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Abstract 
Batch schedulers commonly used to manage access to parallel computing clusters are not typically configured to 
enable easy configuration of application-specific scheduling policies. In addition, their sophisticated scheduling 
algorithms can be relatively expensive to execute. Thus, for example, applications that require the rapid execution of 
many small tasks often do not perform well. It has been proposed that these problems be overcome by separating the 
two tasks of provisioning and scheduling. This paper focuses on resource provisioning, the various allocation and 
de-allocation policies, and how dynamic and adaptive provisioning can be in light of varying workloads.  We couple 
the proposed dynamic resource provisioning (DRP) with an existing system, Falkon, which is used for the 
scheduling of tasks to the provisioned resources. We describe the DRP architecture and implementation, and 
present performance results for both microbenchmarks and applications. Microbenchmarks show that DRP can 
allocate resources on the order of 10s of seconds across multiple Grid sites and can reduce average queue wait 
times by up to 95% (effectively yielding queue wait times within 3% of ideal); furthermore, applications (executed 
by the Swift parallel programming system) reduce end-to-end run time of up to 90% for large-scale astronomy and 
medical applications, relative to versions that execute tasks via separate scheduler submissions.   
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1 Introduction 
Many interesting computations can be expressed conveniently as data-driven task graphs, in which individual tasks 
wait for input to be available, perform computation, and produce output. Systems such as DAGMan [1], Karajan [2], 
Swift [3], and VDS [4] support this model. These systems have all been used to encode and execute thousands of 
individual tasks. 

In such task graphs, as well as in the popular master-worker model [5], many tasks may be logically executable at 
once. Such tasks may be dispatched to a parallel compute cluster or (via the use of grid protocols [6]) to many such 
clusters. The batch schedulers used to manage such clusters receive individual tasks, dispatch them to idle 
processors, and notify clients when execution is complete. 

This strategy of dispatching tasks directly to batch schedulers has two disadvantages. First, because a typical batch 
scheduler provides rich functionality (e.g., multiple queues, flexible task dispatch policies, accounting, per-task 
resource limits), the time required to dispatch a task can be large—30 secs or more—and the aggregate throughput 
relatively low (perhaps two tasks/sec). Second, while batch schedulers may support different queues and policies, 
the policies implemented in a particular instantiation may not be optimized for many tasks. For example, a scheduler 
may allow only a modest number of concurrent submissions for a single user. These factors can cause problems 
when dealing with many tasks. 

One solution to this problem is to transform applications (manually or automatically) to reduce the number of tasks. 
However, such transformations can be complex and/or may place a burden on the user. Another approach is to 
employ multi-level scheduling [7, 8]. A first-level request to a batch scheduler allocates resources to which a 
second-level scheduler dispatches tasks. The second-level scheduler can implement specialized support for task 
graph applications. Frey et al. [9] and Singh et al. [10] create an embedded Condor pool by “gliding in” Condor 
workers to a compute cluster, while MyCluster [11] can embed both Condor pools and SGE clusters. Singh et al. 
[12, 13] report 50% reductions in execution time relative to a single-level approach.  

We seek to achieve further improvements by:  

• Using an adaptive provisioner to acquire and/or release resources as application demand varies  



 

• Reducing average queue wait times by amortizing high overhead of resource allocation over the execution of 
many tasks  

To explore these ideas, we defined and implemented an architecture that permits the embedding of different 
provisioning and scheduling strategies.  We have implemented a range of provisioning strategies, and evaluate their 
performance.  We also integrated provisioning into Falkon, a Fast and Light-weight tasK executiON framework, 
which handles the scheduling and dispatching of independent tasks to provisioned resources. We use synthetic 
applications to demonstrate the benefits of adaptive provisioning, and quantify the effects of various allocation and 
de-allocation policies.  Finally, results for two applications involving many small tasks demonstrate that substantial 
speedups can be achieved for real scientific applications. 

