European Research Network on Foundations, Software Infrastructures and Applications
for large scale distributed, GRID and Peer-to-Peer Technologies

A Metwork of Excellence funded by the European Commission

Towards ServMark, an Architecturefor Testing Grids

M. Andreica, N. Tapus
Computer Science Department
Polytechnic University of Bucharest
e-mail: mugur el , t apus@s. pub.ro

A. losup, D.H.J. Epema
Electrical Eng., Mathematics and Computer Science Depamtm
Technical University of Delft
e-mail: A. 1 osup, D. H. J. Epenma@ udel ft . nl

C. Dumitrescu
Department of Mathematics and Computer Science
The University of Mnster
e-mail: dum tr es@ini - nuenst er. de

l. Raicu, I. Foster
Computer Science Department
The University of Chicago
e-mail:i rai cu, foster @s. uchi cago. edu

M. Ripeanu
Electrical and Computer Engineering
The University of British Columbia
e-mail: mat ei @ce. ubc. ca

N CoreGRID Technical Report
(oreGRmB— Number TR-0062

——— November 28, 2006

Institute on Resource Management and Scheduling (WP 6

CoreGRID - Network of Excellence
URL: http://www.coregrid.net

CoreGRID is a Network of Excellence funded by the Europeam@gssion under the Sixth Framework Programme

Project no. FP6-004265

Towards ServMark, an Architecture for Testing Grids

M. Andreica, N. Tapus
Computer Science Department
Polytechnic University of Bucharest
e-mail: mugur el , t apus@s. pub.ro

A. losup, D.H.J. Epema
Electrical Eng., Mathematics and Computer Science Defgantm
Technical University of Delft
e-mail: A. 1 osup, D. H. J. Epema@ udel ft . nl

C. Dumitrescu
Department of Mathematics and Computer Science
The University of Munster
e-mail:dum tres@uni - nuenst er . de

l. Raicu, I. Foster
Computer Science Department
The University of Chicago
e-mail:i rai cu, foster @s. uchi cago. edu

M. Ripeanu
Electrical and Computer Engineering
The University of British Columbia
e-mail:mat ei @ce. ubc. ca

CoreGRID TR-0062
November 28, 2006

Abstract

The Grid promise is starting to materialize today: largelsenulti-site infrastructures have grown to assist the
work of scientists from all around the world. In only ten y&gsroduction Grid environments have grown from a few
hundred to several tens of thousands of resources, and &werofhundreds of users. To exploit this already existing
infrastructure, the behavior of the real systems, and itiquéar their offered performance, must be understood and
quantified. However, evaluating the performance testinguith large-scale environments is a non-trivial endeavor,
for which no comprehensive solution exists. To addresspitiblem, we present in this work our first steps towards
ServMark, a performance testing framework aimed at siyiplif and automating the testing process in Grid envi-
ronments. ServMark coordinates a pool of machines thaatesiget service, generates complex testing workloads,
collects and aggregates performance metrics, and ges@@t®rmance statistics. The aggregate data collected pro
vide information on service throughput, on service faimmefen serving multiple clients concurrently, and on the
impact of network latency on service performance, effetyivenabling functionality and scalability testing. Our
initial results demonstrate the operation of ServMark wiesting fine-grained services in real environments.

This research work is carried out under the FP6 Network ofliecce CoreGRID funded by the European Commission (Conitgl-2002-

004265).

1 Introduction

The Grid world is starting to fulfill the promise of a worldade computing infrastructure for the use of the ever-
growing scientific community. In a decade, systems conmgiaifew hundreds of resources have grown tremendously,
with current systems such as CERN's LCG, NorduGrid, TerdGeirid’5000, or The Open Science Grid, gathering
together (tens of) thousands of resources, and offeringesior better throughput when compared with large-scale
parallel production environments [41,42]. To exploit thiseady existing infrastructure, the behavior of the syste
and in particular the offered performance, must be undedstmd quantified. Using performance evaluation data
it is possible to build empirical performance estimatoet tink observed service performance (throughput, respons
time) to offered load. These estimates can be then usedadinja resource scheduler to increase resource utilization
while maintaining desired quality of service levels. Weuwsrdghat only real environment testing can provide accurate
performance insights. Indeed, the Grid systems complegitders theoretical performance evaluations unpragtical
and the dynamicity, the heterogeneity, or even the sheesithe current grid systems make simulation results appli-
cable only for first-order evaluations. However, evalugitime performance testing in real large-scale environmignts
a non-trivial endeavor, for which no comprehensive soluggists.

