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Abstract 

The Grid has the potential to grow significantly over the course of the next decade and therefore the mechanisms 
that make the Grid possible need to become more efficient in order for the Grid to scale. One of these mechanisms 
revolves around resource management; ultimately, there will be so many resources in the Grid, that if they are not 
managed properly, only a very small fraction of those resources will be utilized.  While good resource utilization is 
very important, it is also a hard problem due to widely distributed dynamic environments normally found in the 
Grid.  It is important to develop an experimental methodology for automatically characterizing grid software in a 
manner that allows accurate evaluation of the software’s behavior and performance before deployment in order to 
make better informed resource management decisions.  Many Grid services and software are designed and 
characterized today largely based on the designer’s intuition and on ad hoc experimentation; having the capability to 
automatically map complex, multi-dimensional requirements and performance data among resource providers and 
consumers is a necessary step to ensure consistent good resource utilization in the Grid.  This automatic matching 
between the software characterization and a set of raw or logical resources is a much needed functionality that is 
currently lacking in today’s Grid resource management infrastructure.  Ultimately, my proposed work, which 
addresses performance modeling with the goal to improve resource management, could ensure that the efficiency of 
the resource utilization in the Grid will remain high as the size of the Grid grows.   

1.0 Introduction 

Through my previous work, I have shown that DiPerF [1, 2, 3] can be used to model the performance characteristics 
of a service in a client/server scenario.  Using the basic concept of DiPerF, I believe I can also create performance 
models that can be used to predict the future performance of distributed applications.  Modeling distributed 
applications (i.e. parallel computational programs) might be more challenging since the dataset on which the 
applications work against often influence the performance of the application, and therefore general predictive 
models might not be sufficient. 

Using DiPerF and a small dedicated cluster of machines, we can build dynamic performance models to 
automatically map raw hardware resources to the performance of a particular distributed application and its 
representative workload; in essence, these dynamic performance models can be thought of as job profiles, and will 
be implemented in the component DiProfile.  The intuition behind DiProfile is that based on some small sample 
workload (with varying sizes) and a small set of resources (with varying size), we can make predictions regarding 
the execution time and resource utilization of the entire job running over the complete dataset.  The DiProfile stage 
will be a relatively expensive component in both time and computational resources, however its overhead will be 
warranted as long as the typical job submitted is significantly larger than the amount of time DiProfile needs to build 
its dynamic performance models.   

There is a gap between software requirements (high level) and hardware resources (low level). Automatic mapping 
could produce better scheduling decisions and give users feedback with the expected running time of their software.  
Using DiProfile, we can make predictions on the performance of the jobs based on the amount of raw resources 
dedicated to the jobs.  The accuracy of the predictions will heavily rely on the idea that reliable software 
performance characterization is possible with only a fraction of the data input space. 

Using DiPred and user feedback (or even user specified high level performance goals), the scheduler (DiSched) can 
make better decisions to satisfy the requested duration of the job, where the job should be placed, etc.  Since jobs are 
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profiled based on what raw resources they will likely consume and the duration of those resource usage, multiple 
different jobs could be simultaneously submitted to the same nodes without any significant loss of individual job 
performance; this would certainly increase resource utilization and as long as the predicted resource usage does not 
exceed the available resources, the time it takes to complete individual jobs should not be significantly affected.  
The increase of resource utilization is possible as long as the assumption that several different classes of software 
can be concurrently executed without significant loss of performance.   

It is expected that Resource Managers could use a combination of resource selection algorithms besides the 
proposed DiSched component.  To ensure that the available resources that the scheduler is aware of is maintained 
and updated, resource monitoring (i.e. Ganglia, MDS, etc…) will also be necessary.  Some current resource 
managers use resource monitoring to make scheduling decisions, but often only one job is normally submitted to 
each individual resource.  However, combining resource monitoring with predictive scheduling has the potential to 
not only improve scheduling decisions to yield lower end-to-end job execution times, but to increase resource 
utilization significantly. 

