set of data in a spatial coordinate system. Assuming that the incoming tasks are processing 
data following this pattern, a needed data object δ  can act as a good indicator to a future needed data 
object 1δ , which could be brought into transient data stores before it is actually needed with the same 
policy as the Just-in-Time Pre-Fetching.  

Formally, if )(τφδ ∉  then [ ),( τδζ  and if )(1 τφδ ∉  then ),( 1 τδζ , )(1 δδ Ν∈∀ ], where )(δΝ  is the 
neighborhood of δ  in the spatial domain.  

2.2.4 Cache Eviction Policy 
The cache eviction policies outlined here are complete set of supported policies, however it is unclear 
which policies will be better suited for certain workloads and applications. We define a cache eviction 
policy to be the selection of an existing data object in a transient data store to be removed in order to 
make room for a new data object to be inserted in the same data store. We explicitly define five classes of 
cache eviction policies: 1) Random, 2) First-In-First-Out, 3) Least Recently Used (LRU, LRU2, and Two 
Queues), 4) Least Frequently Used (Perfect, In Cache, and Hierarchical), and 5) Time-based Expiration 
(Simple, Extended, and Sliding). Since these caching policies are typical caching schemes found in the 
literature [15], we will not go into the details of defining each one. Note that items and data objects, as 
well as transient data stores and caches, are both used interchangeably in this section.  
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2.2.5 Resource Acquisition Policy 
We define a resource acquisition policy that decides when and how to acquire new transient 
computational and storage resources. The resource acquisition policy should determine the state 
information that will be used to trigger new computational resource acquisitions to be added to Τ  (i.e. if 
the task queue length increases, acquire more resources). It should also determine the number of nodes to 
acquire based on the appropriate state information. The policy would also need to determine the length of 
time to acquire the resources for based on the state information.  

This policy determines the number of resources, n, to acquire; the length of time for which resources 
should be requested; and the request(s) to generate to LRM(s) to acquire those resources. We have 
implemented five strategies that variously generate a single request for n resources, n requests for a single 
resource, or a series of arithmetically or exponentially larger requests, or that use system functions to 
determine available resources.  

2.2.6 Resource Release Policy 
Just as we defined a resource acquisition policy, we define a resource release policy that decides when to 
release some already acquired resources. We define two such policies: 1) Centralized, and 2) Distributed. 
In a centralized policy, decisions are made based on state information available at a central location. For 
example: “if there are no queued tasks, release all resources,” and “if the number of queued tasks is less 
than q, release a resource.” In a distributed policy, decisions are made at individual resources based on 
state information available at the resource. For example: “if the resource has been idle for time t, the 
resource should release itself.” Note that resource acquisition and release policies are not independent: in 
most batch schedulers, a set of resources allocated in a single request must all be de-allocated before the 
requested resources become free and ready to be used by the next allocation. Ideally, one must release all 
resources obtained in a single request at once, which requires a certain level of synchronization among the 
resources allocated within a single allocation.  

2.3 The Performance and Efficiency of the Abstract Model 
In this section, we investigate when we can achieve good performance with this abstract model for data-
centric task farms and under what assumptions. We define various costs (costs per task and average task 
execution time) and efficiency related metrics (efficiency, computational intensity, efficiency overheads). 
Furthermore, we explore the relationships between the different parameters in order to optimize 
efficiency. 

Cost per task: For simplicity, let us assume initially that each task requires a single data object, )(κθδ ∈ , 
and that all the data objects ∆  on persistent storage Π  and transient storage Τ  are fixed; assume that we 
use the max-resource-util dispatch policy, in which we send a task to a compute resource that contains the 
required data object, or to any other free resource otherwise. Then the cost of the execution of each task 

Κ∈κ  dispatched to a transient compute resource Τ∈τ  can be characterized as one of the following two 
costs: 1) cost if the required data objects are cached at the corresponding transient storage resource, and 
2) cost if the required data objects are not cached and must be retrieved from another transient or 
persistent data store. In the first case, we define the cost of the execution of a task to be the time to 
dispatch the task plus the time to execute the task plus the time to return the result. For the second cost 
function in which the data objects do not exist in the transient data store, we also incur an additional cost 
to copy the needed data object from either a persistent or a transient data store. More formally, we define 
the cost per task )(κχ  as follows:  

⎪
⎩

⎪
⎨

⎧

∉++

∈+

= )(),,()()(

)(),()(
)( τφδτδζκµκο

τφδκµκο
κχ  
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Average Task Execution Time: We define the average task execution time, Β , as the summation of all 

the task execution times divided by the number of tasks; more formally, we have ∑
Κ∈Κ

=Β
k

)(
||

1 κµ .  

Computational Intensity: Let Α  denote the arrival rate of tasks; we define the computational intensity, 
Ι , as follows: ΑΒ=Ι * . If 1=Ι , then all nodes are fully utilized; if 1>Ι , tasks are arriving faster than they 
can be executed; finally, if 1<Ι , then there are nodes that might be idle. 