To address this problem, we present in this work our firstsstepards ServMark, a performance testing frame-
work aimed at simplifying and automating the testing predesreal Grid environments. ServMark is based on our
previous work on DiPerF [17] and GrenchMark [18]. DiPerF][it/uilt around the idea of coordinating a distributed
pool of machines that run clients of a target service, ctdland aggregates performance metrics, and generatesperfo
mance statistics. GrenchMark [18] focuses on generatinmgpéex workloads for testing purposes. ServMark couples
these two approaches, and adds the necessary coordinadi@uemation layer. Thus, ServMark coordinates a pool
of machines that test a target service, generates complixgevorkloads, collects and aggregates performance met-
rics, and generates performance statistics. The aggrdgtgecollected provide information on service throughput,
on service fairness when serving multiple clients conegutyeand on the impact of network latency on service per-
formance, effectively enabling functionality and scali#pitesting. Our initial results demonstrate the openatid
ServMark when testing fine-grained services deployed ihlegge-scale environments. Using machines from the
PlanetLab [46] and the Grid3 [47] testbeds, we conduct exyarts in which the service clients experience different
levels of connectivity. The data collected provide infotima on services maximum throughput, on service fairness
when multiple clients access the service concurrently,anthe impact of network latency on service performance
from both client and service viewpoint. We conclude thatv$kark is useful for testing P2P and Grid ideas in real
large-scale systems.

The remainder of this paper is structured as follows. Thifiehg section presents our motivation. Section 3
describes the ServMark frameworks design. The validatidhe framework is presented in Section 4. The paper
concludes with a brief summary of our experience and futunkyglans.

2 Motivation and Goals

Grid computing [23] provides a natural way to aggregateusses from different administrative domains for building
large scale distributed environments [2]. The Web Senpeeadigm [24] proposes a way by which virtual services can
be seamlessly integrated into global-scale solutions teptex problems. While the usage of Grid technology ranges
from academia and research to business world and produdttionissues must be considered: that the promised
functionality can be accurately quantified and that theqrerince can be evaluated based on well defined means.
Without adequate functionality demonstrators, systemscbbe tuned or adequately configured, and Web services
cannot be stressed adequately in production environmetitol performance evaluation systems, the system design
and procurement processes are limp, and the performancelmBéfvices in production cannot be assessed.

In Section 1 we have argued for the importance of performsestang in real environments. We further detail the
main requirements for testing in real grid environments:

e Representative workload generatioim order for the results to be significant, the testing tooktrhe able to
create the conditions that the Grid environments (or thaingonents) were designed to handle [4, 12, 46, 47].
Consider the case of a resource management system. Hemstieen users submit jobs according to daily
patterns [9, 15, 40], and may respond to the systems feedbackhey will not continue to submit until their
already submitted jobs are finished [41]. It would therefoeenteresting to establish the performance of the
resource management system under both real-life and extrenditions.

CoreGRID TR-0062 2

e Accurate testingThe accuracy of the performance metrics collected is hgdejpendent on the accuracy of the
timing mechanisms used and on accurate time synchronizatimng the testing machines.

e Scalable testingThe scalability of the testing framework must be at leastadlithe scalability of tested system.
Because the number of resources to be found in nowadaysi&adghe order of thousands to tens of thousands
[42], and because the size is expected to grow, the evatugyistem must generate and coordinate significant
loads, in a scalable way.

¢ Reliable testingThe testing framework must detect and account for its owuries, especially when operating
in wide-area environments.

e Extensibility, Automation, and Ease-of-Us€he usability of a testing system is at least as importantsas i
features. We argue that it is the ease-of-use, the degregtaration, and the extensibility, that separate a
successful tester from other similar approaches. The atiomand the ease-of-use can be summarized as
single-click testing procedure. Given the current evolupeed in the Grid world, that a testing system would
become obsolete is only a matter of years. Without the ghititaccommodate extensions, already obtained
results would become obsolete, as they would not be comieandtih those for the new systems.

3 TheDesign of ServMark

In this section we present the design of ServMark. whichgiraes two existing performance evaluation systems:
DiPerF [17] and GrenchMark [18]. In addition to its compotsrapabilities, ServMark adds the needed coordination
and automation layer, for improved automation and easgsef{see Figure 1).

A

Test Manager

ServiMark ‘

Controller Relational

Database

(MySaL)
ServMark Centralizer /
DiPerF pe |-
Controller Module | :

Send results 3
EXecute test? e
DiPerF E

Submitter

Execute test Send results
(pipe to stdout)

Workload Workload
Generator Submitter Workers

Pool
ServMark Tester #2

Jobs rate .

3 Watchdog
b %% No blocking
Tl GRENCHMARK

Figure 1: The ServMark Architecture.

3.1 TheServMark Components

ServMark is based on two components: DiPerF and GrenchMaiRerF is a distributed testing system and test
generator, and GrenchMark is a centralized system thatea@rgte complex testing scenarios. ServMark makes use

CoreGRID TR-0062 3

of the properties of both systems in order to generate tighjficant testing scenarios.

DiPerF aims to simplify and automate service performaneaduation. DiPerF coordinates a pool of machines
that access a centralized or distributed target servicealfett performance metrics. Centralized DiPerF comptsen
then, aggregate these performance measurements andtggresfarmance statistics. The aggregate data collected
provides information on service throughput, service raespatime, service fairness when serving multiple clients
concurrently, and on the impact of network latency on sergerformance. All steps involved in this process are
automated.