2 Related Work 
Frey and his colleagues pioneered the application of resource provisioning to clusters via their work on Condor 
“glide-ins” [9]. Requests to a batch scheduler (submitted, for example, via Globus GRAM) create Condor “startd” 
processes, which then register with a Condor resource manager that runs independently of the batch scheduler. 
Others have also used this technique. For example, Mehta et al. [13] embed a Condor pool in a batch-scheduled 
cluster, while MyCluster [11] creates “personal clusters” running Condor or SGE. Such “virtual clusters” can 
dedicated to a single workload; thus, Singh et al. find, in a simulation study [12], a reduction of about 50% in 
completion time. However, because they rely on heavyweight schedulers to dispatch work to the virtual cluster, the 
per-task dispatch time remains high, and hence the wait queue times are likely to remain significantly higher than in 
the ideal case due to the schedulers’ inability to push work out faster. 

In a different space, Bresnahan et al. [25] describe a multi-level scheduling architecture specialized for the dynamic 
allocation of compute cluster bandwidth. A modified Globus GridFTP server varies the number of GridFTP data 
movers as server load changes. 

Appleby et al. [23] were one of several groups to explore dynamic resource provisioning within a data center. 
Ramakrishnan et al. [24] also address adaptive resource provisioning with a focus primarily on resource sharing and 
container level resource management. 

In summary, this work’s innovation is the combination of dynamic resource provisioning and Falkon to provide a 
fast and lightweight scheduling overlay on top of virtual clusters with the use of standard grid protocols for adaptive 
resource allocation.  This combination of techniques allows us to achieve lower average queue wait times, lower 
end-to-end application run times, while also offering applications the ability to trade-off system responsiveness, 
resource utilization, and execution efficiency. 

3 Architecture and Implementation 

3.1 Execution Model 
The resource acquisition policy determines when and for how long to acquire new resources, and how many 
resources to acquire. The resource release policy determines when to release resources. 

Resource Acquisition Policy. We have implemented various resource acquisition policies, which decide when and 
how to acquire new resources. This policy determines the state information that will be used to trigger new resource 
acquisitions. It also determines the number of resources to acquire based on the appropriate state information, as 
well as the length of time for which the resources should be required.  Having decided that n resources should be 
acquired, we then need to determine what request(s) to generate to the LRM to acquire those resources.  We have 
implemented four different strategies, with a fifth that we could implement if the LRMs support it. 

The first strategy, Optimal, assumes that we can query the resource manager to determine the maximum number of 
resources available to us. We then simply request that number if it is less than n, and request n otherwise.  This 
policy has not been implemented due to the fact that this feature is not the common case among LRMs and what 
they expose to applications.  The TeraGrid [26] for example is a case where such information is available, but it is 
done via batch queue prediction mechanisms which can be used to statistically predict the number of resources that 
could be allocated in a relatively short period of time.  

The other strategies assume that we cannot obtain this maximum number via a query. In the One-at-a-time strategy, 
we submit n requests for a single resource. In the All-at-once strategy, we issue a single request for n resources. In 



the Additive, strategy, for i=1, 2, …, the ith request requests i resources; thus, ⎡ ⎤2/)118( −+n   requests are required 
to allocate n resources. Finally, in the Exponential strategy, for i=1, 2, …, the ith request requests 2i-1 resources. 
Thus, ⎡ ⎤)1(log2 +n  requests are required to allocate n resources.  For the purpose of this paper and the experiments 
conducted in this paper that pertained to the resource provisioning, we used the all-at-once strategy and did not 
explore the other strategies due to space restrictions.  

Resource Release Policy. We distinguish between centralized and distributed resource release policies. In a 
centralized policy, decisions are made based on state information available at a central location. For example: “if 
there are no tasks to process, release all resources,” and “if the number of queued tasks is less than q, release a 
resource.” In a distributed policy, decisions are made at individual resources based on state information available at 
the resource. For example: “if the resource has been idle for time t, the acquired resource should release itself.” Note 
that resource acquisition and release policies are typically not independent: in most batch schedulers, one must 
release all resources obtained in a single request at once. In the experiments reported in this paper, we used a 
distributed policy, releasing resources after a specified idle time. 