Workload Execution Time: We define the workload execution time, V , of our system as 

||*1,
||

max Κ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΑΤ

=
BV . 

Workload Execution Time with Overhead: In general, the total execution time for a task Κ∈κ  

includes overheads, which reduced efficiency by a factor of 
)(
)(

κχ
κµ .  We define the workload execution 

time with overhead, W , of our system as ||*1,
||

max Κ⎟⎟
⎠

⎞
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ΑΤ

Υ
=W , where Y  is the average task 

execution time including overheads defined as 
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Efficiency: We define the efficiency, Ε , of a particular workload as 
W
V

=Ε .  The expanded version of 

efficiency is 
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We claim that for the caching mechanisms to be effective in this model (i.e. the needed data objects to be 
found in transient data stores), the aggregate capacity of our transient storage resources Τ  is greater 
than our workload’s working set, Ω , (all data objects required by a sequence of tasks) size; formally, we 
can say ||)( Ω≥∑

Τ∈τ
τσ .  

We also claim that we can obtain 5.0>Ε  if ),()()( τδζκοκµ +> , where )(κµ , )(κο , ),( τδζ  are the time 
to execute and dispatch the task Κ∈κ , and copy the object δ  to Τ∈τ , respectively.  

Speedup: We define the speedup, S , of a particular workload as ||* TES = . 

Optimizing Efficiency: Having defined both efficiency and speedup, it is possible to maximize for either 
one, as efficiency normally monotonically decreases and speedup increases with more resources used.  
We can optimize efficiency by finding the smallest number of transient compute/storage resources || Τ  
while we maximize speedup times efficiency.   
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3 Simulations 
We will validate the AMDASK model through simulations, to verify the both the efficient and scalability 
given a wide range of simulation parameters (i.e. number of storage and computational resources, 
communication costs, management overhead, and workloads – including inter-arrival rates, query 
complexity, and data locality). We will implement the model in a discrete event simulation that will allow 
us to investigate a wider parameter space than we could in a real world implementation.  

The simulations will specifically attempt to model a grid computing environment comprising of 
computational resources, storage resources, batch schedulers, various communication technologies, 
various types of applications, and workload models. We will perform careful and extensive empirical 
performance evaluations in order to create correct and accurate input models to the simulator; the input 
models include 1) Communication costs, 2) Data management costs, 3) Task scheduling costs, 4) Storage 
access costs, and 5) Workload models.  
We expect to be able to scale simulations to more computational and storage resources than we could 
achieve in a real deployed system due to the availability of resources. Furthermore, assuming the input 
models to be correct, we should be able to accurately measure the end-to-end performance of various 
applications using a wide range of strategies for the various resource management components.  
Model Validation: The outputs from the simulations over the entire considered parameter space will 
form the datasets that will be used to statistically validate the model using 2R statistic and graphical 
residual analysis. 

2R Statistic: It measures the fraction of the total variability between the model’s estimated values and the 
simulated derived values. The 2R Statistic is the square of the correlation coefficient which is calculated 

as follows: ∑
=
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variability in the data is captured by the proposed model.  

Residual Analysis: Often, a high 2R value does not guarantee that the model fits the data well. Use of a 
model that does not fit the data well cannot provide good answers to the underlying abstract model and 
will likely misrepresent the behavior of the model in practice. There are many statistical tools for model 
validation, but the primary tool for most process modeling applications is graphical residual analysis. 
Different types of plots of the residuals from a fitted model provide information on the adequacy of 
different aspects of the model. Graphical methods have an advantage over numerical methods (i.e. 2R  
statistic) for model validation because they readily illustrate a broad range of complex aspects of the 
relationship between the model and the data. Numerical methods for model validation tend to be narrowly 
focused on a particular aspect of the relationship between the model and the data and often try to 
compress that information into a single descriptive number or test result. 

The residuals from a fitted model are the differences between the responses observed at each combination 
values of the explanatory variables and the corresponding prediction of the response computed using the 
regression function. In the context of our proposed model, the definition of the residual for the thi  
observation in the data set is iii Eer −=  with ie  denoting the thi  efficiency response in the simulated data 
set and iE  is the efficiency as calculated by the abstract model. 

If the model fit to the data were correct, the residuals would approximate the random errors that make the 
relationship between the explanatory variables and the response variable a statistical relationship. 
Therefore, if the residuals appear to behave randomly, it suggests that the model fits the data well. On the 
other hand, if non-random structure is evident in the residuals, it is a clear sign that the model fits the data 
poorly. [72] 
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4 Related Work 
Our proposed work covers a wide range of research topics and areas. We believe it is important to discuss 
other work in the literature that are related to our proposal. For a more coherent organizational structure, 
the related work is partitioned into several categories: 1) data-centric task farms, 2) grid simulations, 3) 
resource management, and 4) applications. 

