
   FALKO�:  

A FAST A�D LIGHT-WEIGHT TASK EXECUTIO� FRAMEWORK 

Contact: falkon-user@globus.org  

http://dev.globus.org/wiki/Incubator/Falkon 

Falkon aims to enable the rapid and efficient execution of many tasks on large compute clusters. Falkon inte-

grates multilevel scheduling to separate resource acquisition from task dispatch, and a streamlined dispatcher. 

As a result, Falkon delivers performance not provided by any other system. Micro-benchmarks show that Fal-

kon throughput (ranging from 100s to 1000s of tasks/sec) and scalability (to 54K executors and 2M queued 

tasks) are several orders of magnitude better than other systems used in production Grids. Large-scale astron-

omy and medical applications executed under Falkon by the Swift parallel programming system achieve up to 

90% reduction in end-to-end run time, relative to versions that execute tasks via separate scheduler submis-

sions.  

 

Goals: 
• Reduce task dispatch time by using a streamlined 

dispatcher that eliminates support for features such 

as multiple queues, priorities, accounting, etc. 

• Use an adaptive provisioner to acquire and/or re-

lease resources as application demand varies.  

• Cache data from remote locations to local disk at the 

computational resource to achieve better application 

performance and scalability. 

Features: 
• Fast: Throughputs of 487 tasks/sec (stable release), 

and up to 2500 tasks/sec with the latest optimiza-

tions 

• Scalable: Supports up to 2M queued tasks, and can 

scale to 54K processors 

• Testbeds: TeraGrid, TeraPort, Amazon EC2, IBM 

Blue Gene/L, SiCortex, Workspace Service 

• Dynamic resource provisioning: (via GRAM4) Al-

lows to trade off resource responsiveness with re-

source wastage while minimizing the queue wait 

times 

• Data caching: Minimizes the use of shared file sys-

tems and improve application performance and sca-

lability 

• Web service based architecture 

• Java-based client API 

• Support for both polling and notification based 

events: Works through firewalls, NATs, and private 

networks 

• X11 GUI for monitoring system state and automatic 

graph generation: Displayable through a web 

browser 

Performance: 
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Figure 1: Throughput as function of executors 

Table 1: Measured and cited throughput for Falkon, 
Condor, and PBS 

System Comments
Throughput 

(tasks/sec)

Falkon 

(no security)

Dual Xeon 3GHz w/ HT

2GB
487

Falkon 

(GSISecureConversation)

Dual Xeon 3GHz w/ HT

2GB
204

Condor (v6.7.2) Dual Xeon 2.4GHz, 4GB 0.49

PBS (v2.1.8) Dual Xeon 2.4GHz, 4GB 0.45

Condor (v6.7.2) [15] Quad Xeon 3 GHz, 4GB 2

Condor (v6.8.2) [34] 0.42

Condor (v6.9.3) [34] 11

Condor-J2 [15] Quad Xeon 3 GHz, 4GB 22

BOINC [19, 20] Dual Xeon 2.4GHz, 2GB 93  
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Figure 2: Efficiency of resource usage for varying 
task lengths on 64 processors comparing Falkon, 

Condor and PBS 



 

Sponsors 
Include:  

     

 

Applications 
We have implemented a Falkon provider for the Java 

CoG Kit 4 abstractions library. This allows software de-

veloped against the CoG abstractions library (such as 

Karajan and Swift) to use Falkon without modifications.  

We observe reductions in end-to-end run time by as 

much as 90% when compared to traditional approaches 

in which applications used batch schedulers directly. 

Table 2: Swift applications; all could benefit from 
Falkon 

Application #Tasks/workflow #Stages

ATLAS: High Energy 

Physics Event Simulation
500K 1

fMRI DBIC: 

AIRSN Image Processing
100s 12

FOAM: Ocean/Atmosphere Model 2000 3

GADU: Genomics 40K 4

HNL: fMRI Aphasia Study 500 4

NVO/NASA: Photorealistic 

Montage/Morphology
1000s 16

QuarkNet/I2U2: 

Physics Science Education
10s 3 ~ 6

RadCAD: Radiology 

Classifier Training
1000s 5

SIDGrid: EEG Wavelet 

Processing, Gaze Analysis
100s 20

SDSS: Coadd, 

Cluster Search
40K, 500K 2, 8

SDSS: Stacking, AstroPortal 10Ks ~ 100Ks 2 ~ 4

MolDyn: Molecular Dynamics 1Ks ~ 20Ks 8  
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Figure 3: Execution Time for the fMRI Workflow 
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Figure 4: Execution time for Montage application 

How You Can Engage and Contribute! 

Contribute to the project: To contribute code, documentation, design ideas, and feature requests to the Falkon 

project, join and post to the several mailing lists available: 

• Developer discussion: falkon-dev@globus.org  

• User discussion: falkon-user@globus.org   

• Commit notifications: falkon-commit@globus.org 

Download the most recent version (the current SVN archive will move, check back for new location):  
  svn co https://svn.ci.uchicago.edu/svn/vdl2/falkon  

For more information, please visit: http://dev.globus.org/wiki/Incubator/Falkon 
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