3.2 Architecture 
As illustrated in Figure 1, our dynamic resource provisioning (DRP) system comprises: (1) user(s); (2) a DRP 
Utilizing Application (i.e. a Web Service such as Falkon); (3) the Provisioner; (4) a Resource Manager (i.e. GRAM, 
Condor, PBS, etc); and (5) a resource pool.  The interaction between these various components is as follows.   
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Figure 1: Dynamic Resource Provisioning Architecture 

The DRP utilizing application initializes the provisioner with a set of configuration parameters via message (0).  
These parameters include: the state that needs to be monitored and how to access it, the rule(s) and conditions under 
which the provisioner should allocate/de-allocate resources, the location of the worker code that is specific to the 
DRP utilizing application, the minimum/maximum number of resources it should allocate, the minimum/maximum 
length of time resources should be allocated for, and the allowed idle time per resource before resources are de-
allocated.  Once the provisioner was initialized, the application would be ready to interact with its users and process 
work.   

The users submit work to their application via message (1), which internally queues up the work making it ready for 
processing by an executor.  The provisioner monitors the internal queue state of the application via message (poll), 
and based on the rules and conditions from the initialization phase, the provisioner makes the decision how many 
resources and for how long to allocate.  When the provisioner detects the need to allocate more resources, it contacts 
the Resource Manager with the appropriate resource allocation via message (2).  In our implementation, these 
resources are allocated using GRAM in order to abstract away all the local resource managers that could be used in 
Grids (PBS, LSF, Condor, etc).  The resource manager is used to bootstrap the executor that is specific to the DRP 



utilizing application with message (3), which then registers with message (4) with the application and becomes 
ready to process work.  Once the application has executors available for work, it sends notifications in message (5) 
directly to executors that work is available for pickup, after which the executors that received the notifications 
contact the application directly to pick up the relevant work in message (6).  When the work results are complete, 
the executors delivers the results back to the application in message (7), which then triggers a notification in 
message (8), and finally leading to the user collecting the final result from the application in message (9). 

At first sight, this seems to be relatively complex and likely to add overhead to the execution of application work.  It 
should be noted that while these executors are available (which is dictated by the resource de-allocation policies), 
any subsequent work requests from the user can simply use the same resources that have already been allocated 
(according to the resource allocation policy), without the need to go through the entire allocation process.  After the 
initial phases in which resources are allocated and executors are started, a high volume of work broken down into 
many smaller tasks can essentially be performed using just messages 1, 5, 6, 7, 8, and 9.  With some optimizations 
(task bundling and piggy-backing [cite Falkon]), these messages can be reduced on average to only message 7 and 8 
per task.  

3.3 Multi-Site Provisioning 
Although single site resource provisioning can have many benefits, it has the limitation of limited resources that are 
typically found at any single site.  The main advantage of single site provisioning is the fact that it is simple and 
trivial to decide where to allocate resources when they are needed.  We believe it is very useful to expand the 
provisioner to enable it to allocate resources across multiple Grid sites.  This adds the complexity of deciding what 
sites to use in the allocation of all of a partial set of the needed resources.  We explore several policies for multi-site 
provisioning: random, round-robin, over-allocation, and probabilistic provisioning. 

Random provisioning: Randomly selects a site with enough available resources to allocate the needed resources.  If 
no site has enough available resources, the allocation is en-queued for later (when enough resources are available) 
evaluation, processing, and allocation. 

Round-robin provisioning: Iterates over all Grid sites in a round-robin fashion in order to offer load balancing of 
allocated resources. 

Over-allocation provisioning: Allocates the needed resources at n different Grid sites, where n is configurable and 
allows the control of how much over-allocation to perform. 

Probabilistic Provisioning: Assuming that the Grid sites have a batch queue wait prediction system [cite] in place, 
such as the one the TeraGrid [cite] has, the provisioner can query the various Grid sites to determine which sites will 
have the least queue wait times for the needed resources.   

3.4 Provisioning in Falkon 
Falkon, a Fast and Light-weight tasK executiON framework, provides a system for scheduling and dispatching of 
independent tasks to a set of executors.  Integrating the provisioning mechanisms proposed in this paper into Falkon 
gives Falkon expanded capabilities to dynamically deploy and run executors across multiple Grid sites based on 
Falkon’s load (i.e. wait queue length).  Falkon consists of a dispatcher and zero or more executors (Figure 2); the 
provisioner is added as a third component that acts as a mediator between he dispatcher and the Grid resources on 
which the executors are to run on.  The dispatcher accepts tasks from clients and implements the dispatch policy. 
The provisioner implements the resource acquisition policy. Executors run tasks received from the dispatcher. 
Components communicate via Web Services (WS) messages, except for notifications are performed via a custom 
TCP-based protocol. 