4.1 Task Farms 
Task farming is a general concept that has been applied on a wide range of systems. The Blue Gene 
supercomputer is one example which has defined and implemented task farms in order to implement 
parallelism in some applications. [49] Casanova et al. addresses basic scheduling strategies for task 
farming in Grids [47]; they acknowledge the difficulties that arise in scheduling task farms in dynamic 
and heterogeneous systems, but do little to address these problems.  M. Danelutto argues the 
inefficiencies of task farms in heterogeneous and unreliable environments; he proposes various adaptive 
task farm implementation strategies [44] to address these classical inefficiencies found in task farms. H. 
Gonzalez-Velez argues for similar inefficiencies for task farms due to heterogeneity typically found in 
Grids. He claims that the dynamicity of Grids also leads to sub-optimal task farm solutions. He proposes 
an adaptive skeletal task farm for Grids [46] which take into account predictions of network bandwidth, 
network latency, and processor availability.  Heymann et al. investigates scheduling strategies that 
dynamically measures the execution times of tasks and uses this information to dynamically adjust the 
number of workers to achieve a desirable efficiency, minimizing the impact in loss of speedup. [45] 
Petrou et al. show how scheduling speculative tasks in a compute farm [48] can significantly reduce the 
visible response time. The basic idea is that a typical end use would submit more work than he really 
needed in the hopes of allowing the scheduler ample opportunities to schedule work before the end user 
needed to retrieve the results. We believe that this model of scheduling would work only in a lightly 
loaded compute farm, which is not the norm in today’s deployed Grids.  In summary, all the related work 
we found that targeted task farms and scheduling did not address the “data-centric” part of our task farm 
model. Heterogeneity and dynamicity of Grids is indeed a problem for task farms, however unless careful 
consideration is given to the data that the task farm must operate on, it is unlikely that the raw compute 
and storage resources are utilized as efficiently as they could be.  

4.2 Grid Simulations 
There has been much work in Grid simulations, mostly due to the advantages they offer in easily testing 
different scheduling algorithms, data management strategies, replication strategies, etc on large scale 
Grids without the need to actually have access to large amounts of resources. The simulations that are 
most closely related to the work we intend to pursue in order to validate the AMDASK model revolve 
around scheduling of jobs or tasks in relation to the data management strategies.  We intend to use the 
GridSim simulator [41, 42, 43] implemented as part of the GridBus project. The same group also made 
extensions to GridSim that allows the modeling and simulation of data grids with integration of data 
storage, replication and analysis [56]. These extensions could prove to be invaluable to our own 
simulation work in validating the AMDASK model. The same group also has done work in the dynamic 
job grouping-based scheduling for deploying applications with fine-grained tasks on global Grids [57]; 
the scheduling is done based on the task granularity, a concept that is important in the AMDASK model, 
and that we plan to explore through both simulations and in the real implemented systems.  Another 
simulator which addresses both data management and scheduling is OptorSim [53]. It was designed to 
investigate Grid environments for studying dynamic data replication strategies. The authors show the 
promising advantages of data replication based on usage patterns for the Large Hadron Collider 
experiments at CERN. [54, 55] A similar simulation study, ChicSim, shows the effects of data replication 
on the scheduling strategies. [58] The experiments differ from our proposed work in that the replication 
strategies assume the replication is taking place between the well connected storage resources at different 
sites, and do not take into consideration the fact that computational nodes also have attached storage as 
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we do.  Finally, Singh et al. investigates the performance impact of resource provisioning on workflows 
[25], and shows through simulations that considerable performance improvements can be obtained from 
resource provisioning. We plan to pursue this study in both simulations and in practice.  

4.3 Resource Management 
Task Dispatch: Full-featured local resource managers (LRMs) such as Condor [18], Condor-J2 [27], 
PBS [28], LSF [29] support client specification of resource requirements, data staging, process migration, 
check-pointing, accounting, and daemon fault recovery. In contrast, our own work Falkon is not a full-
featured LRM: it focuses solely on efficient task dispatch and thus can omit some of these features in 
order to streamline task submission. This narrow focus is possible because Falkon can rely on LRMs for 
certain functions (e.g., accounting) and clients for others (e.g., recovery, data staging). The BOINC 
“volunteer computing” system [30, 31] has a similar architecture to that of Falkon. However, it is not 
clear how much BOINC would need to adapt in order to be used in production Grids, the main focus and 
aim of our work. In summary, Falkon’s innovation is its combination of a fast lightweight scheduling 
overlay on top of virtual clusters with the use of standard grid protocols for adaptive resource allocation. 
This combination of techniques allows us to achieve higher task throughput than previous systems, while 
also offering applications the ability to trade-off system responsiveness, resource utilization, and 
execution efficiency. 

