

Extending a Distr ibuted Usage SLA Resource Broker to Suppor t
Dynamic Gr id Environments

Catalin L. Dumitrescu*, Ioan Raicu*, Ian Foster*+

Abstract

DI-GRUBER is a distributed Grid brokering
service, with multiple decision points. Previously, the
membership relationship among the decision points
was statically defined. This limited the deployment in
a dynamic environment where VOs appear and vanish
frequently. Here we report on the DI-GRUBER
enhancements with support for WS-MDS Index
Service that allow the scheduling infrastructure to
operate in VO-centric more dynamic environments.
The underlying mechanisms provide each decision
point the necessary information regarding the location
of other decision points.

One interesting difference in this approach is that
each decision point can have only a partial view of the
brokering infrastructure, and hence the brokers’
performance suffers to some degree. We also measure
the trade off between the degree of connectivity in the
mesh network, and the performance of the brokering
infrastructure, and compare with previous results on
the correlation between scheduling accuracy and the
amount of partial knowledge.

1. Introduction

The motivating scenarios for our work are large
grid environments in which virtual organizations
(VOs) appear and vanish in a dynamic manner. Such
VOs might be companies requiring outsourcing
services, or scientific laboratories that want to
participate temporarily in different collaborations with
access to other resources.

Thus, we distinguish between two types of entities
participating in these scenarios: providers and
consumers. They may be nested: a provider may
function as a middleman, providing access to
resources to which the provider has itself been granted
access by some other provider. While sharing policies
issues can arise at multiple levels in such scenarios,
the dynamicity of such an environment is also a
problem. Providers want to express (and enforce)
various usage service level agreements (uSLAs) under
which resources are made available to consumers.
Consumers want to access and interpret uSLA
statements published by providers, in order to monitor
their agreements and guide their activities. Both

providers and consumers want to verify that uSLAs
are applied correctly.

We extend here our work about constructing a
scalable and dynamic resource management service
that supports uSLA expression, publication, discovery,
interpretation, enforcement, and verification in grid
environments. This problem encompasses challenging
and interrelated scheduling, information
synchronization, and scalability issues. We build on
much previous work concerning the specification and
enforcement of local resource scheduling policies [1,
2] the GRUBER broker [3], and the DI-GRUBER
variation [4]. GRUBER addresses issues regarding
how uSLAs can be stored, retrieved, and disseminated
efficiently in a distributed environment, specifically
grids. DI-GRUBER addresses also issues such as
managing large grid environments and state
maintenance among its decision points, which are in
fact GRUBER instances that inter-communicate. DI-
GRUBER extends GRUBER by introducing support
for multiple scheduling decision points, and loosely
synchronizations via periodic information exchange.

In this paper we present three major enhancements
to the DI-GRUBER two layer brokering
infrastructure. The improvements are: WS-MDS
Index-based infrastructure discovery, support for
uSLA automated reconciliation and decision point
overload signaling. We believe that these
improvements make DI-GRUBER capable working
not only in large grid environments, but also in
dynamic and heavily-loaded environments where
automatic recovery becomes also a problem. Here, we
prove our belief correct by means of measuring both
the capability and performance of the extended DI-
GRUBER. We are also interested in gaining insights
about uSLA reconciliation and dynamic management
strategies for future work.

The rest of this article is organized as follows. We
first provide a more detailed description of the
problem that we address. Next, we introduce some
background information about the environment where
DI-GRUBER is supposed to work. In section 3 we
detail the enhancements performed on DI-GRUBER
framework, while in section 4 we measure the
performance of the new infrastructure and also
compare with the previous results we achieved by
using DI-GRUBER. The paper ends with related work

*Computer Science Department
The University of Chicago
catalind@cs.uchicago.edu

+Mathematics and Computer Science Division
Argonne National Laboratory

foster@mcs.anl.gov

and our conclusions about the results and lessons we
learnt.

1.1. Problem Statement

This work targets grids that may comprise
hundreds of institutions and thousands of individual
investigators and various institutions with institutions
and VOs arising and vanish often [5]. More, each
individual investigator and institution may participate
in, and contribute resources to, multiple collaborative
projects that can vary widely in scale, lifetime, and
formality. DI-GRUBER focuses on providing a
brokering infrastructure for such an environment,
providing also scalable and self-organizing services
for such communities. Thus, we examine techniques
for providing reliable support for resource brokering
by means of DI-GRUBER. For example, an important
problem mentioned before is how to determine
dynamically the number of decision points required
for such large grid scenarios [4].

1.2. Dynamic Decision Points Bootstrap
Considerations

DI-GRUBER is a distributed Grid brokering
service, with multiple decision points. Previously, the
membership relation among the decision points was
statically defined by means of local configuration
files. Such proved to be a limitation for deployment in
dynamic environments where various entities (sites,
VOs, or groups) may appear and vanish frequently.
Our approach in solving this problem is the
introduction of WS-MDS Index registration support
that allows individual decision points and clients
discover each other automatically without any human
intervention. This underlying mechanism provides
each DI-GRUBER decision point and client the
necessary information regarding the existence of all
the other decision points, as well as a generic view of
the infrastructure and its instantaneous status.