Comment [IR1]: Should these be part 
of the execution model? 



 
Figure 2: Falkon architecture overview 

The dispatcher implements the factory/instance pattern, providing a create instance operation to allow a clean 
separation among different clients. To access the dispatcher, a client first requests creation of a new instance, for 
which is returned a unique endpoint reference (EPR). The client then uses that EPR to submit tasks, monitor 
progress, retrieve results, and (finally) destroy the instance. Each instance can be thought of as a separate 
instantiation of the dispatcher, maintaining its own task queue and related state.  The dispatcher runs within a 
Globus Toolkit 4 (GT4) [28] WS container, which provides authentication, message integrity, and message 
encryption mechanisms, via transport-level, conversation-level, or message-level security [29]. 

The provisioner is responsible for creating and destroying executors. It is initialized by the dispatcher with 
information about the state to be monitored and how to access it; the rule(s) under which the provisioner should 
create/destroy executors; the location of the executor code; bounds on the number of executors to be created; bounds 
on the time for which executors should be created; and the allowed idle time before executors are destroyed.  The 
provisioner periodically monitors dispatcher state and, based on the supplied rules, determines whether to create 
additional executors, and if so, how many, and for how long. Creation requests are issued via GRAM4 [27], to 
abstract away LRM details.  

A new executor registers with the dispatcher. Work is then supplied as follows: (1) the dispatcher notifies the 
executor when work is available; (2) the executor requests work; (3) the dispatcher returns the task(s); (4) the 
executor executes the supplied task(s) and returns results, including return code and optional standard output/error 
strings; and (5) the dispatcher acknowledges delivery. 

4 Performance Evaluation 

4.1 Allocation Policies 
We use two metrics to evaluate our DRP system: Provisioning Latency (i.e., the time required to obtain all required 
resources) and Accumulated CPU Time (i.e., the total CPU time obtained since the first request to the DRP system). 
We expect these metrics to help us identify the best dynamic resource provisioning strategies in real world systems 
(i.e. TeraGrid).  
We perform experiments in two scenarios on the ANL/UC TeraGrid site, which has 96 IA32 processors and is 
managed by the PBS local resource manager. In the first case, the site is relatively idle with only 2 of the 96 
resources utilized; these results are shown in solid lines in Figure 3. Thus, our requests (for up to 48 resources) can be 
served ”immediately.” Due to PBS overheads, it takes about 40 seconds for the first resource to be allocated in all 
cases, despite the queue being idle; we observed this overhead vary between 30 seconds to as high as 100 seconds in 
other experiments we performed.  Figure 3 shows the number of worker resources that have registered back at the 
application and are ready to receive work as the experiment time progressed; this time includes several steps: time to 
allocate the resources with GRAM, time needed to coordinate between GRAM and PBS the resource allocation, 
time PBS needed to prepare the physical resource for use, time needed to start up the worker code, and the time 
needed for the worker code to register back at the main application.   



We see that the one-at-a-time strategy is the slowest, due to the high number of batch scheduler submissions: it takes 
105 seconds to allocate all 48 resources vs. 22 to 36 seconds for the other strategies. Note that the accumulated CPU 
time after 3 minutes of the experiment for one-at-a-time is almost 30 CPU minutes behind the other strategies.  

In a more realistic setting, sites are rarely idle, and hence some resource requests will end up waiting in the local 
resource manager’s queue. To explore this case, we consider a scenario in which the site has only 47 resources 
available until the 160 second mark, at which point availability increases to 48; these results are shown in dotted 
lines in Figure 3. Thus, each strategy has their last resource request held in the wait queue until the 160 second mark. 
Those last requests are for 1, 3, 17, and 48 resources for One-at-a-time, Additive, Exponential, and All-at-once, 
respectively. On one extreme, the 1-at-a-time strategy manages to allocate 47 resources and has only 1 resource in 
the waiting queue; the other extreme, the all-at-once strategy has all 48 resources in the waiting queue waiting for a 
single resource to free up before it can process the entire request.  This is evidence of the back-filling strategies of 
the local resource manager.  Therefore, the all-at-once is now the worst overall, being over 60 CPU minutes behind 
One-at-a-time and Exponential, and almost 90 CPU minutes behind Additive.  Note that these lags in accumulated 
CPU time will remain until the resources begin to de-allocate, at which time the strategies that received their 
resources later will also hang on to the resources later; in the end, all strategies should get the same accumulated 
CPU time eventually.      
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Figure 3: Provisioning latency in acquiring 48 resources for various strategies; the solid lines represent the time to acquire the resources 