Resource Provisioning: Multi-level scheduling has been applied at the OS level [27, 30] to provide faster 
scheduling for groups of tasks for a specific user or purpose by employing an overlay that does 
lightweight scheduling within a heavier-weight container of resources: e.g., threads within a process or 
pre-allocated thread group. Frey and his colleagues pioneered the application of this principle to clusters 
via their work on Condor “glide-ins” [23]. Requests to a batch scheduler (submitted, for example, via 
Globus GRAM4 [36]) create Condor “startd” processes, which then register with a Condor resource 
manager that runs independently of the batch scheduler. Others have also used this technique. For 
example, Mehta et al. [26] embed a Condor pool in a batch-scheduled cluster, while MyCluster [24] 
creates “personal clusters” running Condor or SGE. Such “virtual clusters” can be dedicated to a single 
workload; thus, Singh et al. find, in a simulation study [25], a reduction of about 50% in completion time, 
due to reduction in queue wait time. However, because they rely on heavyweight schedulers to dispatch 
work to the virtual cluster, the per-task dispatch time remains high. Appleby et al. [33] were one of 
several groups to explore dynamic resource provisioning within a data center. Ramakrishnan et al. [34] 
also address adaptive resource provisioning with a focus primarily on resource sharing and container level 
resource management. Our work differs in its focus on performing resource provisioning on non-
dedicated resources that are managed by LRMs. J. Bresnahan addresses resource provisioning through an 
architecture for dynamic allocation of compute cluster bandwidth [35], in which he modified the Globus 
GridFTP server to support the dynamic allocation of additional GridFTP servers under load. Of all the 
resource provisioning work, only the dynamic GridFTP server work does a dynamic resizing of the 
resource pool based on some metrics, such as the load on the system. 

Data Management: The Globus Toolkit includes two components (Replica Location Service [59] and 
Data Replication Service [60]) that can be used to build data management services for Grid environments. 
Several large projects (Mobius [63] and ATLAS [61]) implemented their own data management systems 
to aid in the respective application’s implementations. Google also has their own data management 
system called BigTable, a distributed storage system for structured data [68]. Finally, GFarm is a Grid file 
system that supports high-performance distributed and parallel data computing [50]. Yamamoto also 
explores the use of GFarm for petascale data intensive computing [51].  

Data management on its own is useful, but not as useful as it could be if it were to be coupled with 
compute resource management as well. Ranganathan et al. performed simulation studies of computation 
and data Scheduling algorithms for data Grids [58]. The GFarm team implemented a data aware scheduler 
in GFarm using LSF scheduler plug-in mechanism [2]. Finally, from Google, the combination of 
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BigTable, Google File System (GFS) [5], and MapReduce [70] yields a system that could potentially have 
all the advantages of our proposed data-centric task farms, in which computations and data are co-located 
on the same resources. Although both Google and GFarm address the coupling of data and computational 
resources, they both assume a relatively static set of resources, one that is not commonly found in today’s 
Grids. In our work, we further extend this fusion of data and compute resource management by also 
enabling dynamic resource provisioning, which essentially allows our solution to operate over today’s 
batch-based Grids. It is worth noting that both Google’s approach and GFarm require dedicated resources, 
which makes the problem more tractable when compared to our solution which assumes that the resources 
are shared among many users through batch-scheduled systems, which leases some set of resources for 
finite periods of time. 

4.4 Analysis of Large Datasets  
All our work is motivated by the potential to improve application performance and even enable the ease 
of implementation of certain applications that would otherwise be difficult to implement with adequate 
performance for the applications to be useful. This sub-section covers an overview of a broad range of 
systems used to perform analysis on large datasets.  The DIAL project that is part of the PPDG/ATLAS 
project focuses on the distributed interactive analysis of large datasets [66]. Google has combined several 
of their projects such as BigTable [68], Sawzall [69], MapReduce [70], and GFS [5] in order to address 
some of Google biggest data analysis challenges in indexing the world wide web. Chervenak et al. 
developed the Earth System Grid-I prototype to analyze climate simulation data using data Grid 
technologies [64]. As we previously discussed, the Mobius project developed a sub-project DataCutter for 
distributed processing of large datasets [65]. A database oriented view for data analysis is taken in the 
design of GridDB, a data-centric overlay for the scientific Grid [67]. Finally, Olson et al. discusses Grid 
service requirements for interactive analysis of large datasets [62]. All in all, what all these projects lack 
is either co-location of storage and computations close to each other (i.e. on the same physical resource), 
or they lack the assumption that Grid systems are managed by batch schedulers which complicates the 
deployment of permanent data management infrastructure such as Google’s GFS or the GFarm file 
system. 

5 Completed Milestones and Future Work 
In order to put in context the proposed work, it is worthwhile to discuss the current state of the work, and 
what has been accomplished to date. This section will discuss the completed milestones followed by 
future work.  

5.1 Completed Milestones 
There are various fundamental research questions we hope to address through our work presented in this 
proposal. They center on two main areas, data and compute resource management, and how they relate to 
particular workloads of data analysis on large datasets. We have completed several key milestones which 
have set the groundwork for the near-term future work. These milestones are in four main areas: 1) 
defining an abstract task farm model, 2) resource management, 3) data diffusion, and 4) applications.   