Thus WS-Index Service becomes the central point
for joining or leaving the brokering network. One
problem that we do consider is that the WS-Index
Service becomes the bottle neck of the infrastructure;
however our previous experiments proved that cannot
be the case [6]. Figure 1 present the results of a
performance measuring experiment performed on
WS-Index Service in PlanetLab { Chun B., 3, July
2003 #3617} with 288 machines all over the world.
This test was very interesting due to the fact that the
throughput achieved while all 288 machines were
concurrently accessing the WS-MDS Index was
around 200 queries per second on average. Although
the WS-MDS Index managed to service all the 288
clients concurrently, its efficiency in terms of

sustaining a high throughput clearly dropped over 200
machines in a wide-are network [7].

WS-MDS Index WAN Tests:
288 machines, no security

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0 300 600 900 1200 1500 1800 2100 2400 2700

Time (sec)

L
oa

d
 (#

 o
f

C
o

nc
u

re
n

t M
ac

h
in

es
)

/
R

es
p

o
n

se
 T

im
e

(m
s)

0

50

100

150

200

250

300

350

400

450

500

T
h

ro
u

gh
p

u
t

(Q
u

er
ie

s
/ s

ec
o

nd
)

Throughput

Load

Response Time

Experiment
Length (sec)

Total # of
Transactions

Min / Median / Average / Max
Transactions per sec

Min / Median / Average / Max
Response Time (ms)

2772 610K 0 / 222 / 220 / 511 51 / 415 / 531 / 22514

Figure 1: WS-MDS Index WAN Tests with no

secur ity (288 clients running on 288 physical nodes
in PlanetLab in a WAN connected via 10 Mb/s
links); tunable parameters: utilized 288 concurrent
clients, with each client star ting every 2 seconds;
left axis – load, response time; r ight axis –
throughput (GT4)

1.3. uSLA Management Issues

Regarding uSLA management, one problem
explored in this paper is the how the uSLAs should be
exchanged in order to maintain a coherent view
managed environment at each DI-GRUBER decision
point. Several operations have to be considered, such
us uSLA propagation, reconciliation and removal.
These operations may occur whenever new DI-
GRUBER decision points join or leave the brokering
network, brought up either by a new VO or resource
provider.

Another problem faced in practice is the necessity
for privacy when sensitive computing resources are
shared. In certain cases, some consumers (either users
or VOs) can require various levels of privacies about
their resources or work to be executed (job types and
priorities, data movement and characteristics). Thus,
the maintenance of a private DI-GRUBER decision
point could be a necessity in such situations. This
issue can be encountered from the VO level on down
to individual users. The problem becomes even more
sensible when dealing with commercial entities. The
enhanced DI-GRUBER addresses this problem by
providing the option for each decision point to either
publish its local information or not to other decision
points in the network. As a future refinement, such a
private decision point can be enhanced to publish its
local database only to a subset of peers that meet
certain requirements.

2. Background Information

We now introduce the main concepts and tools
used in this paper that are necessary for the
experiments in this paper or required in a real
deployment by DI-GRUBER in order to perform its
functionalities.

2.1. DI -GRUBER Decision Point (GRUBER)

GRUBER [3] is a prototype Grid V-PEP and S-
PEP infrastructure that implements the brokering
functionalities required for steering workloads in a
distributed environment based on uSLAs. GRUBER
was the main component used before [3] for job
scheduling over a real grid, namely the Grid3
environment [8]. It is able to perform job scheduling
based on notions such as VO, group VO, and USLAs
at various levels. The main four principal components
are described next and illustrated in Figure 2.

Figure 2: GRUBER Architecture

The GRUBER engine is the main component of the

architecture. It implements various algorithms for
detecting available resources and maintains a generic
view of resource utilization in the grid.

The GRUBER site monitor is a data provider for
the GRUBER engine. This component is optional and
can be replaced with various other grid monitoring
components that provide similar information, such as
MonaLisa or Grid Catalog.

A GRUBER client represents a standard GT client
that allows communication with other GRUBER
components and the GRUBER engine, such as the
GRUBER site selectors that we introduce next.

GRUBER site selectors are tools that communicate
with the GRUBER engine and provide answers to the
question: “which is the best site at which I can run this
job?” . Site selectors can implement various task
assignment policies, such as round robin, least used,
or least recently used task assignment policies.

Finally, the GRUBER queue manager is a
GRUBER client that resides on a submitting host.
This component monitors VO policies and decides
how many jobs to start and when. It interacts with the
GRUBER engine to obtain site selection
recommendations.

Currently, GRUBER is implemented as both an
OGSI service and a WS (WS) service based on the
Globus Toolkit (GT3 and respectively GT4). In the
experiments performed for this paper, we have used
the WS version of GRUBER engine and the site
selectors, but not the queue manager. In this
configuration, GRUBER might seem to operate as a
site recommender because it does not enforce VO-
level uSLAs. However, we assume that all clients
comply with the recommendations and that there is no
need for enforcement.

GRUBER does not itself perform job submission,
but as shown in Figure 2 can be used in conjunction
with various grid job submission infrastructures.
Previously, we have interfaced GRUBER for real job
executions with the Euryale planner [19] largely used
on Grid3. We also believe that GRUBER would work
with other similar grid planner, such Pegasus [8].