2.0 Related Work 

The goals of mapping software requirements to available resources has been studied extensively, however, in 
practice, it is still a relatively manual process and is application specific.  One approach is to perform benchmarks on 
resources, however this still requires user specified relationships between benchmarks and software requirements to 
be established.  Performing these benchmarks on the resources acts as a “stepping stone” towards gaining insight 
about the performance of a particular set of resources, and what kind of problems could possibly benefit the most 
from them.  Regarding application performance models, there seems to be two general methods, workflow analysis 
and the use of compilers to some degree.  The drawbacks of workflow analysis is that it is a hard problem and time 
consuming to produce accurate workflows.  As for compiler technology, it requires user intervention to model 
complex applications.  Furthermore, performance models might not reflect actual performance on various different 
architectures.   

What I propose is to seek an automatic mapping between software requirements and available resources using 
“black box” approach, which would be ideally generic and application independent.  In principle, performance 
models could be built to be classified into several software classes based on the type and amount of resource usage.  
The models would take into consideration interactions between various components in the system, and across 
distributed and different systems.  Best of all, applications could have performance models built without any 
modifications or expert knowledge about the particular software. 

Some of the lessons learned from the related work are that benchmarking of Grid resources could be used to enhance 
the resource selection, especially in the heterogeneous systems that are often found in today’s Grids.  Co-scheduling 
could also be used based on the software classes established to increase the resource utilization.  Furthermore, 
historical information could be used to recall the performance models generated for commonly used software in 
order to save the cost of generating a new model.  Much of the surveyed work concentrated on lower levels of 
scheduling (i.e. local scheduling); it is important to address scheduling decisions on a larger global scale, and 
perhaps giving hints to the low level schedulers in order to improve the low level local scheduling. 

2.1 Benchmarking of Resources 

GridBench [30, 31] is a set of tools that aim to facilitate the characterization of Grid nodes or collections of Grid 
resources. In order to perform benchmarking measurements in an organized and flexible way, we provide the 
GridBench framework as a means for running benchmarks on Grid environments as well as collecting, archiving, 
and publishing the results.  This data is available for retrieval not only by end users, but also for automated decision-
makers such as schedulers. A scheduler could use micro-benchmark results to “rank” the resources based on 
performance (CPU, memory or MPI).  Additionally, a scheduler could evaluate a resource's “health” by invoking 
one of the micro-benchmarks. Since execution times are typically less than 10 seconds, this would impose little 
additional delay and would potentially save a scheduler from time-consuming failed submissions.  Once the 
relationship between the micro-benchmarks and the application kernel has been established (in a manual fashion that 
involves human intervention and detailed knowledge of the application or its empirical performance) it can then be 
applied to resource selection. 

Elmroth et al [38] presents algorithms, methods, and software for a Grid resource manager, responsible for resource 
brokering and scheduling in early production Grids. The broker selects computing resources based on actual job 
requirements and a number of criteria identifying the available resources, with the aim to minimize the total time to 
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delivery for the individual application. The total time to delivery includes the time for program execution, batch 
queue waiting, input/output data transfer, and executable staging. Main features of the resource manager include 
advance reservations, resource selection based on computer benchmark results and network performance 
predictions, and a basic adaptation facility.  The performance differences between Grid resources and the fact that 
their relative performance characteristics may vary for different types of applications makes resource selection 
difficult. Our approach to handle this is to use a benchmark-based procedure for resource selection.  Based on the 
user’s identification of relevant benchmarks and an estimated execution time on some specified resource, the broker 
estimates the execution time for all resources of interest.  The authors assume linear scaling of the application in 
relation to the benchmark, i.e., a resource with a benchmark result a factor k better is assumed to execute the 
application a factor k faster.  For each of these benchmarks, the user needs to specify a benchmark result and an 
expected execution time on a system corresponding to that benchmark result.  The time estimation for the stage in 
and stage out procedures are based on the actual (known) sizes of input files and the executable file, user-provided 
estimates for the sizes of the output files, and network bandwidth predictions. The network bandwidth predictions 
are performed using the Network Weather Service (NWS) [42].  NWS combines periodic bandwidth measurements 
with statistical methods to make short-term predictions about the available bandwidth. 