Abstract task farm model: In order to explore the split/merge methodology found in many applications, 
combined with the proposed data diffusion, we have formally defined AMDASK, an Abstract Model for 
DAta-centric taSK farms. A data-centric task farm is defined as a common parallel pattern that drives the 
independent computational tasks, taking into consideration the data locality in order to optimize the 
performance of the analysis of large datasets.  

Resource Management: To enable the rapid execution of many tasks on compute clusters, we have 
developed Falkon, a Fast and Light-weight tasK executiON framework. [6] In essence, Falkon is the 
practical realization of the abstract model AMDASK. Falkon integrates (1) multi-level scheduling to 
separate resource acquisition (via, e.g., requests to batch schedulers) from task dispatch, and (2) a 
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streamlined dispatcher. Falkon’s integration of multi-level scheduling and streamlined dispatchers 
delivers performance not provided by any other system. Microbenchmarks show that Falkon throughput 
(between 200 to 5000 tasks/sec depending on configuration and optimizations used) and scalability (to 
54,000 executors and 1,000,000 tasks processed in just 400 seconds) are several orders of magnitude 
better than other systems used in production Grids. [6] Large-scale astronomy and medical applications 
executed under Falkon by the Swift parallel programming system [13, 19] achieve up to 90% reduction in 
end-to-end run time, relative to versions that execute tasks via separate scheduler submissions. [6, 13] 
Furthermore, the dynamic resource provisioning proposed in Falkon can allocate resources on the order of 
10s of seconds across multiple Grid sites and can reduce average queue wait times by up to 95% 
(effectively yielding queue wait times within 3% of ideal). [11, 73] Falkon’s latest stable release v0.9 has 
been tested in various environments, including the TeraGrid [17], TeraPort [74], and Tier3 [75].  We have 
also submitted a proposal to make Falkon a Globus incubator project and are waiting on feedback [93].  
Finally, we have two separate initiatives that are still work in progress, but have already made some 
progress.  The first is extending provisioning from batch-scheduled systems to economic ones, such as the 
Amazon Elastic Computing Cloud (EC2) [96].  The second is to move from a 2-Tier architecture in 
Falkon to a 3-Tier one, and to explore alternative technologies in order to be able to run Falkon on the 
IBM BlueGene Supercomputer [90]. 

Data Diffusion: We first identified that data locality is important in large scale scientific exploration [9].  
We have developed a reference implementation [76, 77] of the data diffusion as part of the AstroPortal 
[76, 77], where the AstroPortal [7, 8] is an astronomy application that is tightly coupled to Falkon; we 
discuss this further in the following applications sub-section. The reference implementation performed all 
the basic requirements of the proposed data diffusion (caching of image data on local disk, data–aware 
scheduler) with some specific assumptions made due to the particular astronomy application and dataset 
we were using. We investigated the performance of the data-aware scheduler and found it do be 
sufficiently fast for medium size Grids, but did not scale well to large grids. [77] With the goal to 
generalize the data management implementation, we ported the reference implementation directly into 
Falkon for any other application that ran over Falkon to use transparently [78].  We have presented some 
preliminary results on the data diffusion component of Falkon at the 2007 Microsoft eScience Workshop 
at RENCI [79, 78].  We plan to update the Falkon provider code in Swift to enable the data diffusion to be 
used by any Swift application; this work is expected to be completed by 2/1/08.  

Applications: We have integrated Falkon into the Karajan [19, 13] workflow engine, which in term is 
used by the Swift parallel programming system [13]. Thus, Karajan and Swift applications can use Falkon 
without modification, and hence we are able to leverage a wide range of scientific applications that are 
already implemented and run over Swift. We have tested several Swift-based applications from various 
domains including astronomy [6, 13, 88], medicine [6, 13, 88], chemistry [38], and economics [39] with 
varying datasets, workloads, and analysis codes. These applications had end-to-end run time reduction of 
up to 90%, relative to versions that execute tasks via separate scheduler submissions. Furthermore, we 
also developed an astronomy application named the AstroPortal [7, 8, 80, 81, 82], which has the analysis 
codes (i.e. image correction, pixel shifting, stacking) and application logic (i.e. mapping between sky 
coordinates to files) tightly integrated into Falkon. We have deployed the AstroPortal on the TeraGrid 
[17] distributed infrastructure and it is now online in beta testing by our collaborator’s group Alex Szalay 
at John Hopkins University, with the goal to have it accessible in the future by the broader astronomy 
community. We have shown the AstroPortal to scale to 100 processors and 100K+ fine grained analysis 
tasks on the SDSS DR5 dataset [91] with completion times in 2~104 minutes, depending on the data 
source location [7, 8, 94, 95]; by contrast, a similar scale study which performed a stacking analysis of 
41K+ quasars from the same SDSS dataset took 3 months time to perform. [89]  

The documents that have been produced thus far and were covered in this section that will provide a good 
base for the dissertation are: 
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• Proposals: 
o Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy 

Datasets; NASA GSRP Proposal, Ames Research Center, NASA, 2006 [81] 
o Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy 