PlanetLab
UChicage CS cluster

Analyzer

Controfler

Tester

Clent Cred

Figure 2: DiPerF Overview and Deployment Scenario Exentplifon

DiPerF consists of four major components: the analyzerctimdroller, the submitters and the testers. A user of
the framework provides to the controller the location oftédmget service to be evaluated and the client code to access
the service. The controller then coordinates the perfooaavaluation experiment: it distributes the client code to
testers via submitters and coordinates testers activighEester runs the client code on its local machine and times
their (RPClike) access to the target service. Finally, tetioller collects all the measurement data from testeds an
performs additional operations (e.g., reconciles timmptafrom various testers) to compute aggregated perforenanc
views. Sophisticated clients can have complex interastigith the target service and return periodic feedback and
user defined metrics to the tester be propagated back to tteoler.

GrenchMark is a framework for synthetic Grid workload gextien and submission, which has been designed,
implemented, and deployed by the MultiProbe team in thellehend Distributed Systems group of the Faculty of
Electrical Engineering, Mathematics, and Computer Saesfahe Delft University of Technology. GrenchMark is
extensible, in that it allows new types of grid applicatiagase included in the workload generation, parameteriz-
able, as it allows the user to parameterize the workloadsrgéion and submission, and portable, as its reference
implementation is written in Python. The workload gener&dased on the concepts of unit generators and of job
description files (JDF) printers. The unit generators poeddetailed descriptions on running a set of applications
(workload unit), according to the workload description\gded by the user. In principle, there is one unit for each
supported application type. The printers take the gengrabekload units and create job description files suitabte fo
grid submission. In this way, multiple unit generators carcbupled to produce a workload that can be submitted to
any grid resource manager, as long as the resource managertathat type of applications. Currently, GrenchMark
can submit jobs to the KOALA, Globus GRAM, and Condor reseuranagement systems.

GrenchMark offers support for the following workload madglaspects. First, it supports unitary (e.g., sequential,
parallel jobs using MPI, malleable/evolving jobs usingalihis) and composite applications (e.g., workflows in the
form of Directed Cyclic Graphs), single-site and co-alkechjobs. Second, it allows the user to define various job
inter-arrival times based on well-known statistical disitions. Besides the Poisson distribution, used traukitily
in queue-based systems simulation, GrenchMark also stgpiform, normal, exponential and hyper-exponential,
Weibull, log normal, and gamma distributions. Third, itoa¥s the workload designer to combine several workloads

CoreGRID TR-0062 4

workload grid
description description
| > Submit
L Workload
8 —_— Genarate — N Jobs rate
Workload workload Data Q O O
A * 4 Job 1 Job 2 Job n
Application type 1 Application type n - o
synthetic Tets [JobSubmit¥ _~ JobSubmit

~gondor-job-submit/

Post-production : s . [: .
Analyze results : . . : i O) (e \- |; S|lez)
infer metrics » stderr, stdout Staged output . ~ o ,-’I _‘ - .:' v

e JobSubmit - : Resource Managar] . :
stats - (,, .
stderr, stdout * “ ‘_“ SGE, sz

Workload Output .. e o - 10
Figure 3: The GrenchMark Process

Report performance

into a single one (mixing). This allows for instance the urgibn of bursts, by combining a short workload with many
jobs per time unit with a longer one, comprising fewer jobstpae unit. An additional use of workload mixing is in
a what-if analysis that evaluates what will happen to a goishmunity if its resources would be shared with another
group of users. In this case, the workload modeler can mixythieal workload of the two communities and evaluate
whether the system can support both, under various job taroegand execution policies.

3.2 The Coordination and Automation L ayer

The intended use for ServMark is to evaluate the performah@id environments and Grid and Web services. Grid
environments and Web services have quite different behairiderms of response time, so different testing stragegie
need to be used. For ServMark, the testing process is ettiby a central controller, which distributes the testing
parameters to multiple nodes. Each node generates its stvscEnario based on the given parameters and then plays
the generated scenario. The practical requirements are:

e uniquely identify each test (REQ1);

e automatically generate a multi-node test according to Hee specifications (REQ2);
e store the test and make it available for replay (REQ3);

e run the test and store its results (REQ4);

e analyze the results and compute statistics (REQ5);

¢ the performance evaluation must be online: results shausbke to be visualized as the testing process advances
(REQS6).

Figure 1 shows the proposed architecture for ServMark Jigigting the relationship between GrenchMark, DiPerF
and the new ServMark modules. The interaction between thearsl the ServMark Controller goes as follows: the
user decides the parameters to be used in the testing pieseesREQ?2), starts the ServMark Controller, and then is
notified when the testing operation has completed. The SarkI@ontroller should generate a test ID for the testing
process initiated by the user (see REQ1), update the databdssend the testing parameters to the DiPerF controller.
The DiPerF controller controls the testing process, by knvgthe DiPerF submitter. It also updates the results into
the database. The DiPerF submitter creates the testergsexand communicates with them, sending in parameters
and receiving back test results. The DiPerF tester invokesnchMark, which performs the actual testing process
and communicates with GrenchMark, sending parametersearaiving back test results. GrenchMark generates a
workload according to the user parameters and then sulimitpanerated workload for execution, computing the test

CoreGRID TR-0062 5

results and sending them to the DiPerF tester. The test pdéeasnare inserted into the database by the ServMark
controller. The DiPerF controller inserts and updateséiseresults into the database as the testing process advance