2.2. DI -GRUBER

Managing uSLAs within environments that
integrate participants and resources spanning many
physical institutions can become a challenging
problem. A single unified uSLA management decision
point providing brokering decisions over hundreds to
thousands of jobs and sites can easily become a
bottleneck in terms of reliability as well as
performance. DI-GRUBER, an extension to the
GRUBER prototype, was developed as a distributed
grid uSLA-based resource broker that allows multiple
decision points to coexist and cooperate in real-time.

Figure 3: DI-GRUBER Architecture

DI-GRUBER targets to provide a scalable
management service with the same functionalities as
GRUBER but in a distributed approach [9, 4]. It is a
two layer resource brokering service (Figure 3),
capable of working over large grids, extending
GRUBER with support for multiple scheduling
decision points that cooperate by periodically
exchanging various status information [4]. While this
system has proved some strong improvements over
the centralized approach provided by GRUBER, it still
lacks a few important features that were later
implemented and analyzed in this paper.

2.3. DI -GRUBER uSLA Semantics

DI-GRUBER understands both a consumer and a
provider as an entity that has certain characteristics
and requirements. These consumers and providers are
users and groups, and VOs and sites respectively,
allowing either simple sharing rules similar to MAUI
specifications or complex sharing rules as defined in
the WS-Agreement. In the second approach
allocations are expressed as WS-Agreement goals and
requirements introducing a finer granularity for the
rules’ specification. We based DI-GRUBER uSLA
specification on a subset of WS-Agreement, taking
advantage of the refined specification and the high-
level structure. [10, 11]

2.4. Information Dissemination Strategies

An important issue for a decentralized brokering
service is how uSLAs and utilization information are
disseminated among decision points. We need to
aggregate correctly partial information gathered at
several points; without a correct aggregation of the
partial information, wrong decisions can result in
workload starvation and resource under-utilization.

This problem can be addressed in several ways. In
a first approach, both resource usage information and
uSLAs are exchanged among decision points. In a
second approach, only utilization information is
exchanged. As a possible variation on these two
approaches, whenever new sites are detected, their
status is incorporated locally by each decision point,
which means each decision point has only a partial
view of the environment. In a third approach, no usage
information is exchanged and each decision point
relies only on its own mechanisms for detecting grid
status.

While the second approach was experimented with
success before [4], we focus here on the first approach
for information synchronization among the decision
points. This analysis introduces additional
complexities required for uSLA tracking and
management correctly at each decision point.

2.5. Open Science Grid

We envisage that DI-GRUBER can be used in real
grid environments that are ten to hundreds times bigger
than today Open Science Grid (OSG: previously
known as Grid3 [8]). OSG is a multi-virtual
organization environment that sustains production level
services required by various physics experiments. The
infrastructure comprises more than 50 sites and 4500
CPUs, over 1300 simultaneous jobs and more than 2
TB/day aggregate data traffic. The participating sites
are the main resource providers under various
conditions.

Thus, we consider for the experiments in this paper
an environment similar to OSG but ten times larger and
with much higher rates of job scheduling. DI-
GRUBER provides the required uSLA-based solution
for job scheduling decisions for environments similar
to OSG, by providing a means for informed site
selection at the job level and beyond. In a simpler case,
it can act also as a monitoring infrastructure that offers
more information than only current resource
utilizations.

2.6. PlanetLab Testbed

PlanetLab [13] is a geographically distributed
platform for deploying, evaluating, and accessing
planetary-scale network services. PlanetLab is a shared
community effort by a large international group of
researchers, each of whom gets access to one or more
isolated “slices” of PlanetLab’s global resources via a
concept called distributed virtualization. PlanetLab
now comprised over 500 nodes (Linux-based PCs or
servers connected to the PlanetLab overlay network)
distributed worldwide. Almost all nodes are connected
via 10 Mb/s network links (with 100Mb/s on several
nodes), have processor speeds exceeding 1.0 GHz
IA32 PIII class processor, and at least 512 MB RAM.

3. DI-GRUBER Enhancements

Maintaining a local and static view of all the
decision points in brokering architecture might be a
challenging problem and in most cases a cumbersome
one. DI-GRUBER was developed as a distributed
uSLA-based grid resource broker that allows multiple
decision points to coexist and cooperate in real-time.
The problem is that without a supporting mechanism
for dynamic discovery of the brokering infrastructure,
some of the advantages offered by this infrastructure
may become impractical. The main problem arises
from maintaining the list of decision points at each
location in the infrastructure (both decision point and
client locations).

Next, we explore the capabilities and
enhancements introduced to the WS-MDS Index
based DI-GRUBER infrastructure.

3.1. Control Console

Firstly, accurate monitoring is important if we are
to understand how the framework actually performs in
different situations (the verifiers concepts introduced
in [9]). As a first step towards this goal, we have
developed mechanisms for measuring how resources
are used by each VO and by the grid, overall.

The monitoring tool built for DI-GRUBER is a
graphical interface able to present the current
allocations and uSLAs at each decision point and over
in the managed grid infrastructure. This interface
connects to a decision point, collects the local or
generic view and presents it in easy to visualize mode
(Figure 4).