Datasets: Year 1 Status and Year 2 Proposal; NASA GSRP Year 1 Progress Report and 
Year 2 Proposal, Ames Research Center, NASA, 2007 [82] 

o Falkon: A Proposal for Project Globus Incubation; Globus Incubation Management 
Project, 2007 [93] 

• Journal/Conference/Workshop Papers and Book Chapters: 
o AstroPortal: A Science Gateway for Large-scale Astronomy Data Analysis; TeraGrid 

Conference 2006 [8] 
o Swift: Fast, Reliable, Loosely Coupled Parallel Computation; IEEE Workshop on 

Scientific Workflows 2007 [13] 
o Falkon: a Fast and Light-weight tasK executiON framework; IEEE/ACM SC07, 2007 [6] 
o Realizing Fast, Scalable and Reliable Scientific Computations in Grid Environments; 

book chapter in Grid Computing Research Progress, Nova Publisher 2008 [88] 
o Swift: Realizing Fast, Reliable, Large Scale Scientific Computation; under review at 

Journal of Future Generation Computer Systems 2008 [97] 
• Short Papers: 

o The Importance of Data Locality in Distributed Computing Applications; NSF Workflow 
Workshop 2006 [9] 

o A Data Diffusion Approach to Large Scale Scientific Exploration; Microsoft eScience 
Workshop at RENCI 2007 [79] 

• Posters: 
o Dynamic Resource Provisioning in Grid Environments; TeraGrid Conference 2007 [11] 
o Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy 

Datasets; IEEE/ACM SC06, 2006 [7] 
• Technical Reports: 

o Characterizing Storage Resources Performance in Accessing the SDSS Dataset; 
Technical Report, University of Chicago, 2005 [94] 

o Characterizing the SDSS DR4 Dataset and the SkyServer Workloads; Technical Report, 
University of Chicago, 2006 [95] 

o 3DcacheGrid: Dynamic Distributed Data Cache Grid Engine; Technical Report, 
University of Chicago, 2006 [76] 

o Storage and Compute Resource Management via DYRE, 3DcacheGrid, and CompuStore; 
Technical Report, University of Chicago, 2006 [77] 

o SkyServer Web Service; Technical Report, University of Chicago, 2007 [80] 
o Dynamic Resource Provisioning in Grid Environments; Technical Report, University of 

Chicago, 2007 [73]   
o Accelerating Large Scale Scientific Exploration through Data Diffusion; Technical 

Report, University of Chicago, 2007 [78] 
• Work in Progress:  

o Enabling Serial Job Execution on the BlueGene Supercomputer with Falkon; Wiki 
Report 2007 [90]  

o Provisioning EC2 Resources; Wiki Report 2007 [96] 
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5.2 Future Work 
Resource Management (3-Tier Architecture & Alternate Technologies): We plan to evolve the 
Falkon architecture from the current 2-Tier architecture to a 3-Tier one. We are expecting that this 
architecture change would allow us to introduce more parallelism and distribution of the currently 
centralized management component in Falkon, and hence offer higher dispatch and execution rates than 
Falkon currently supports. We are pursuing this work with the goal to have Falkon run at considerably 
larger scales, such as those found on the latest IBM BlueGene/P (BG/P) that will be online late 2007 at 
Argonne National Laboratory. The work in porting Falkon to the BG/P will open new opportunities to 
applications that traditionally could not execute on the BG/P due to the lack of support of task farms. It 
will be crucial to test the limits of the 3-Tier architecture from a performance point of view to evaluate the 
appropriateness of Falkon on the BG/P which can scale to 256K processors. Furthermore, we are also 
working at simplifying the various components in Falkon, including the communication protocols that are 
internal to the system. We plan to implement the Executor in C (in addition to the one that is already 
implemented in Java), and offer a proprietary TCP-based communication protocol (as opposed to the 
existing Web Services protocol) between the Executors and the Dispatcher. This transition should allow 
Falkon to achieve higher performance due to the lighter weight communication protocol, and allow the 
Executor to be deployed on computer architectures that do not support Java, such as the IBM BlueGene.  
We have already made some progress in this direction and have documented it in a Wiki Report [90].  We 
plan to submit this work for publication to SC08 (deadline in April 2008), but will consider other venues 
with earlier deadlines if we have the paper draft earlier.   