3.3 ThePerformance Metrics

We have focused on flexibility in handling large data analyasks completely unsupervised. The performance ana-
lyzer is designed to allow a reduction of the raw performatata to a summary of the performance data with samples
computed at a specified time quantum. For example, a patiexperiment can accumulate more than one million
performance samples over a period of and hour, but afteratfenmance analyzer summarizes the data for one sample
per second, the end result can be reduced to less than tefesamp

We also introduce the performance metrics considered byMaak. While the performance metrics of interest to
the user may vary from case to case, and our system allowsttiogliiction and processing of user specified metrics,
providing the following minimal set of pre-configured megi17,18]:

e service processing timé¢he time from when a clientissues a request to the momemiisereceived minus the
round-trip time to the service and minus the execution-stprtime of the client code. This metric is measured
from the point of view of the client;

e service throughputumber of requests completed successfully by the servaraged over a short time interval
specified by the user (e.g., a second or a minute) in orderdiaceethe large number of samples. To make the
results easier to understand most of the graphs below aseptrmoving averages;

o offered load number of concurrent service requests (per second);cgettilization (per client): ratio between
the number of requests completed for a specific client antbtaénumber of requests completed by the whole
service during the time the client was active;

e service fairnessthe standard deviation in service utilization measuredmdll clients are active concurrently;
e job success rate (per clientfhe ratio of jobs that were successfully completed for di@alar client;
e job fail rate (per client) the ratio of jobs that failed for a particular client;

e time to job completion (TTJCjor every correctly completed job, the difference betwdenmoment of suc-
cessful completion and the previous moment of a successfutpmpletion, or the beginning of the testing
interval;

e time to job failure (TTJF)for every failed job, the difference between the momentdtife and the previous
moment of a failure, or the beginning of the testing interval

4 TowardsReal Grid Testing

While we acknowledge that a lot of ground must still be coddosfulfill the requirements of a system for testing Grid
environments, and Web (and Grid) Services, we argue thatv&ek addresses the main requirements for testing in
real grid environments (see Section 2). ServMark

e makes use of the properties of both its constituent systemslier to generate truly significant testing scenarios.
First, by using a distributed approach;

e is able to generate a wide range of testing conditions foryn@id environments and services. Second, by
using a versatile workload generation engine, each testiitgof ServMark may generate complex workloads,
both real (trace-based) and realistic (model-based);

e synchronizes the time between client nodes with a synchation error smaller than 100ms. This ensures the
accuracy of the testing procedure;

e detects client failures during the test, and reports tHarimpact on the obtained results accuracy;

e can be automated to the degree of a single-click testingepiure, especially for periodic functionality or per-
formance testing. In particular, data collected by testeesautomatically retrieved and stored in a central
repository.

CoreGRID TR-0062 6

5 TheServMark Validation

In order to test the ServMark implementation, we chose ttuat@ a scenario in which ServMark is used to test fine-
grained services deployed in real large-scale environsnertitich we consider the most difficult aspect of the generic
problem of testing P2P and Grid components in real largee sygtems. Using machines from the PlanetLab [46] and
the Grid3 [47] testbeds, we conduct experiments in whiclséreice clients experience different levels of connettivi
We test in this environment the performance of six of the russtd web servers: Apache, Null HTTPD, Apache
Tomcat, Nweb, Jetty and Awhttpd. The data collected prowd@mation on services maximum throughput, on
service fairness when multiple clients access the sergoeuwrrently, and on the impact of network latency on service
performance from both client and service viewpoint. While results should not be used as indicators to what is the
best web server (for this we should have devised much molistiedoad, and should have used many more testing
scenarios), we conclude that ServMark is useful for tedtimegrgrained services in real large-scale environments.

Table 1: Service processing time for the six web serversg@osds)

Web Server Aver age (Standard Deviation) | Minimum | Maximum | Weighted Average
Apache 1.0779 (0.647) 0.0810 16.5440 1.0969
Null HTTPD 0.9442 (0.482) 0.1244 30.4872 0.9495
Apache Tomcat 1.3617 (0.732) 0.1724 24.2665 1.3930
Nweb 0.9731 (0.565) 0.1293 10.9908 1.0152
Jetty 10.0745 (1.210) 0.2651 35.4375 9.0297
Awhttpd 1.1739 (0.558) 0.1242 29.5580 1.0117

Table 2: TTJC for the six web servers (in seconds))

Web Server Aver age (Standard Deviation) | Minimum | Maximum | Weighted Average
Apache 3.8803 (1.975) 0.0022 13.5419 3.6702
Null HTTPD 3.9409 (1.922) 0.0177 11.7235 3.7446
Apache Tomcat 4.0902 (2.061) 0.0034 13.8347 3.8399
Nweb 4.0870 (2.008) 0.0393 14.1707 3.8613
Jetty 6.4677 (1.582) 0.0010 15.0310 5.9648
Awhttpd 4.1798 (2.041) 0.0106 13.9180 3.9005

5.1 Experimental Setup

The ServMark controller was installed sB.diperf.cs.uchicago.eda machine located at the University of Chicago,
Computer Science Department. The web servers were star@itce01.rogrid.pub.rpa machine located at the Poly-
technic University of Bucharest. The testers were spawmetiachines which are part of PlanetLab [46]. PlanetLab
currently consists of over 600 machines hosted by over 3@8,sand is spanning over 25 countries. For each test,
20 testers were selected to run on hosts from North and Somtériéa, Asia, and Europe, simultaneously. Each
ServMark tester was configured to launch 100 HTTP requegts avoisson inter-arrival time distribution af= 1s.