Figure 4: Resource Allocation Example

In order to avoid gathering large amount of

information, we also introduced various summation
operations for different metrics. Practically from a
human verifier point of view, this interface answers
the question “ Are uSLAs adequately enforced by each
decision point?” and “ What are the utilizations and
allocations of different resource in the Grid?” .

Also, the same graphical interface provides
support for uSLA specification at group, VOs and site
levels. The uSLAs can be entered and associated
either with a site, a VO or a group. In another
approach, various WS-Agreement like rules can be
specified that are parsed when required to perform
various job steering operations. Even though this
element is important for managing a grid
infrastructure for job allocations, we consider such an
example beyond the scope of this paper, as being
already presented elsewhere [3].

Further, all uSLAs specified at a certain decision
point are distributed to all other decision points if not

marked as private. While this solution seems not very
scalable (when going towards hundreds of decision
points), we assume that for a grid one hundred times
larger than today Grid3 is sufficient (as also presented
in paragraph �4.2). As an additional note, uSLAs are
associated with the decision point that distributed
them and they can be deleted only by the same point
of decision.

3.2. Decision Point Bootstrap Implementation

As already described, the ability to bring up a
decision point is important in a large and dynamic
grid. While this problem was not addressed before [4],
we address also this problem here. Our solution uses
the functionalities offered by the WS-MDS Index
Service for service registering and querying.

In our implementation, each DI-GRUBER
decision point registers with a predefined WS-MDS
Index Service at startup, while it is automatically
deleted when it vanishes. Further, all decision points
and clients can use this registry to find information
about the existing infrastructure and select the most
appropriate point of contact. When we use the term
“most appropriate” , we refer to metrics such as load
and number of clients already connected. In Figure 5
is presented such a view (achieved by means of the
same graphical console). Now, whenever a new client
boots (at a submission point), it can easily find which
decision point is most appropriate. Also, whenever a
decision point stops responding to a client, this client
automatically queries the registry and selects a
different point of contact.

Figure 5: Decision Points View

We consider that this approach is less error-prone

than the static solution, and, additionally, it offers the
support for dynamically bootstrapping new decision
points whenever new ones register with WS-MDS
Index Service. While we do not have implemented

this facility yet [4], a human operator can easily
perform such an operation (starting a new GT4
container where a DI-GRUBER decision point was
already developed).

Additionally, if a pool of decision points are
maintained in background and forced to register with
the WS-MDS Index Service only when needed, the
operation is 100% automated.

3.3. uSLAs Synchronization Approach

The next problem we focus on is the uSLA
synchronization and reconciliation among the DI-
GRUBER decision points. There are two main cases
that we consider: uSLA decision point sets are
disjunctive and uSLA decision points sets are not
disjunctive.

In the first case, each decision point acquires the
rest of the uSLAs during synchronization operations.
These uSLAs are stored locally and used whenever a
job decision is required. The advantage and simplicity
of this solution consists in the fact that no
reconciliation is necessary. However, this solution
cannot be applied always in practice because some
VOs might have several DI-GRUBER decision points
that overlap partially one another in terms of brokered
sites. In such situation, the next case has to be
considered.

In the second case, besides uSLAs exchanges,
additional reconciliation operations have to be
performed [12]. In our implementation, the uSLAs are
merged. We do believe that simple merging operations
are enough for the MAUI-like rules. In the WS-
Agreement-based cases, rules are instead parsed on
the fly when needed and if all are satisfied then a set
of available sites is generated.

The algorithms used to handle the situations
presented above are presented next (they are generic
enough to cover both situations):

procedure uSLA_combination

 arguments uSLA_set[DPs] , local_uSLA

returns local_uSLA

1 foreach uSLA_set (S) in uSLA_set[DPs] do

2 if S already exists in local_uSLA then

3 update/replace S in local_uSLA

4 else

5 add S to local_uSLA

6 end // if

7 end // foreach

end

procedure uSLA_parsing

 arguments local_uSLA

returns final_action

1 foreach rule (R) in the local_uSLA do

3 action = analyze (R)

4 final_action = MIN (action, final_action)

5 end // foreach

end

where:

DP = DI-GRUBER decision point
Action = the action that to be performed according to

the uSLA set R

final_action = the action that is finally considered

local_uSLA = uSLA set saved locally

4. Empir ical Results

Here we report on some previous results [4] as well
as new results achieved through the WS-MDS Index
Service infrastructure. We used between one and ten
GT4 DI-GRUBER decision points deployed on
PlanetLab nodes [13]. Each decision point maintained
a view of the configuration of the global DI-GRUBER
environment, via periodic exchanges (in the
experiments that follow every three minutes) with
other decision points of information about recent job
dispatch operations. The decision points get
information about their neighbors through a
predefined Index Service running on a different
computer.

The three metrics used in this chapter are
Throughput, Response and Accuracy, defined as
follows.

Response is defined by the following formula (with
RTi being the individual job time response and N
being the number of jobs processed during the
execution period):

Response = �i=1..N RT i / N

Throughput is defined as the number of requests
completed successfully by the service per unit time.