2.2 Workflow Analysis 

Spooner et al. [32] developed a multi-tiered scheduling architecture (TITAN) that employs a performance prediction 
system (PACE) and task distribution brokers to meet user-defined deadlines and improve resource usage efficiency. 
This work focused on the lowest tier which is responsible for local scheduling. By coupling application performance 
data with scheduling heuristics, the architecture is able to balance the processes of minimizing run-to-completion 
time and processor idle time, whilst adhering to service deadlines on a per-task basis.  The PACE system provides a 
method to predict the execution time dynamically, given an application model and suitable hardware descriptions. 
The hardware (resource) descriptions are generated when the resources are configured for use by TITAN, and the 
application models are generated prior to submission.  PACE models are modular, consisting of application, sub-
task, parallel and resource objects. Application tools are provided that take C source code and generate sub-tasks 
that capture the serial components of the code by control flow graphs. It may be necessary to add loop and 
conditional probabilities to the sub-tasks where data cannot be identified via static analysis. The parallel object is 
developed to describe the parallel operation of the application. This can be reasonably straightforward for simple 
codes, and a library of templates exists for standard constructs. Applications that exhibit more complex parallel 
operations may require customization. The sub-tasks and parallel objects are compiled from a performance 
specification language (PSL) and are linked together with an application object that represents the entry point of the 
model.  Resource tools are available to characterize the resource hardware through micro-benchmarking and 
modeling techniques for communication and memory hierarchies. The resultant resource objects are then used as 
inputs to an evaluation engine which takes the resource objects and parameters to produce predictive traces and an 
estimated execution time.  Scheduling issues are addressed at this level using task scheduling algorithms driven by 
PACE performance predictions.  In summary, the techniques presented have been developed into a working system 
for scheduling parallel tasks over a heterogeneous network of resources. The Genetic Algorithm forms the centre 
point of the localized workload managers and is responsible for selecting, creating and evaluating new schedules.  

Prophesy [40] is an infrastructure for performance analysis and modeling of parallel and distributed applications. 
Prophesy includes three components: automatic instrumentation of applications, databases for archival of 
information, and automatic development of performance models using different techniques.  The default mode 
consists of instrumenting the entire code via PAIDE at the level of loops and procedures.  PAIDE includes a parser 
that identifies where to insert instrumentation code. PAIDE also generates two files: (1) the call graph of the 
application and (2) the locations in the code where instrumentation was inserted. The information in these two files 
allows the performance data to be directly related to the application code for code tuning.  A user can specify that 
the code be instrumented at different levels of granularity or manually insert directives for the instrumenting tool to 
instrument specific segments of code. The resultant performance data is automatically placed in the performance 
database. This data is used by the data analysis component to produce an analytical performance model at the level 
of granularity specified by the user, or answer queries about the best implementation of a given function. The 
models are developed based upon performance data from the performance database, model templates from the 
template database, and system characteristics from the systems database. These models can be used to predict the 
performance of the application under different system configurations.  Currently, Prophesy includes three methods 
for developing analytical models for predictions: (1) curve fitting, (2) parameterized model of the application code, 
(3) coupling of the kernel models.  The advantage of curve fitting is the ease for which the analytical model is 
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generated; the disadvantage is the lack of exposure of system terms versus application terms.  Hence, models 
resulting from curve fitting can be used to explore application scalability but not different system configurations.  
Parameterization is a method that combines manual analysis of the code with system performance measurements. 
The manual analysis entails hand-counting the number of different operations in the code.  Having the system and 
application terms represented explicitly, one can use the resultant models to explore what happens under different 
system configurations as well as application sizes. The disadvantage of this method is the time required for manual 
analysis.  Kernel coupling refers to the effect that kernel i has on kernel j in relation to running each kernel in 
isolation. The two kernels can correspond to adjacent kernels in the control flow of the application or a chain of 
three or more kernels.  The coupling value provided insight into where further algorithm and code implementation 
work was needed to improve performance, in particular the reuse of data between kernels.  