A request which remained unanswered for more than 25 seswagisonsidered to be faulty and was, subsequently,
killed.

5.2 Validation: Testing Fine-Grained Services

Table 3 presents the statistical values for the servicegsing time of the six web servers we tested. For the selected
scenario, the results have shown the existence of threseslad web servers: very fast, fast and slow. The very fast
class contains Nweb, with Null HTTPD and Apache coming cloespectively. The fast class contains the Apache
Tomcat web server, which is 30% slower than its non-servitebled counterpart, and Awhttpd. Finally, the slow
class contains the Jetty web server, which is at least 8ri6stislower than all the others. We observe very large
service processing times in the case of the Jetty web serempared to the other five servers. We note that the
Jetty web server is the only one using the Java platform, laauctihe Java Virtual Machine used during our tests was

CoreGRID TR-0062 7

non-commercial, possibly providing less optimizatiomsatidition, it is possible that during the testing procegbef
Jetty web server, the PlanetLab machines used for testigdhmae been extra loaded.

The web server achieving the smallest average service ggimecetime was Null HTTPD, followed by Nweb, but
the web server obtaining the minimum response time amortgelequests is Apache. Looking at the variability of
the service processing time, the observed standard davigs within 10% of the average, for each server. However,
the maximum response time outliers range from 10-15 timgkdrithan the average (e.g., NWeb and Apache) to
20-35 times (e.g., Apache Tomcat, Awhttpd). We concludg fbathe selected test scenario, NWeb and Apache are
the best performers, followed by Null HTTPD, Apache Tomeat] Awhttpd (with lower performance or robustness),
and then, at some distance, Jetty. Table 2 presents th&tistdtvalues for the time to job completion (TTJC) of the
six web servers we tested. The average TTJC is higher thaavtrage service processing time due to the workload
structure and of the environment performance (notablytddeslures). The results based on TTJC measurement seem
to be consistent with our previous conclusions: Apache, iINared Null HTTPD achieved the best performance for
this test scenario.

Table 3: TTJF for the six web servers (in seconds))

Web Server Aver age (Standard Deviation) | Minimum | Maximum | Weighted Average
Apache No Failures - - -

Null HTTPD 2.7893 (0.000) 0.0000 5.5786 2.7893
Apache Tomcat| No Failures - - -

Nweb No Failures - - -

Jetty 1.4840 (0.000) 0.000 17.8760 1.4840
Awhttpd No Failures - - -

Table 3 presents the statistical values for the time to jobria(TTJF) of the six web servers we tested. Analyzing
the Failure metric, we notice that in the case of NullHTTPM@ datty, some failures did occur. We concluded that all
of these failures occurred because the requests exceeslafldtied time of 25 seconds. This could have happened
for two reasons: either the machine on which the failure oeclwas too loaded and the request was delayed, or the
machine on which the web server was running became too loddkeally, we would not want the machines on which
the testers were running to become too loaded, but we h#eedintrol over the load of the machines which are part
of PlanetLab.

Our tests show also that ServMark can be used for testinggfimiered services in a wide-scale environment. We
have met the main requirements for testing in real grid @mvirents, except for the representative workload generatio
(see Section 2), which was beyond the scope of this work; hekee have shown in Section 3.1 and in [18] that
representative workloads of high complexity can be geedrafith ServMarks components. The test parameters we
chose (20 testers and 100 queries per tester) were larggletoumake good use of the resources available at the
testing nodes. The testers were fault-tolerant, in theesthrat they automatically detected and stopped the blocked
testing routines. We have used a single-click test deploynvge have also met the practical requirements (see Section
3.2) by implemented mechanisms.

6 Reated Work

A significant number of projects have tried to tackle the Gaedformance assessment problem from different angles:
modeling workloads and simulating their run under variausr®@nment assumptions [3, 5, 15], attempting to produce
a representative set of grid applications like the NAS Grah&marks [8], creating synthetic applications that can
assess the status of grid services like the GRASP projeeind}the Grid Exercisér, and creating tools for launch-
ing benchmarks/application-specific functionality tdéte the GridBench project [13] and the NMI projects [43].
ServMark is the natural complement to these approachedfényng a much larger application base, more advanced
workload modeling features, and the ability to replay exgtvorkload traces. In addition, ServMark can be used for
much more than just Grid performance evaluation.

The modeling/simulation approach is almost exclusiveldobon traces which are now part of the Parallel Work-
loads Archive. The major hurdle for this approach is to pritnerepresentativeness of simulation results for real grid
environments.

1The Grid Exerciser (GEX) is available online at http://wwswisc.edu/condor/tools/exerciser/

CoreGRID TR-0062 8

Frumkin et al. [8] propose a small set of parallel applicagias Grid benchmarks. Simple workloads are defined
for the applications, in that the running parameters andtier in which the applications are to be run are fixed.
The drawbacks of this approach are that the applicationsrayerepresentative for a restricted research area (here,
computational fluid dynamics), make very little use of Grahgponents (only Grid-enabled MPI and a scheduler),
and cannot adapt to the dynamic behavior of Grids (they redixed resource sizes, and have no fault-tolerance,
migration, or check-pointing features).