Finally, we define the scheduling accuracy for a
specific job (SAi) as the ratio of free resources at the
selected site to the total free resources over the entire
grid. Accuracy is then the aggregated value of all
scheduling accuracies measured for each individual
job:

Accuracy = �i=1..N (SA i) / N

4.1. Previous Results

In the previous experiments, we used composite
workloads that overlay work for 60 VOs and 10
groups per VO. The experiment duration was one hour
in all cases, and jobs were submitted every second
from a submission host. Each of a total of about 120
submission hosts (“clients”) maintained a connection
with only one DI-GRUBER decision point, selected
randomly in the beginning — thus simulating a
scenario in which each submission site is associated
statically with a single decision point.

The emulated environment was composed of 300
sites representing 40,000 nodes (a grid approximately
ten times larger than OSG today). Each site is
composed of one or more clusters. The emulated
configuration was based on OSG configuration
settings in terms of CPU counts, network connectivity,
etc [4]. As an additional note, the previous results
were achieved on a DI-GRUBER prototyped in a pre-
release of GT4.

With three decision points, Throughput increases
slowly to about 4 job scheduling requests per second
when all testing machines are accessing the service in
parallel. The service Response time is also smaller
(about 26 seconds) on average compared with the
previous results (about 84 seconds). With 10 decision
points, the average service Response time decreased
even further to about 13 seconds, and the achieved
Throughput reached about 7.5 queries per second
during the peak load period. [4]

DI-GRUBER GT4 Scalability:
Throughput

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90 100 110 120
Load (# of concurent clients)

T
h

ro
u

g
h

p
u

t
(q

u
er

ie
s/

se
c)

1DP

3DP

10DP

Figure 6: DI-GRUBER Scalability Throughput (1,

3, and 10 DI-GRUBER Decision Points)

As can be observed in Figure 6 and Figure 7, the
distributed service provides a symmetrical behavior
with the number of concurrent machines that is
independent of the state of the grid (lightly or heavily
loaded). This result verifies the intuition that for a
certain grid configuration size, there is an appropriate
number of decision points that can serve the

scheduling purposes under an appropriate
performance constraint. The overall improvement in
terms of throughput and response time is two to three
times when a three-decision point infrastructure is
deployed, while for the ten-decision point
infrastructure the throughput increased almost five
times relative to the centralized approach.

DI-GRUBER GT4 Scalability:
Response Time

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100 110 120
Load (# of concurent clients)

R
es

p
o

n
se

 T
im

e
(s

ec
)

1DP

3DP

10DP

Figure 7: DI-GRUBER Scalability Response Time

(1, 3, and 10 DI-GRUBER Decision Points)

However, by means of simulations [4] we have
previously concluded that a total of 5 decision points
was enough for handling the workloads floating
through the framework. The main issue remained
here, was to achieve a DI-GRUBER implementation
for dynamically detecting infrastructure decision
points overloads.

4.2. New Results

Here we report on new experiments we performed
using DI-GRUBER on PlanetLab. We have to
mention that we used this time a final GT4 release
based implementation and at the same time, all peer
discovery operations were performed by means of the
WS-MDS Index Service running on a dedicated
computer. In addition, the clients were configured to
re-connect to an available decision point whenever an
error occurred.

Again, the composite workloads overlaid work for
60 VOs and 10 groups per VO. The experiment
duration was also one hour in all cases, and jobs were
submitted every second from a submission host (120
submission hosts again).

4.2.1. Enhanced DI -GRUBER Scalability

The environment was similar as in the previous
experiments, the PlanetLab environment [13]. Also,
the same set of nodes was used for tests, but 6 months

later. The results show some improvement in terms of
both Response and Throughput. Practically, the
clients got a better repartition over the decision points,
and achieved a more stable response time compared
with the previous example. The Response metric’s
value is always less than 30 seconds for 3 decision
points, and less than 10 seconds for 10 decision
points. The Throughput metric’s value shows even
more improvements, reaching a constant value of 5
queries per seconds for 3 decision points, while goes
us up to 16 queries per second for 10 decision points.
On average, we found the enhanced DI-GRUBER to
offer modest improvements for 3 decision points (19%
higher throughput and 8% lower response time) and
significant improvements for 10 decision points (68%
higher throughput and 70% lower response times).

DI-GRUBER GT4 Scalability:
Throughput

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90 100
Load (# of concurent clients)

T
h

ro
u

g
h

p
u

t
(q

ue
ri

es
/s

ec
)

3DP

10DP

Figure 8: Enhanced DI-GRUBER Scalability

Throughput (3, 10 Decision Points)

DI-GRUBER GT4 Scalability:
Response Time

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100
Load (# of concurent clients)

R
es

po
n

se
 T

im
e

(s
ec

)

3DP

10DP

Figure 9: Enhanced DI-GRUBER Scalability

Response Time (3, 10 Decision Points)

Next, we present a comparison in terms of the
performance of handled jobs during the experiment
time interval. The improvements show that practically
more jobs were handled in the same time interval by

the new DI-GRUBER, by a factor of 1.56 in the 3 DP
case and 1.84 in the 10 DP case (see Table 1).