Pegasus [43, 44] (Planning for Execution in Grids) was developed at ISI as part of the GriPhyN and SCEC/IT 
projects. Pegasus is a configurable system that can map and execute complex workflows on the Grid. Currently, 
Pegasus relies on a full-ahead-planning to map the workflows.  The main difference between Pegasus and other 
work on workflow management is that while most of the other system focus on resource brokerage and scheduling 
strategies while Pegasus uses the concept of virtual data and provenance to generate and reduce the workflow based 
on data products which have already been computed earlier. It prunes the workflow based on the assumption that it 
is always more costly the compute the data product than to fetch it from an existing location. Pegasus also automates 
the job of replica selection so that the user does not have to specify the location of the input data files. Pegasus can 
also map and schedule only portions of the workflow at a time, using just in-time planning techniques.  Although 
Pegasus provides a feasible solution, it is not necessarily a low cost one in term of performance. 

Jang et al [33] presents a resource planner system consisting of the Pegasus [43, 44] workflow management and 
mapping system combined with the Prophesy [40] performance modeling infrastructure. Pegasus is used to map an 
abstract workflow description onto the available grid resources. The abstract workflow indicates the logical 
transformations that need to be performed, their order and the logical data file that they consume and produce. The 
abstract workflow does not include information about where to execute the transformations nor where the data is 
located. Pegasus uses various grid services to find the available resources, the needed data and the executables that 
correspond to the transformations. Pegasus also reduces the abstract workflow if the intermediate products are found 
to already exist somewhere in the grid environment. One of the ways that Pegasus maps a workflow onto the 
available resources is through random allocation. This work interfaces Pegasus and Prophesy to enable Pegasus to 
use the Prophesy prediction mechanisms to make more informed resources choices.   

The goal of the Grid Application Development Software Project (GrADS) [28] is to realize a Grid system, by 
providing tools, such as problem solving environments, Grid compilers, schedulers, performance monitors, to 
manage all the stages of application development and execution. Using GrADS the user will only concentrate on 
high-level application design without putting attention to the peculiarities of the Grid computing platform used.  The 
GrADS system is composed of three main components: Program Preparation System (PPS), Configurable Object 
Program (COP), and Program Execution System (PES). The PPS component handles application development, 
composition, and compilation.  To develop their Grid application, users interact with a high-level interface providing 
a problem solving environment, which permits the integration of the application source code, software components 
and library modules. Then, the resulting application is passed to a specialized GrADS compiler that generates an 
intermediate representation code and a configurable object program (COP). The COP encapsulates all results (e.g. 
application performance models and the intermediate application representation code) of the PPS phase for later 
usage. The PES components provides on-line resource discovery, scheduling, binding, application performance 
monitoring, and rescheduling.  To execute an application, the user submits parameters of the problem such as 
problem size to the GrADS system. The PPE component receives the COP as input and, at this stage, the scheduler 
carries out an application-appropriate schedule. The binder is then invoked to perform a final, resource-specific 
compilation of the intermediate representation code. Next, the executable is launched on the selected Grid resources 
and a real-time performance monitor is used to track program performance and detect violation of performance 
guarantees. Performance guarantees are formalized in a performance contract. In the case of a performance contract 
violation, the rescheduler is invoked to evaluate alternative schedules. The scheduler is a key component of the 
GrADS system. In GrADS, scheduling decisions are taken by exploiting application characteristics and requirements 
in order to obtain the best application execution time.  