in an idle system, while the dotted lines is the time to acquire the resources in a busy system  

Table 1: Accumulated CPU time in seconds after 180 seconds in both an idle and busy system 

Strategy Accumulated CPU Time IDLE Accumulated CPU Time BUSY 
1-at-a-time 4220 sec 4205 sec 

additive 6048 sec 5773 sec 
exponential 5702 sec 4267 sec 
all-at-once 6156 sec 409 sec 

optimal 6059 sec 6059 sec 

We conclude that different provisioning strategies must be used depending on how utilized a given set of resources 
are, with the all-at-once strategy being preferred if the resources are mostly idle, the additive and exponential 



strategies being appropriate for medium loaded resources, and the one-at-a-time being preferred when the resources 
are heavily loaded. Note that the finer grained the request sizes, the more likely it will be that DRP will be able to 
benefit from the back-filling of the local resource managers, but the higher the cost will be in terms of how fast the 
resources can be allocated.  Notice 
Another important issue, not addressed in this work, concerns the length of time for which resources should be 
requested. Many batch schedulers give preference to short requests and/or can schedule short requests into empty 
slots in their schedule (what is termed “backfilling”). Short requests may also minimize idle time. On the other hand, 
short requests increase more scheduling overhead and may cause problems for long-running user tasks.  We envision 
the length of time to allocate resources to be application dependent, depending on the tasks complexity and 
granularity.  Ideally, the length of time resources are allocated for should be large enough to ensure that several tasks 
can be performed on each resource, effectively amortizing the cost of the queue wait times for the coarse granular 
resource allocation. 

4.2 De-Allocation Policies 
To study provisioner performance, we constructed a synthetic 18-stage workload, in which the numbers of tasks and 
task lengths vary between stages.  Figure 4 shows the number of tasks per stage and the number of machines needed 
per stage if each task is mapped to a separate machine (up to a maximum of 32 machines). Note the exponential 
ramp up in the number of tasks for the first few stages, a sudden drop at stage 8, and a sudden surge of many tasks in 
stages 9 and 10, another drop in stage 11, a modest increase in stage 12, followed by a linear decrease for several 
stages, and finally an exponential decrease until the last stage has only a single task. All tasks run for 60 secs except 
those in stages 8, 9, and 10, which run for 120, 6, and 12 secs, respectively. In total, the 18 stages have 1,000 tasks, 
summing to 17,820 CPU secs, and can complete in an ideal time of 1,260 secs on 32 machines.  
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Figure 4: The 18-stage synthetic workload. 

We configured the provisioner to acquire at most 32 machines from TG_ANL_IA32 and TG_ANL_IA64, both of 
which were relatively lightly loaded. (100 machines were available of the total 162 machines.)  We measured the 
execution time in six configurations:  

• GRAM+PBS: Each task was submitted as a separate GRAM task over PBS, without imposing any hard limits on 
the number of machines to use; there were about 100 machines available for this experiment.  

• Falkon-15, Falkon-60, Falkon-120, Falkon-180: Falkon configured to use a minimum of zero and a maximum of 
32 machines; the allocation policy we used was all-at-once, and the resource release policy idle time was set to 
15, 60, 120, and 180 secs (to give four separate experiments).  

• Falkon-∞: Falkon, with the provisioner configured to retain a full 32 machines for one hour.  