While these results are encouraging from a
performance point of view, the main gains are
however the capacity of the infrastructure to
automatically re-arrange whenever a decision point
fails.

Table 1: DI-GRUBER (GT 3.9.5) vs. MDS-based

DI-GRUBER (GT 4.0) Per formance

Jobs

GT3.9.5
3 DPs

GT3.9.5
10 DPs

GT4
3 DPs

GT4
10 DPs

Handled 24048 37593 31762 69208

Not
Handled

1893 2567 3505 10823

Total 25941 40160 35267 80031

4.2.2. Enhanced DI -GRUBER Tests

In order to prove that WS-MDS Index Service-
based service is indeed scalable enough to support
larger DI-GRUBER infrastructures than considered
till now, we have tested the capacity of our framework
with 120 decision points. In this case we have
measured the regularities of the registrations to the
WS-MDS Index Service, as well as, the load on the
actual node running the WS-MDS Index Service.
These results are presented in Figure 10.

0

1

2

3

4

5

6

T
im

e
14

:0
8:

18
14

:1
6:

42
14

:2
5:

02
14

:3
3:

25
14

:4
1:

54
14

:5
0:

20
14

:5
8:

47
15

:0
7:

24
15

:1
5:

55
15

:2
4:

41
15

:3
3:

21
15

:4
1:

54
15

:5
0:

32
15

:5
9:

05
16

:0
7:

36
16

:1
6:

03
16

:2
4:

29
16

:3
2:

45
16

:4
1:

02
16

:4
9:

18
16

:5
7:

33
17

:0
5:

47
17

:1
4:

02
17

:2
2:

15
17

:3
0:

29
17

:3
8:

42
17

:4
6:

56
17

:5
5:

09
18

:0
3:

23
18

:1
1:

37
18

:1
9:

50
18

:2
8:

04
18

:3
6:

17
18

:4
4:

30
18

:5
2:

41

Time (h)

L
o

ad
 R

eg
is

tr
at

io
n

s/
s

0

0.2

0.4

0.6

0.8

1

1.2

M
ill

io
n

s
M

em
o

ry
 (

G
B

)

o
f

C
lie

n
ts

 (
*1

00
00

)

Load5

of Transactions / s

MemUsed

SwapUsed

of Clients

Figure 10: Infrastructure Per formance

We can observe here that the higher load on the
node running the registration service was higher only
during the initial registration of the DI-GRUBER
decision points with the main WS-MDS Index
Service. Once the registrations stopped, all load on the
node dropped to “normal” . However, our tests started
a new decision point every 60 seconds, case which can
not occur in practice often. Also, the memory

utilization increased fast, but once all the physical
memory was allocated, the swap part increased much
slower. As an additional note regarding this behavior,
we have to note that in our implementation each
decision points registers with the local WS-MDS
Index Service, which performs further an up-stream
registration with the central service. This approach is
helpful in practice because it provides the possibility
to duplicate the central registration point, and avoid
possible bottlenecks. Of course, the drawback is the
higher load on the node running the central WS-MDS
Index Service.

4.2.3. Dynamic Bootstrap Signaling

While dynamic DI-GRUBER decision point
bootstrapping might be difficult to automate in a
generic environment, the solution we have devised for
such environments is semi-automatic. Every time a
client fails to communicate or to connect with a
decision point, it registers with the WS-MDS Index
Service a request fault. These faults are then used by a
human operator in order to bring up new DI-GRUBER
instances and stabilize the brokering infrastructure
whenever required.

As future work, we envisage to fully automate such
operations by means of Grid technologies where
possible. Such faults can be consumed by a
specialized entity that based on some simple policies
can dynamically start new decision points by means of
WS-GRAM service. For example, in the OSG
scenarios considered here, whenever the condition for
bringing up a new decision occurs, a special job is
submitted to a site and a new container is started. In a
more specialized context, a dedicated pool of nodes
can be used for bringing up such decision points and
really used only when necessary. For the remining
time, the dedicated pool might be used for other grid
specific operations.

5. Accuracy with Mesh Connectivity

In this section we focus on comparing the
performance of the brokering infrastructure function
of the connectivity of the decision point connectivity.
The comparisons are done by means of the Accuracy
metric, as defined before. Also, we consider a few
cases, as follows: full connectivity (each of the DPs
collects information from all the others), half
connectivity (each of the DPs collects information
only from half of all the others), and one-fourth
connectivity (each of the DPs collects information
only from a quarter of all the others).

In order to achieve this connectivity, we used
practically several WS-MDS Index Service
registration points (1 in the first case, 2 in the second

case and 3 in the third case). The DI-GRUBER
decision points were configured to register to one WS-
MDS Index Service while obtaining the list of
available peers from a different registration point is
such a way to assure full connectivity in 1, 2 or 4,
respectively, steps. The results we have obtained by
measurement are presented next, after we review our
previous results achieved before based on complete
static configuration lists.

5.1.1. Previous Results

Next, we present our previous analyzes on the
performance of the GT4 DI-GRUBER and its
strategies for providing accurate scheduling decisions
We present here only the results from an infrastructure
complexity point of view, because our next analyze
focuses on this problem. [4]

Table 2 depicts the overall performance of GT4
DI-GRUBER in the scenarios introduced in section �4.
The values under the “All Requests” section provide
an overall view of the implementation’s performance
(even though these results take in consideration also
the 1 and 3 decision points based infrastructure).