Dail et al [37] proposed an application scheduling approach designed to improve the performance of parallel 
applications in Computational Grid environments. The approach is general and can be applied to a range of 
applications in a variety of execution environments. This flexibility is achieved through a decoupling of the 
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scheduler core (the search procedure) from the application-specific (e.g. application performance models) and 
platform-specific (e.g. collection of resource information) components used by the search procedure.  While the 
scheduler can be used in a stand-alone fashion, it has been designed specifically for a larger program development 
environment such as the Grid Application Development Software (GrADS) project. The decoupled design allows 
integration with other GrADS components to provide transparent and generic scheduling.  To provide application 
appropriate scheduling, the system depends on the availability of two application-specific components: a 
performance model and a mapper.  As the GrADS system matures, the authors hope to obtain such components 
automatically from application development tools such as the GrADS compiler.  The performance model is an 
analytic metric for the performance expected of the application on a given set of resources. The mapper provides 
directives for mapping logical application data or tasks to physical resources.  To validate their approach in the 
absence of such facilities, they hand-built performance models and mappers for two applications: Game of Life and 
Jacobi.  The performance of the various scheduling methods was: local MDS cache ~ 4.5 seconds; remote NWS 
nameserver ~ 62.4 seconds; remote NWS nameserver and remote MDS server ~ 1088.4 seconds.  The authors 
assume that a Grid user will probably be willing to wait 60 seconds for scheduling, but will probably not be willing 
to wait 1000 seconds.  These results indicate that, given the technologies available at the time of their experiments 
(2002), their scheduling approach is only feasible when used with a local MDS cache. 

AppLeS (Application Level Scheduling) [45] is a project leaded by F. Berman at the University of California, S. 
Diego. It is a methodology for adaptive application scheduling on heterogeneous computing platforms. The AppLes 
approach exploits static and dynamic resource information, performance predictions, application and user-specific 
information, and scheduling techniques that adapt “on-the-fly” to application execution. In Figure 2 the phases in the 
Apples scheduling methodology are shown. As we can see, the System Selection phase of the general scheduler 
architecture of Figure 1, in AppLeS is split into three sub-phases: (2) Resource selection, (3) Schedule generation, 
and, (4) Schedule selection. During sub-phase (2) the resources enabled to run the application are selected according 
to application-specific resource selection models. To this end, AppLeS uses information carried out by the Network 
Weather Service (NWS) performance monitor (NWS is a distributed system that periodically monitors and 
dynamically forecasts the performance various network and computational resources can deliver over a given time 
interval). An ordered list of viable resources is finally produced. In (3) a performance model is applied to determine 
a set of candidate schedules for the application on the selected resources (for any given set of resources, many 
schedules may be possible). In (4) the schedule that best matches the chosen performance criteria is selected. The 
AppLeS approach requires to integrate in the application a scheduling agent which must be customized according to 
application features. In order to make easier this customization, templates to be applied to classes of applications 
with common characteristics were introduced. Templates for parameter sweep applications (APST), master/worker 
applications (AMWAT), and for scheduling moldable jobs on spaceshared parallel supercomputers (SA) are 
currently available. 

2.3 Co-Scheduling 

Frachtenberg et al. [34, 35] performed a detailed performance evaluation of 5 factors affecting scheduling systems 
running dynamic workloads: multiprogramming level, time quantum, gang scheduling, backfilling, and flexible co-
scheduling [36].  The results demonstrated the importance of both components of the gang-scheduling plus 
backfilling combination: gang scheduling reduced response time and slowdown, and backfilling allowed doing so 
with a limited multiprogramming level.  This was further improved by using flexible co-scheduling rather than strict 
gang scheduling, as this reduced the constraints and allowed for a denser packing.  Multiprogramming on parallel 
machines may be done using two orthogonal mechanisms: time slicing and space slicing.  With time slicing, each 
processor runs processes belonging to many different jobs concurrently, and switches between them.  With space 
slicing, the processors are partitioned into groups that serve different jobs.  Gang scheduling is a technique that 
combines the two approaches: all processors are time-slices in a coordinated manner, and in each time slot, they are 
partitioned among multiple jobs.  Gang scheduling may be limited due to memory constraints.  Backfilling is an 
optimization that improves the performance of pure space slicing by using small jobs from the end of the queue to 
fill in holes in the schedule, however to do so, it requires users to provide estimates of job run times.  The flexible 
co-scheduling employs dynamic process classification and schedules processes using this class information.  
Processes are categorized into one of four classes: CS (coscheduling), F (frustrated), DC (don’t-care), and RE (rate-
equivalent).  CS processes communicate often, and must be coscheduled (gang-scheduled) across the machine to run 
effectively, due to their demanding synchronization requirements.  F processes have enough synchronization 
requirements to be co-scheduled, but due to load imbalance, they often cannot make full use of their allotted CPU 
time. This load imbalance can result from any of the reasons detailed in the introduction.  DC processes rarely 
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synchronize, and can be scheduled independently of each other without penalizing the system’s utilization or the 
job’s performance. For example, a job using a coarse-grained workpile model would be categorized as DC. RE 
processes are characterized by jobs that have little synchronization, but require a similar (balanced) amount of CPU 
time for all their processes.  Processes are categorized based on measuring process statistics; this was achieved by 
implementing a lightweight monitoring layer that was integrated with MPI.  Synchronous communication primitives 
in MPI call one of four low-latency functions to note when the process starts/ends a synchronous operation and 
when it enters and exits blocking mode. Applications only need to be re-linked with the modified MPI library, 
without any change. The accuracy of this monitoring layer has been verified using synthetic applications for which 
the measured parameters are known in advance, and found to be precise within 0.1%.  In summary, batch and gang 
scheduling perform poorly under dynamic or load-imbalanced workloads, whereas implicit co-scheduling suffers 
from performance penalties for fine-grained synchronous jobs. Most job schedulers offer little adaptation to 
externally- and internally fragmented workloads, resulting in reduced machine utilization and response times.  On 
the other hand, Flexible Co-Scheduling was designed specifically to alleviate these problems by dynamically 
adjusting scheduling to varying workload and application requirements. 