Chun et al. [4] use a small set of applications specificallsigieed to test specific aspects of Grids functionality
(probes). The applications assume the existence of commidnc@mponents, like a global information system, or
a file-transferring service. No attempt to form workloadshwthese applications is made. Tsouloupas et al. [13]
propose a benchmark launching tool. This tool has the shditaunch benchmarks and display their results, and can
be coupled with many of the existing HPC benchmarks. HowéMeas very limited workload modeling features, and
cannot replay real traces. NMI [43] facilitates the defamtand run of functionality tests. It currently lacks thelipi
to define complex workloads, specific for performance anthbday testing.

Many studies have investigated the performance of indalidirid services. As an example, Zhang et al. [26]
compare the performance of three resource selection andoring services: the Globus Monitoring and Discovery
Service (MDS), the European Data Grid Relational Grid Maiitg Architecture (R-GMA), and Hawkeye. Their
experiment uses two sets of machines (one running the sdtsalf and one running clients) in a LAN environment.
The setup is manual and each client node simulates 10 usmssatg the service. This is exactly the scenario where
ServMark would have proved its usefulness: it would havedie authors from deploying clients, coordinating them,
and collecting performance results, and allow them to faousptimally configuring and deploying the services to
test, and on interpreting performance results.

The Globus Toolkits job submission service test suite [Z§sumultiple threads on a single node to submit an
entire workload to the server. However, this approach de¢gauge the impact of a wide-area environment, and
does not scale well when clients are resource intensivehwhians that the service will be relatively hard to saturate.
The Network Weather Service (NWS) [28, 29] is a distributeshitoring and forecasting system. A distributed set
of performance sensors feed forecasting modules. Thetimaratant differences to ServMark. First, NWS does not
attempt to control the offered load on the target servicenhertely to monitor it. Second, the performance testing
framework deployed by ServMark is built on the fly, and rentbas soon as the test ends, while NWS sensors aim
to monitor services over long periods of time. Similarly, NEhome [30], Gloperf [31], and NIMI [32] focus on
monitoring service or network level performance. NetLagiss8] targets instrumentation of Grid middleware and
applications, and attempts to control and adapt the amdunstoumentation data produced in order not to generate
too much monitoring data. NetLogger is focusing on monitgyiand requires code modification in the clients; fur-
thermore, it does not address automated client distributicautomatic data analysis. Similarly, the CoSMoS system
[34] is geared toward generic network applications.

GridBench [35] provides benchmarks for characterizingl®esources and a framework for running these bench-
marks and for collecting, archiving, and publishing reswlthile DiPerF focuses on performance exploration for en-
tire services, GridBench uses synthetic benchmarks ansltaitest specific functionalities of a Grid node. However,
the results of these benchmarks alone are probably ingrffit infer the performance of a particular service. Fipall
Web server performance has been a high-interest topic ehteesearch [36,37]. The Wide Area Web Measurement
(WAWM) Project designs an infrastructure distributed asrthe Internet allowing simultaneous measurement of web
client performance, network performance, and web serwdopeance [36]. Banga et al. [37] measure the capacity
of web servers under realistic loads. Both systems could hanefited from a generic framework such as ServMark.

7 Conclusion and Ongoing Work

In this paper we have presented ServMark, a distributecesy$br testing Grid environments and Grid and web
services. We have described its design and have succgssfglemented the system. The implementation was
tested first on DAS and then, using PlanetLab to deploy thereswe have evaluated the performance of six Web
servers. We have shown how ServMark can fulfill the main nexpénts for testing in real grid environments: generate
realistic workloads, provide accurate testing, be scalaht reliable, and provide hooks for extension (througg-plu
in mechanisms). We have also shown that in practice Servidankbe easily used used for completely automated
testing.

Currently, we are working on improving ServMark in severakdtions. First, we are trying to improve the

CoreGRID TR-0062 9

interface between the user and the ServMark controllerfane complex testing scenarios. Second, we are thinking
about alternative ways to send the information from thestsstio the controller, i.e., through configurable push/pull
mechanisms. Third, we are working towards making ServMarioge fault-tolerant grid service.

Availability

The ServMark package is developed jointly by the Delft Ursity of Technology, University of Muenster, University
of Chicago, University of British Columbia, and Politehaitniveristy of Bucharest. ServMark is freely available
from its Globus Incubator project homepage: http://d@bgk.org/wiki/Incubator/ServMark

Acknowledgements

This research work is carried out under the FP6 Network oflfence CoreGRID funded by the European Commis-
sion (Contract IST-2002-004265). Part of this work was &lswmied out in the context of the Virtual Laboratory for
e-Science project (http://ww.vl-e.nl), which is supgattby a BSIK grant from the Dutch Ministry of Education,
Culture and Science (OC&W), and which is part of the ICT iretin program of the Dutch Ministry of Economic
Affairs (EZ). This work was also supported by the EU-NCIT NGéading to EU IST Excellency project, EU FP6-
2004-ACC-SSA-2.