Table 2: GT4 DI-GRUBER Overall
Performance

 Decision
Points

% of
Req

of
Req

QTime Norm
QTime

Util Accuracy

1 53% 3852 0 0.000 3% 98%
3 92% 24048 452 0.018 16% 90%

Requests
Handled by
GRUBER 10 93% 37593 2501 0.066 35% 75%

1 47% 3382 0 0.000 7% -
3 8% 1893 36 0.019 4% -

Requests
NOT
Handled by
GRUBER

10 7% 2567 220 0.085 6% -

1 100% 7234 0 0.000 10% 94%
3 100% 25941 660 0.025 20% 81%

All Requests

10 100% 40160 3017 0.075 41% 68%

We note that the accuracy drops with the
complexity of the infrastructure, while the number of
jobs handled by the infrastructure increases substantial
(one order from 1 to 10 decision points). [4]

5.1.2. Enhanced DI -GRUBER Results

Now, we present the new results achieved by means
of the WS-MDS Index Service based DI-GRUBER
and for two additional configurations where the
decision points had only partial knowledge about the
entire infrastructure. We achieved this by using one
central WS-MDS Service where all decision points
registered and which was queried by the clients (in
order to achieve a good repartition of requests), while
the decision points queried 2 (or 3) other services. In
this way, the decision point did not have full
knowledge about the existence of all the other points
in the system. Achieved results are captured in Table
3.

Table 3: WS-MDS based DI-GRUBER
Per formance

 # of MDS Util Accuracy
1 35% 75%
2 27% 62%

Requests
Handled by

GRUBER 3 20% 55%
1 41% 68%
2 30% 60%

Total
Request

3 21% 50%

We can observe that the performance of the
scheduling brokering infrastructure drops substantially
with the smaller connectivity of each individual
decision point. As an additional note, the Util
parameter is low because jobs do not start all in the
beginning over the resources, but they are scheduled
every second during the entire execution period.
Figure 11 provides an intuitive way for realizing that
the performance drops almost linearly with the
number of WS-MDS Index Services. The relation
between the DPs’ connectivity (Con) and the number
of registry services is:

Con = ABS | D / M |

where D is the number of decision points in the

system, while M is the number of WS-MDS Index
Services used for registration.

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3

of WS-MDS Indexes

P
er

ce
n

ta
g

es

Util - Handled Jobs

Util - Total Jobs

Accuracy - Handled Jobs

Accuracy - Total Jobs

Figure 11: DI-GRUBER Infrastructure

Per formance based on decision points connectivity

6. Related Work

A policy based scheduling framework for grid-
enabled resource allocations is under development at
the University of Florida [1]. This framework provides
scheduling strategies that (a) control the request
assignment to grid resources by adjusting resource

usage accounts or request priorities; (b) manage
efficiently resources assigning usage quotas to
intended users; and (c) supports reservation based grid
resource allocation. One important difference of DI-
GRUBER is the lack of an assumption of a centralized
scheduling point.

The Grid Service Broker, a part of the GridBus
Project, mediates access to distributed resources by (a)
discovering suitable data sources for a given analysis
scenario, (b) suitable computational resources, (c)
optimally mapping analysis jobs to resources, (d)
deploying and monitoring job execution on selected
resources, (e) accessing data from local or remote data
source during job execution, and (f) collating and
presenting results. The broker supports a declarative
and dynamic parametric programming model for
creating grid applications [14]. An important
difference is that GridBus does not support the notions
of sites, submission hosts, and virtual organizations or
groups.

Cremona is a project developed at IBM as a part of
the ETTK framework [15, 16]. It is an implementation
of the WS-Agreement specification and its
architecture separates multiple layers of agreement
management, orthogonal to the agreement
management functions: the Agreement Protocol Role
Management, the Agreement Service Role
Management, and the Strategic Agreement
Management. Cremona focuses on advance
reservations, automated SLA negotiation and
verification, as well as advanced agreement
management. DI-GRUBER instead targets a different
environment model, in which the main players are VO
and resource providers with opportunistic needs (free
resources are acquired when available).

7. Conclusions and Future Work

Managing uSLAs within large virtual organizations
that integrate participants and resources spanning
multiple physical institutions is a challenging
problem. Maintaining a single unified decision point
for uSLA management is a problem that arises when
many users and sites need to be managed [5]. Also,
when such environments are also dynamic, the
problem becomes even more complex. We have
provided here a solution for enhancing DI-GRUBER
in order to address the question on how uSLAs can be
stored, retrieved and disseminated efficiently in a
large and dynamic distributed environment. The key
question this paper addresses is the reconciliation and
management of a brokering infrastructure, DI-
GRUBER in our case, in large and dynamic Grid
environments.

We note that DI-GRUBER is a complex service: a
query to a decision point may include multiple

message exchanges between the submitting client and
the decision point, and multiple message exchanges
between the decision points and the job manager in
the grid environment. In a WAN environment with
message latencies in the 100s of milliseconds, a single
query can easily take multiple of seconds to serve. We
expect that performance will be significantly better in
a LAN environment. However, one of DI-GRUBER’s
design goals was to offer resource brokering in a
WAN environment such as grids.

