
 FALKO�:

A FAST A�D LIGHT-WEIGHT TASK EXECUTIO� FRAMEWORK

Contact: falkon-user@globus.org

http://dev.globus.org/wiki/Incubator/Falkon

Falkon aims to enable the rapid and efficient execution of many tasks on large compute clusters. Falkon inte-

grates multilevel scheduling to separate resource acquisition from task dispatch, and a streamlined dispatcher.

As a result, Falkon delivers performance not provided by any other system. Micro-benchmarks show that Fal-

kon throughput (ranging from 100s to 1000s of tasks/sec) and scalability (to 54K executors and 2M queued

tasks) are several orders of magnitude better than other systems used in production Grids. Large-scale astron-

omy and medical applications executed under Falkon by the Swift parallel programming system achieve up to

90% reduction in end-to-end run time, relative to versions that execute tasks via separate scheduler submis-

sions.

Goals:
• Reduce task dispatch time by using a streamlined

dispatcher that eliminates support for features such

as multiple queues, priorities, accounting, etc.

• Use an adaptive provisioner to acquire and/or re-

lease resources as application demand varies.

• Cache data from remote locations to local disk at the

computational resource to achieve better application

performance and scalability.

Features:
• Fast: Throughputs of 487 tasks/sec (stable release),

and up to 2500 tasks/sec with the latest optimiza-

tions

• Scalable: Supports up to 2M queued tasks, and can

scale to 54K processors

• Testbeds: TeraGrid, TeraPort, Amazon EC2, IBM

Blue Gene/L, SiCortex, Workspace Service

• Dynamic resource provisioning: (via GRAM4) Al-

lows to trade off resource responsiveness with re-

source wastage while minimizing the queue wait

times

• Data caching: Minimizes the use of shared file sys-

tems and improve application performance and sca-

lability

• Web service based architecture

• Java-based client API

• Support for both polling and notification based

events: Works through firewalls, NATs, and private

networks

• X11 GUI for monitoring system state and automatic

graph generation: Displayable through a web

browser

Performance:

0

100

200

300

400

500

0 32 64 96 128 160 192 224 256
Number of Executors

T
h

ro
u

g
h

p
u

t
(t

a
s

k
s

/s
e

c
)

WS Calls (no security)

Falkon (no security)

Falkon (GSISecureConversation)

Figure 1: Throughput as function of executors

Table 1: Measured and cited throughput for Falkon,
Condor, and PBS

System Comments
Throughput

(tasks/sec)

Falkon

(no security)

Dual Xeon 3GHz w/ HT

2GB
487

Falkon

(GSISecureConversation)

Dual Xeon 3GHz w/ HT

2GB
204

Condor (v6.7.2) Dual Xeon 2.4GHz, 4GB 0.49

PBS (v2.1.8) Dual Xeon 2.4GHz, 4GB 0.45

Condor (v6.7.2) [15] Quad Xeon 3 GHz, 4GB 2

Condor (v6.8.2) [34] 0.42

Condor (v6.9.3) [34] 11

Condor-J2 [15] Quad Xeon 3 GHz, 4GB 22

BOINC [19, 20] Dual Xeon 2.4GHz, 2GB 93

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000
Task Length (sec)

E
ff

ic
ie

n
c
y
 (

6
4
 p

ro
c
e
s
s
o

rs
)

Ideal
Falkon

Condor (v6.7.2)

Condor (v6.9.3)

PBS (v2.1.8)

Figure 2: Efficiency of resource usage for varying
task lengths on 64 processors comparing Falkon,

Condor and PBS

Sponsors
Include:

Applications
We have implemented a Falkon provider for the Java

CoG Kit 4 abstractions library. This allows software de-

veloped against the CoG abstractions library (such as

Karajan and Swift) to use Falkon without modifications.

We observe reductions in end-to-end run time by as

much as 90% when compared to traditional approaches

in which applications used batch schedulers directly.

Table 2: Swift applications; all could benefit from
Falkon

Application #Tasks/workflow #Stages

ATLAS: High Energy

Physics Event Simulation
500K 1

fMRI DBIC:

AIRSN Image Processing
100s 12

FOAM: Ocean/Atmosphere Model 2000 3

GADU: Genomics 40K 4

HNL: fMRI Aphasia Study 500 4

NVO/NASA: Photorealistic

Montage/Morphology
1000s 16

QuarkNet/I2U2:

Physics Science Education
10s 3 ~ 6

RadCAD: Radiology

Classifier Training
1000s 5

SIDGrid: EEG Wavelet

Processing, Gaze Analysis
100s 20

SDSS: Coadd,

Cluster Search
40K, 500K 2, 8

SDSS: Stacking, AstroPortal 10Ks ~ 100Ks 2 ~ 4

MolDyn: Molecular Dynamics 1Ks ~ 20Ks 8

1239

2510

3683

4808

456

866 992 1123

120
327

546 678

0

1200

2400

3600

4800

120 240 360 480

Input Data Size (Volumes)

T
im

e
 (

s
e
c
)

GRAM4

GRAM4+CLUSTER

Falkon

Figure 3: Execution Time for the fMRI Workflow

0

600

1200

1800

2400

3000

3600

m
P
ro
je
ct

m
D
iff
/F
it

m
B
ac
kg
ro
un
d

m
A
dd
(s
ub
)

m
A
dd

to
ta
l

Components

T
im

e
 (

s
e
c
)

GRAM4/Clustering

MPI

Falkon

Figure 4: Execution time for Montage application

How You Can Engage and Contribute!

Contribute to the project: To contribute code, documentation, design ideas, and feature requests to the Falkon

project, join and post to the several mailing lists available:

• Developer discussion: falkon-dev@globus.org

• User discussion: falkon-user@globus.org

• Commit notifications: falkon-commit@globus.org

Download the most recent version (the current SVN archive will move, check back for new location):
 svn co https://svn.ci.uchicago.edu/svn/vdl2/falkon

For more information, please visit: http://dev.globus.org/wiki/Incubator/Falkon

Acknowledgements

This work was supported in part by the NASA Ames Research Center GSRP Grant Number NNA06CB89H and by the

Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific

Computing Research, Office of Science, U.S. Dept. of Energy, under Contract DE-AC02-06CH11357.