References

[1] H. E. Bal et al. The distributed ASCI supercomputer pchjeOperating Systems Review, 34(4):76-96, October
2000.

[2] F. Berman, A. Hey, and G. Fox. Grid Computing: Making Thieleal Infrastructure a Reality. Wiley Publishing
House, 2003.

[3] A. I. D. Bucur and D. H. J. Epema. Trace-based simulatiminsrocessor co-allocation policies in multiclusters.
In Proc. of the 12th IEEE HPDC, pages 70-79. IEEE ComputeieBgR003.

[4] G. Chun, H. Dail, H. Casanova, and A. Snavely. Benchmaokes for grid assessment. In IPDPS. IEEE Computer
Society, 2004.

[5] C. Ernemann, V. Hamscher, U. Schwiegelshohn, R. Yahygmmd A. Streit. On advantages of grid computing
for parallel job scheduling. In CCGRID, pages 39-49. IEEHEpater Society, 2002.

[6] C. Ernemann, B. Song, and R. Yahyapour. Scaling of wattlraces. In D. G. Feitelson, L. Rudolph, and U.
Schwiegelshohn, editors, JSSPP, volume 2862 of LNCS, fe&fesl82. Springer, 2003.

[7]1 D. G. Feitelson and L. Rudolph. Metrics and benchmarkorgarallel job scheduling. In D. G. Feitelson and L.
Rudolph, editors, JSSPP, volume 1459 of LNCS, pages 1-2thd#p, 1998.

[8] M. Frumkin and R. F. V. der Wijngaart. Nas grid benchmarkdool for grid space exploration. Cluster Comput-
ing, 5(3):247-255, 2002,

[9] H. Li, D. Groep, and L. Wolters. Workload characteristif a multi-cluster supercomputer. In D. G. Feitelson, L.
Rudolph, and U. Schwiegelshohn, editors, JSSPP, LNCS2/0t, pages 176-194. Springer, 2004.

[10] H. Mohamed and D. Epema. Experiences with the koalaloaating scheduler in multiclusters. In Proc. Of the
5th IEEE/ACM Int’l Symp. on Cluster Computing and the GRIDZGrid2005), May 2005.

[11] W. Smith, I. Foster, and V. Taylor. Predicting applicatrun times with historical information. J. Parallel Dibt
Comput., 64(9):1007-1016, 2004.

[12] A. Snavely, G. Chun, H. Casanova, R. F. V. der Wijngaant M. A. Frumkin. Benchmarks for grid computing:
a review of ongoing efforts and future directions. ACM SIGIWVECS Perform. Eval. Rev., 30(4):27-32, 2003.

[13] G. Tsouloupas and M. D. Dikaiakos. GridBench: A workblerfor grid benchmarking. In P. M. A. Sloot, A.
G.Hoekstra, T. Priol, A. Reinefeld, and M. Bubak, editor§@& volume 3470 of LNCS, pages 211-225. Springer,

CoreGRID TR-0062 10

2005.

[14] R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. HofpC. Jacobs, T. Kielmann, and H. E. Bal. Ibis: a flex-
ible and efficient java-based grid programming environm@uncurrency & Computation: Practice & Experience.,
17(7-8):1079-1107, June-July 2005.

[15] A. M. Weil and D. G. Feitelson. Utilization, predictdiby, workloads, and user runtime estimates in scheduling
the IBM SP2 with backfilling. IEEE Trans. Parallel Distribys$., 12(6):529-543, 2001. [16] J. Yu and R. Buyya. A
taxonomy of scientific workflow systems for grid computindC SIGMOD Rec., 34(3):44-49, 2005.

[16] C. Dumitrescu, I. Raicu, M. Ripeanu, |. Foster, DiPefiR:automated Dlistributed PERformance testing Frame-
work, In Proc. of the 5th IEEE GRID Workshop, 2004.

[17] A. losup, D.H.J.Epema, GrenchMark: A Framework for Arzing, Testing, and Comparing Grids, In Proc. of
the 6th IEEE/ACM Int'l Symposium on Cluster Computing and tarid (CCGrid’06).

[18] L. Peterson, T. Anderson, D. Culler, T. Roscoe, A Bluefpfor Introducing Disruptive Technology into the
Internet, The First ACM Workshop on Hot Topics in NetworkigriptNets), October 2002.

[19] A. Bavier et al., Operating System Support for Planetacale Services, Proceedings of the First Symposium on
Network Systems Design and Implementation (NSDI), Marcb20

[20] Grid2003 Team, The Grid2003 Production Grid: Prinegplhnd Practice, 13th IEEE Intl. Symposium on High
Performance Distributed Computing (HPDC-13) 2004.

[21] The Globus Alliance, www.globus.org, Last visited: I6vember 2006.
[22] Foster I., Kesselman C., Tuecke S., The Anatomy of thd,@nternational Supercomputing Applications, 2001.

[23] 1. Foster, C. Kesselman, J. Nick, S. Tuecke. The Phggipbf the Grid: An Open Grid Services Architecture for
Distributed Systems Integration. Open Grid Service

[24] Infrastructure WG, Global Grid Forum, June 22, 2002.
[25] The Globus Alliance, WS GRAM: Developer’s Guide, hitgww-unix.globus.org/toolkit/docs/3.2/gram/ws.