As previously stated, while the transaction rate for
the DI-GRUBER service is fairly low compared to
other transaction processing systems, this rate proved
to be sufficient in the Grid3 context [17]; furthermore,
these other transaction processing systems were
designed to be deployed in a LAN environment. Also,
the transaction speed increases linearly with the
number of decision points deployed over a grid. DI-
GRUBER performance can be improved further by
porting it to a C-based Web services core, such as is
supported in GT4 [18]. The performance of DI-
GRUBER could also be enhanced further simply by
deploying it in a different environment that would
have a tighter coupling between the resource broker
(DI-GRUBER) and the job manager (Euryale); this
approach would reduce the complexity of the
communication from two layers to one layer.

Also, by increasing the number of decision points
(cooperating brokers that communicate via a flooding
protocol) the throughput climbs to approximately 70
transactions/second with a low response time. This
observation leads us to conclude that the required
number of “decision” nodes to ensure scalability in a
two-layer scheduling system like DI-GRUBER is
relatively small.

The WS-MDS Index Service approach proved to
improve the capabilities of the DI-GRUBER
framework. The performance results presented in
section 4 are encouraging and we also showed that DI-
GRUBER can scale up to hundreds of decision points,
an infrastructure that can handle grids more than 1000
larger than today’s OSG size. We also learnt that
when each decision point has only a partial view of
the brokering infrastructure the brokering
infrastructure performance decrease almost linearly
with the number of registry services used in the
system.

Acknowledgements: This work was supported by the
NSF Information Technology Research GriPhyN
project, under contract ITR-0086044.

Bibliography

1. In, J. and P. Avery. Policy Based Scheduling for
Simple Quality of Service in Grid Computing. in

International Parallel & Distributed Processing
Symposium (IPDPS). April '04. Santa Fe, New
Mexico.

2. Dumitrescu, C. and I. Foster. Usage Policy-based
CPU Sharing in Virtual Organizations. in 5th
International Workshop in Grid Computing.
2004.

3. Dumitrescu, C. and I. Foster. GRUBER: A Grid
Resource SLA Broker. in Euro-Par. 2005.
Portugal.

4. Dumitrescu, C., I. Raicu, and I. Foster. DI-
GRUBER: A Distributed Approach for Grid
Resource Brokering. in SC'05. 2005. Seattle.

5. Foster, I., The Grid: A New Infrastructure for 21st
Century Science. Physics Today. 55(2): p. 42-47.

6. Dumitrescu, C., et al. DiPerF: Automated
DIstributed PERformance testing Framework. in
5th International Workshop in Grid Computing.
2004.

7. Raicu, I., A Performance Study of the Globus
Toolkit® and Grid Services via DiPerF, an
automated DIstributed PERformance testing
Framework, in Computer Science. 2005, The
University of Chicago: Chicago. p. 100.

8. Foster, I. and others. The Grid2003 Production
Grid: Principles and Practice. in IEEE
International Symposium on High Performance
Distributed Computing. 2004: IEEE Computer
Science Press.

9. Dumitrescu, C., M. Wilde, and I. Foster. A Model
for Usage Policy-based Resource Allocation in
Grids. in 6th IEEE International Workshop on
Policies for Distributed Systems and Networks
(POLICY 2005). 2005. Stockholm, Sweden.

10. IBM, WSLA Language Specification, Version 1.0.
2003.

11. Ludwig, H., A. Dan, and B. Kearney. Cremona:
An Architecture and Library for Creation and
Monitoring WS-Agreements. in ACM
International Conference on Service Oriented
Computing (ICSOC'04). 2004. New York.

12. Thompson, M.R., Secure and Reliable Group
Communication. 1999, Lawrence Berkeley
National Laboratory: California.

13. Chun B., D.C., T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman, PlanetLab: An
Overlay Testbed for Broad-Coverage Services.
ACM Computer Communications Review, 3, July
2003. 33(3).

14. Buyya, R., GridBus: A Economy-based Grid
Resource Broker. 2004, The University of
Melbourne: Melbourne.

15. IBM, Web Services. 2002.
16. Dan, A., et al., Web Services on Demand: WSLA-

driven automated management, S. Journal, Editor.
2004, IBM. p. 136.

17. Foster, I. and e. al. The Grid2003 Production

Grid: Principles and Practice. in 13th
International Symposium on High Performance
Distributed Computing. 2004.

18. M. Humphrey, G.W., K. Jackson, J. Boverhof, M.
Rodriguez, Joe Bester, J. Gawor, S. Lang, I.
Foster, S. Meder, S. Pickles, and M. McKeown.
State and Events for Web Services: A Comparison
of Five WS-Resource Framework and WS-
Notification Implementations. in 4th IEEE
International Symposium on High Performance
Distributed Computing (HPDC-14). 24-27 July
2005. Research Triangle Park, NC.

19. Voeckler, J., “Euryale: Yet Another Concrete
Planner” , in Virtual Data Workshop, May 18th,
2004.