Table 2 gives, for each experiment, the average per-task queue time and execution time, and also the ratio 
exec_time/(exec_time+queue_time). The queue_time includes time waiting for the provisioner to acquire nodes, 
time spent starting executors, and time tasks spend in the dispatcher queue. We see that the ratio improves from 17% 
to 28.7% as the idle time setting increases from 15 secs to 180 secs; for Falkon-∞, it reaches 29.2%, a value close 
to the ideal of 29.7%. (The ideal is less than 100% because several stages have more than 32 tasks, which means 
tasks must be queued when running, as we do here, on 32 machines.) GRAM+PBS yields the worst performance, 
with only 8.5% on average, less than a third of ideal.  

Table 2: Average per-task queue and execution times for synthetic workload 

GRAM
+PBS Falkon-15 Falkon-60 Falkon-120 Falkon-180 Falkon-∞

Ideal 
(32 nodes)

Queue 
Time (sec) 611.1 87.3 83.9 74.7 44.4 43.5 42.2
Execution 
Time (sec) 56.5 17.9 17.9 17.9 17.9 17.9 17.8
Execution 

Time % 8.5% 17.0% 17.6% 19.3% 28.7% 29.2% 29.7%  
The average per-task queue times range from a near optimal 43.5 secs (42.2 secs is ideal) to as high as 87.3 secs, 
more than double the ideal queue time. In contrast, GRAM+PBS experience a queue time that is 15 times larger than 
the ideal at 611.1 secs. Also, note the execution time for Falkon with the resource provisioning (both static and 
dynamic) is the same across all the experiments, and is within 100 ms of ideal (which essentially accounts for the 
dispatch cost and delivering the result); in contrast, GRAM+PBS have an average execution time of 56.5 secs, 
significantly larger than the ideal time. This large difference in execution time is attributed to the large per task 
overhead GRAM and PBS have, which further strengthens our argument that they are not suitable for short tasks.   

Table 3 shows the total time to complete the 18 stages, the resource utilization, the execution efficiency, and the 
number of resource allocations. We define resource utilization as the ratio of resources used to resources used + 
resources wasted (i.e., resources consumed but not used for task execution), and execution efficiency as the ratio of 
ideal time to actual time.  

The resources used are the same (17,820 CPU secs) for all cases, as we have fixed run times for all 1000 tasks.  

As for resources wasted, we expected GRAM+PBS to not have any as each machine is released after one task is run; 
in reality, the measured execution times were longer than the actual task execution times, and hence the resources 
wasted was high in this case: 41,040 secs over the entire experiment. (We define task execution time in the 
GRAM+PBS case to be from the time GRAM sends a notification of the task changing its state to being “Active”—
meaning that PBS has taken the task off the wait queue and placed into the active queue assigned to some physical 
machine—to the time the state changes to “Done,” at which point the task has finished its execution.) The average 
execution time of 56.5 secs shows that GRAM+PBS is slower than Falkon in dispatching the task to the remote 
machine, preparing the remote machine to execute the task, and cleaning up and releasing the machine. Note that the 
reception of the “Done” state change in GRAM4 does not imply that the utilized machine is ready to receive another 
task—PBS takes even longer to make the machine available again for more work, which makes GRAM+PBS 
resource wastage yet worse.  

Falkon with dynamic resource provisioning fairs better from the perspective of resource wastage. Falkon-15 has the 
least amount of wasted resources with 2032 CPU secs, and Falkon-∞ (which never de-allocates nodes during the 
experiment) has the worst with 22,940 CPU secs for the duration of the experiment.  

The resource utilization shows the fraction of time the machines were executing tasks vs. idle. Due to its high 
resource wastage, GRAM+PBS achieves a utilization of only 30%, while Falkon-15 reaches 89%. Falkon-∞ is 44%. 
Notice that as the resource utilization increases, so does the time to complete—as we assume that the provisioner has 
no foresight regarding future needs, delays are incurred allocating machines previously de-allocated due to a shorter 
idle time setting. Note the number of resource allocations (GRAM4 calls requesting resources) for each experiment, 
ranging from 1000 allocations for GRAM+PBS to less than 11 for Falkon with provisioning. For Falkon-∞, the 
number of resource allocations is zero since machines were provisioned prior to the experiment starting, and that 
time is not included in the time to complete the workload.  



If we had used a different allocation policy (e.g., one-at-a-time), the Falkon results would have been less close to 
ideal, as the number of resource allocations would have grown significantly. The relatively slow handling of such 
requests by GRAM+PBS (~1/sec on TG_ANL_IA32 and TG_ANL_IA64) would have delayed executor startup and 
thus increased the time tasks spend in the queue waiting to be dispatched.  