[26] X.Zhang, J. Freschl, J. M. Schopf, A Performance Studylonitoring and Information Services for Distributed
Systems, Proceedings of HPDC-12, June 2003.

[27] The Globus Alliance, GT3 GRAM Tests Pages, http://wwmix.globus.org/ogsa/tests/gram.

[28] R. Wolski, Dynamically Forecasting Network PerfornsariJsing the Network Weather Service, Journal of Clus-
ter Computing, Volume 1, pp. 119-132, Jan. 1998.

[29] R. Wolski, N. Spring, J. Hayes, The Network Weather 8grvA Distributed Resource Performance Forecasting
Service for Metacomputing, Future Generation Computingt&ys, 1999.

[30] Charles Robert Simpson Jr., George F. Riley. NETI@hoA®istributed Approach to Collecting Endto-End
Network Performance Measurements. PAM 2004.

[31] C. Lee, R. Wolski, I. Foster, C. Kesselman, J. Steparelletwork Performance Tool for Grid Environments,
Supercomputing '99, 1999.

[32] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis. An aretitire for large-scale internet measurement. IEEE
Communications, 36(8):4854, August 1998.

[33] D. Gunter, B. Tierney, C. E. Tull, V. Virmani, On-Demai@tid Application Tuning and Debugging with the
NetLogger Activation Service, 4th International WorkstwpGrid Computing, Grid2003, November 2003.

[34] Ch. Steigner and J. Wilke, Isolating Performance BRaiticks in Network Applications, in Proceedings of the
International IPSI-2003 Conference, Sveti Stefan, Moageo, October 4-11, 2003.

[35] G. Tsouloupas, M. Dikaiakos. GridBench: A Tool for Béntarking Grids, 4th International Workshop on Grid
Computing, Grid2003, Phoenix, Arizona, November 2003.

[36] P. Barford ME Crovella. Measuring Web performance ia wide area. Performance Evaluation Review, Special
Issue on Network Traffic Measurement and Workload Charizetiéon, August 1999.

[37] G. Banga and P. Druschel. Measuring the capacity of as#eler under realistic loads. World Wide Web Journal

CoreGRID TR-0062 11

(Special Issue on World Wide Web Characterization and Pedace Evaluation), 1999.

[38] N. Minar, A Survey of the NTP protocol, MIT Media Lab, Dember 1999, [Online] Available:
http://xenia.media.mit.edu/fielson/research/ntweyB9, November 2006.

[39] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, Sarkih, W. Smith, S. Tuecke, A Resource Management
Architecture for Metacomputing Systems, IPPS/SPDP '98Rsloop on Job Scheduling Strategies for Parallel Pro-
cessing, pg. 62-82, 1998.

[40] Feitelson, D.G., Rudolph, L., Schwiegelshohn, U.,&levK.C., Wong, P.: Theory and Practice in Parallel Job
Scheduling. In Feitelson, D.G., Rudolph, L., eds.: Procthef3rd Intl. Workshop on Job Scheduling Strategies for
Parallel Processing (JSSPP). Volume 1291 of Lecture Nat€oimputer Science., Geneva, Springer-Verlag (1997)
134.

[41] A. losup, D.H.J. Epema, C. Franke, A. Papaspyrou, LISgB. Song, R. Yahyapour, On Grid Performance
Evaluation using Synthetic Workloads, In The 12th WorksbopJob Scheduling Strategies for Parallel Processing
(JSSPP), held in conjunction with SIGMETRICS’06, Jun 28)@05aint Malo, FR.

[42] A. losup, C. Dumitrescu, D.H.J. Epema, H. Li, L. Woltekéow are Real Grids Used? The Analysis of Four
Grid Traces and Its Implications, The 7th IEEE/ACM Inteiaatl Conference on Grid Computing (Grid), Barcelona,
September 28-29, 2006.

[43] Andrew Pavlo, Peter Couvares, Rebekah Gietzel, Apdfarp, lan D. Alderman, and Miron Livny, The NMI
Build & Test Laboratory: Continuous Integration FramewfwkDistributed Computing Software, The 20th USENIX
Large Installation System Administration Conference @)SNashington, D.C., December 38, 2006 (accepted)
[44] H.H. Mohamed and D.H.J. Epema, An Evaluation of the ElasFiles Processor and Data Co-Allocation Policy
in Multiclusters, CLUSTER 2004, IEEE Int'l Conference CieisComputing 2004, September 2004.

[45] H.H. Mohamed and D.H.J. Epema, Experiences with the K@&o-Allocating Scheduler in Multiclusters, Proc.
of the 5th IEEE/ACM Int'| Symp. on Cluster Computing and th&I® (CCGrid2005), Cardiff, pp. 784-791, May
2005.

[46] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, "Adjirint for Introducing Disruptive Technology into the
Internet”, Proceedings of the First ACM Workshop on Hot Tgin Networking (HotNets), October 2002.

[47] . Foster, et al., "The Grid2003 Production Grid: Piples and Practice”, 13th IEEE Intl. Symposium on High
Performance Distributed Computing, 2004.

CoreGRID TR-0062 12