Resource Management (Provisioning): Some of the dynamic resource provisioning work from Falkon 
was published in the Falkon SC07 paper [6], others were published in the TG07 poster [11], and an 
extension to the TG07 poster can be found in a technical report [73]. We plan to extend the provisioning 
work to support multiple sites within a single provisioner (we currently need multiple provisioners to 
support multiple sites), and perform a performance study to show the application level benefits and 
transparency of executing across multiple sites. We plan to submit the dynamic resource provisioning 
work (both past and the proposed multi-site extension) as self inclusive work for publication at HPDC08 
(deadline in January 2008). Furthermore, we plan to extend the provisioner to support other abstract 
resource allocation interfaces; it currently supports GRAM4, which is sufficient for most deployed Grids. 
We plan to explore the possibility of using the provisioner to allocate virtual resources via the Workspace 
Service [84, 85, 86, 87] on both Grids and the Amazon Elastic Compute Cloud (EC2) [83]; an initial 
write-up of our progress in this direction can be found on he Wiki Report [96].  The EC2 computation 
resource offers unique features in which the accounting and charging occurs with real money (as opposed 
to imaginary service units that are granted upon a project’s inception). Assuming that Amazon is willing 
to expand and scale the EC2 service indefinitely as demand rises, it offers a unique opportunity to explore 
new resource allocation schemes that assume that resources could always be acquired for a certain price 
(as opposed to the batch-scheduled resource allocation in Grids which implies that jobs must wait in a 
wait queue if not enough resources are available). We expect to publish this work in PODC08 (deadline in 
February 2008).   

Resource Management (Data Diffusion): We plan to complete the Falkon provider (in Swift) 
implementation to leverage the data diffusion in Falkon that will allow any application (as opposed to just 
the AstroPortal) running over Falkon to use the proposed data caching transparently; the goal is to 
potentially have faster application execution times, as well as better scalability. The data diffusion 
incorporates data caches in executors and data location-aware task scheduling algorithms in the dispatcher 
of Falkon. Individual executors manage their own cache content, using local cache eviction policies, and 
communicate changes to cache content to the dispatcher. The dispatcher then associates with each task 
sent to an executor information about where to find non-cached data. In the future, we will also analyze 
and (if analysis results are encouraging) experiment with alternative approaches, such as decentralized 
indices and centralized management of cache content. We have implemented four well-known cache 
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eviction policies [15]: Random, FIFO (First In First Out), LRU (Least Recently Used), and LFU (Least 
Frequently Used). Data caching at executors implies the need for data-aware scheduling. We implement 
four policies: next-available, first-available, max-cache-hit, and max-compute-util. We plan to submit an 
in-depth analysis of the work and results (which are currently in a technical report [78]) to SC08 (deadline 
in April 2008). We also plan to submit an all inclusive journal paper covering Falkon including the 
resource provisioning and data diffusion to the Journal of Grid Computing (deadline is open ended).  

Applications: With the integration of Falkon into the Karajan [19, 13] workflow engine (which is used 
by the Swift parallel programming system [13]), Swift applications can use Falkon without modification. 
Leveraging the wide range of scientific applications that are already implemented and configured to run 
over Swift, we plan to investigate the following applications in depth to show the effectiveness and 
flexibility of the AMDASK model and Falkon in practice. The applications span various domains 
(astronomy [7, 8, 12], astro-physics [40], medicine [32], chemistry [38], economics [39]), covering a 
variety of different datasets, workloads, and analysis codes. Besides the existing publications of the 
various applications, we expect to publish the new results in some of the papers already mentioned on the 
data diffusion and resource provisioning. Furthermore, we expect to publish an updated and extended 
version of the AstroPortal paper [8] to the eScience Conference (deadline in July 2008). 

Performance Evaluation: We need to perform extensive performance evaluations on the effects of data 
diffusion, the various caching policies, various workloads, and data access patterns. Some of the metrics 
we will measure are: 1) application execution time, 2) application speedups, 3) task throughput, 4) 
scalability, 5) queue wait time, 6) data caching: cache hits vs. cache misses, 7) communication overhead, 
8) scheduling overheads, 9) data management overheads, 10) dynamic resource provisioning latency, 11) 
resource efficiency, and 12) resource wastage. The results from the performance evaluation will be 
integrated throughout the various new papers discussed in this section. 

New Science: We expect to work with the astronomy community at large to get the AstroPortal into 
production so it can be used to advance the astronomy domain. Our contacts with the astronomy 
community are 1) Alex Szalay from the Department of Physics and Astronomy at Johns Hopkins 
University, 2) Jerry C. Yan from the NASA Ames Research Center, and 3) the US National Virtual 
Observatory (NVO) at http://sandbox.us-vo.org/grid.cfm. If significant new science is achieved as a direct 
result of our work, we expect to publish these new science results in well known astronomy journals with 
Alex Szalay as the lead author. We are also hoping to help other groups that are currently working with 
the Swift system to scale their applications to larger scales and faster execution times, and document the 
new findings for each application, and incorporate interesting findings and results within the various 
papers mentioned thus far.  