The higher the desired resource utilization (due to more aggressive dynamic resource provisioning to avoid resource 
wastage), the longer the elapsed execution time (due to queuing delays and overheads of the resource provisioning 
in the underlying LRM). This ability to trade off resource utilization and execution efficiency is an advantage of 
Falkon. 

Table 3: Summary of overall resource utilization and execution efficiency for the synthetic workload 
GRAM
+PBS Falkon-15 Falkon-60 Falkon-120 Falkon-180 Falkon-∞

Ideal 
(32 nodes)

Time to 
complete 

(sec) 4904 1754 1680 1507 1484 1276 1260
Resouce 

Utilization 30% 89% 75% 65% 59% 44% 100%
Execution 
Efficiency 26% 72% 75% 84% 85% 99% 100%
Resource 

Allocations 1000 11 9 7 6 0 0  
To communicate how provisioning works in practice, we show in Figures 10 and 11 details of experiment execution 
for Falkon-15 and Falkon-180, respectively.   
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Figure 5: Synthetic workload for Falkon-15 
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Figure 6: Synthetic workload for Falkon-180 

These figures show the instantaneous number of allocated, registered, and active executors over time. Allocated 
executors (blue) are those for which creation and registration are in progress. Creation and registration time can vary 
between 5 and 65 secs, depending on when a creation request is submitted relative to the PBS scheduler polling loop 
(which we believe occurs at 60 sec intervals). (JVM startup time and registration generally consume less than five 
secs.) Registered executors (red) are ready to process tasks, but are not active. Finally, active executors (green) are 
actively processing tasks. In summary, blue is startup cost, red is wasted resources, and green is useful work. 

4.3 Multi-Site Provisioning 
Investigate the various policies: 1) random provisioning, 2) round-robin provisioning, 3) over-allocation 
provisioning, and 4) probabilistic provisioning.  

4.4 Application Experiments 
As we have stated earlier, we have integrated the dynamic resource provisioning into Falkon.  Falkon has already 
been integrated into the Karajan [2, 3] workflow engine, which in term is used by the Swift parallel programming 
system. Thus, Karajan and Swift applications can use Falkon along with the dynamic resource provisioning without 
modification. Using the dynamic resource porivsioning and the light-weight task dispatch mechanisms from Falkon, 
we demonstrated reductions in end-to-end run time by as much as 90% when compared to traditional approaches in 
which the applications used the batch schedulers directly. 

Swift has been applied to a variety of science applications in disciplines such as physical sciences, biological 
sciences, social sciences, humanities, computer science, and science education. Table 4 characterizes some 
applications in terms of the typical number of tasks and the number of stages. 

Table 4: A list of potential applications that could benefit from the use of Falkon 
Application #Jobs/workflow #Levels

ATLAS: High Energy Physics Event Simulation 500K 1
fMRI DBIC: AIRSN Image Processing 100s 12

FOAM: Ocean/Atmosphere Model 2000 3
GADU: Genomics 40K 4

HNL: fMRI Aphasia Study 500 4
NVO/NASA: Photorealistic Montage/Morphology 1000s 16

QuarkNet/I2U2: Physics Science Education 10s 3 ~ 6
RadCAD: Radiology Classifier Training 1000s 5

SIDGrid: EEG Wavelet Processing, Gaze Analysis 100s 20
SDSS: Coadd, Cluster Search 40K, 500K 2, 8  

We illustrate the distinctive dynamic features in Swift using an fMRI [21] analysis workflow from cognitive 
neuroscience, and a photorealistic montage application from the national virtual observatory project [32, 22]. 
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4.4.1 Functional Magnetic Resonance Imaging 
This medical application is a four-step pipeline [21]. An fMRI Run is a series of brain scans called volumes, with a 
Volume containing a 3D image of a volumetric slice of a brain image, which is represented by an Image and a 
Header. We ran this application for four different problem sizes, ranging from 120 volumes (480 tasks for the four 
stages) to 480 volumes (1960 tasks). Each task can run in a few secs on a TG_ANL_IA64 processor. 

We compared three implementation approaches: task submission via GRAM+PBS, a variant of that approach in 
which tasks are clustered into eight groups, and Falkon with a fixed set of eight executors. In each case, we ran the 
client on UC_IA32 and application tasks on TG_ANL_IA64.  

In Figure 7 we show execution times for the different approaches and for different problem sizes. Although 
GRAM+PBS could potentially have used up to 62 nodes, it performs badly due to the small tasks. Clustering 
reduced execution time by more than four times on eight processors. Falkon further reduced the execution time, 
particularly for smaller problems. 
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Figure 7: Execution Time for the fMRI Workflow 

4.4.2 Montage Image Mosaicing 
Montage generates large astronomical image mosaics by composing multiple small images [32, 22]. A four-stage 
pipeline reprojects each image into a common coordinate space; performs background rectification (calculates a list 
of overlapping images; computes image difference between each pair of overlapping images; and fits difference 
images into a plane); performs background correction; and co-adds the processed images into a final mosaic. (To 
enhance concurrency, we decompose the co-add into two steps.) 

We considered a modest-scale computation that produces a 3°x3° mosaic around galaxy M16. There are about 440 
input images and 2,200 overlapping image sections between them. The resulting task graph has many small tasks. 

Figure 8 shows execution times for three versions of Montage:  
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Figure 8: Execution time for Montage application  

Swift with clustering, submitting via GRAM+PBS; Swift submitting via Falkon; and an MPI version constructed by 
the Montage team. The second co-add stage was only parallelized in the MPI version; thus, Falkon performs poorly 
in this step. Both the GRAM and Falkon versions staged in data, while the MPI run assumed data was pre-staged. 
Despite these differences, Falkon achieved performance similar to that of the MPI version. 

Deelman et al. have also created a task-graph implementation of the Montage code, using Pegasus [33]. They do not 
implement quite the same application as us: for example, they run two tasks (mOverlap and mImgtlb) on the portal 
rather than on compute nodes, they combine what for us are two distinct tasks (mDiff and mFit) into a single task, 
mDiffFit, and they omit the final mAdd phase. Thus, direct comparison is difficult. However, if the final mAdd 
phase is omitted from the comparison, Swift+Falkon is faster by about 5% (1067 secs vs. 1120 secs) when compared 
to MPI, while Pegasus is reported as being somewhat slower than MPI. We attribute these differences to two factors: 
first, the MPI version performs initialization and aggregation actions before each step; second, Pegasus uses Condor 
glide-ins, which are heavy-weight relative to Falkon. 

5 Conclusions 
The schedulers used to manage parallel computing clusters are not typically configured to enable easy configuration 
of application-specific scheduling policies. In addition, their sophisticated scheduling algorithms and feature-rich 
code base can result in significant overhead when executing many short tasks.  

Falkon, a Fast and Light-weight tasK executiON framework, is designed to enable the efficient dispatch and 
execution of many small tasks. To this end, it uses a multi-level scheduling strategy to enable separate treatment of 
resource allocation (via conventional schedulers) and task dispatch (via a streamlined, minimal-functionality 
dispatcher). Clients submit task requests to a dispatcher, which in turn passes tasks to executors. A separate 
provisioner is responsible for creating and destroying provisioners in response to changing client demand; thus, 
users can trade off application execution time and resource utilization.  

Dynamic resource provisioning can lead to significant savings in end-to-end application execution time, enable the 
use of batch-scheduled Grids for interactive use, and alleviate the high queue wait times typically found in 
production Grid environments.  We have described a dynamic resource provisioning architecture and presented 
performance results we obtained on the TeraGrid. We have also integrated the dynamic resource provisioning into 
Falkon, a Fast and Light-weight tasK executiON framework, which allowed us to measure various performance 
aspects of resource provisioning with both real applications and synthetic workloads.  



Microbenchmarks show that DRP can allocate resources on the order of 10s of seconds across multiple Grid sites 
and can reduce average queue wait times by up to 95% (effectively yielding queue wait times within 3% of ideal).  
Furthermore, applications (executed by the Swift parallel programming system) reduce end-to-end run time of up to 
90% for large-scale astronomy and medical applications, relative to versions that execute tasks via separate 
scheduler submissions. 
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