Simulations: We will validate the AMDASK model through simulations, to verify the both the efficient 
and scalability given a wide range of simulation parameters (i.e. number of storage and computational 
resources, communication costs, management overhead, and workloads – including inter-arrival rates, 
query complexity, and data locality).  We will implement the model in a discrete event simulation that 
will allow us to investigate a wider parameter space than we could in a real world implementation. The 
simulations will specifically attempt to model a grid computing environment comprising of computational 
resources, storage resources, batch schedulers, various communication technologies, various types of 
applications, and workload models. We will perform careful and extensive empirical performance 
evaluations in order to create correct and accurate input models to the simulator; the input models include 
1) Communication costs, 2) Data management costs, 3) Task scheduling costs, 4) Storage access costs, 
and 5) Workload models. We expect to be able to scale simulations to more computational and storage 
resources than we could achieve in a real deployed system due to the availability of resources. 
Furthermore, assuming the input models to be correct, we should be able to accurately measure the end-
to-end performance of various applications using a wide range of strategies for the various resource 
management components. We expect to publish the abstract task model and its validation via simulations 
at SC08 (deadline in April 2008), or at SigMetrics08 (deadline in November 2008). 
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Falkon Visibility and Support: We expect to make the Falkon framework available to the larger Grid 
community through the Globus Incubator Project initiative [92], and support the Falkon code-base 
through mailing lists, regular code maintenance, updates. [93] 

In summary, the paper topics we plan to submit for publication over the course of the next year are, as we 
discussed them in Section 5.2: 

• Extending Provisioning to use Virtual Resources in EC2; PODC08 (February 2008) 
• Data Diffusion; SC08 (April 2008) 
• Dynamic Resource Provisioning; SC08 (April 2008) 
• Enabling Serial Job Execution on the BlueGene Supercomputer; SC08 (April 2008) 
• Falkon v2.0; Journal of Grid Computing (summer 2008) 
• AstroPortal v2.0: Leveraging Falkon and Data Diffusion; eScience08 (July 2008) 
• AMDASK Model and Validation ; SigMetrics08 (November 2008) 
• New Science Achieved with AstroPortal; an astronomy journal (open ended) 

5.3 Timeline of Future Work 
Figure 4 outlines the detailed plan of work for the remainder of the five quarters of work, assuming that I 
can stay on schedule. The organization of the Gantt chart is similar to that found in the future work in 
section 5.2, in which we break down the work into resource management (3-tier architecture, alternative 
technologies, provisioning extensions, data diffusion), application case studies (testing and new science), 
performance evaluation, model validation & simulations, Falkon visibility & support, and the dissertation. 
There is much work to be done, and to ensure that we can accomplish everything we are proposing, I will 
have to be focused on the problems outlined in this proposal, and to not have any major deviations from 
the schedule due to unforeseen things, such as problems with the implementations, communication with 
application domain experts, or deviations on tangents that are not directly related to the future work 
mentioned in Section 5.2.    

 
Figure 4: Gantt chart outlining the tentative future work schedule (the purple bars overlaid over 

the blue bars indicate the approximate amount of work completed for the corresponding row) 
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The major milestones are the Candidacy Exam which will hopefully take place at the beginning of 
December 2007, with a draft of the dissertation to follow ten months later and finally with a final defense 
of the dissertation work in the fall quarter of 2008.  

Table 1: Major milestones and dates 

Date Description 
11/21/07 Candidacy Paper Draft Sent to Committee
12/12/07 Candidacy Exam 
09/29/08 Dissertation Draft 
10/28/08 Dissertation Defense 

6 Conclusions 
We see the dynamic analysis of large datasets to be important due to the ever growing datasets that need 
to be accessed by larger and larger communities. Attempting to address the storage and computational 
problems separately essentially forcing much data movement between computational and storage 
resources will not scale to tomorrow’s peta-scale datasets and will likely yield significant underutilization 
of the raw resources. We defined the abstract model for data-centric task farms, AMDASK, in order to 
address the integration of the storage and computational issues found in a class of applications which can 
be decomposed down into many independent computational tasks which need to work on large datasets. 
We plan to validate the abstract model via discrete event simulations, and to provide a reference 
implementation to show the flexibility and effectiveness of it on real world applications and datasets.  

There are various fundamental research questions we hope to address through our work presented in this 
proposal. They center on two main areas, data and compute resource management, and how they relate to 
particular workloads of data analysis on large datasets.  

Compute resource management: Dynamic resource provisioning architectures and implementations 
must be carefully designed in order to offer the right abstraction while at the same time offer practical and 
measurable advantages over static resource provisioning; dynamic resource provisioning can lead to 
significant savings in end-to-end time to completion of application runtimes. Another important issue is 
the scheduling of computational tasks close to the data. Essentially, we need to investigate various 
strategies for workload management in which we can quantify the cost of moving the work vs. moving 
the data. Finally, we emphasize the need for high throughput task dispatch in order to support workloads 
involving many small tasks on medium to large scale Grids. 

Data resource management: We believe that data management architectures is important to ensure that 
the data management implementations scale to the required dataset sizes in the number of files, objects, 
and dataset disk space usage while at the same time, ensuring that data element information can be 
retrieved fast and efficiently. We plan to investigate the data placement and caching strategies to identify 
their appropriateness for workloads, datasets, data locality, and access patterns found in the interactive 
analysis of large datasets.  

Finally, we expect to explore several applications from various domains, such as astronomy, astro-
physics, medicine, chemistry, and economics in order to show off the flexibility and effectiveness of the 
AMDASK model and its implementation (Falkon) on real world applications. 
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