2.4 Other 

Liu et al [39] presents a general-purpose resource selection framework that addresses the problems of first 
discovering and then organizing resources to meet application requirements by defining a resource selection service 
for locating Grid resources that match application requirements. At the heart of this framework is a simple, but 
powerful, declarative language based on a technique called set matching, which extends the Condor matchmaking 
framework to support both single resource and multiple-resource selection. This framework also provides an open 
interface for loading application-specific mapping modules to personalize the resource selector.  Within this 
framework, both application resource requirements and application performance models are specified declaratively, 
in the ClassAd language, while mapping strategies can be determined by user-supplied code.  Liu et al [46] extended 
this work by designing and implementing a description language, RedLine, for expressing constraints associated 
with resource consumers (requests) and resource providers. They have also implemented a matchmaking process 
that uses constraint-solving techniques to solve the combinatorial satisfaction problems that arise when resolving 
constraints. The resulting system has significantly enhanced expressiveness compared with previous approaches, 
being able to deal with requests that involve multiple resources and that express constraints on policies as well as 
properties.   

Some of the various methods used or proposed in the literature for extracting performance models are: 

• Genetic Algorithm [32, 41] 

• Simulated Annealing [41]  

• Tabu Search [41] 

• Curve fitting (least squares) [40] 

• Parameterization [40] 

• Kernel coupling [40] 

• Time series analysis 

3.0 Proposed Work 

The proposed work is aimed at developing the following four components with the goals to increasing resource 
utilization while decreasing end-to-end job execution times using predictive scheduling in the Grid: 

1. DiPerF – A Distributed Measurement Framework 

2. DiProfile – A Job Profiler for distributed software 

3. DiPredict – Performance Predictions of distributed computations   

4. DiSched – Resource scheduling using DiPredict in distributed environments 
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Figure 1: Proposed system overview   

DiPerF is included as one of the 4 components due to the fact that it already exists as it was part of my previous 
work, and it is the foundation of the DiProfile component.  The DiProfile components will essentially be the DiPerF 
framework specialized for the task of profiling software in a fully automatic manner and outputting the needed 
results to the next component, namely DiPredict. 

Figure 1 presents the proposed system overview.  Note that the 3 components (DiProfile, DiPred, and DiSched) are 
placed in between the user and the Grid; the proposed system is meant to act as a run-time tool to aid in scheduling 
decisions.  The DiProfile component breaks analyzes the software and its input and generates the needed hardware 
requirements and tries to classify the software class in which that particular software belongs to.  The DiPredict 
component then attempts to use the hardware requirements and build some high level choices that the user could 
choose from, such as resource utilization desired, length of job desired, or maximum cost allowed.  Based on the 
feedback or the user and the predictions made by DiPredict, the DiSched component can then perform a 
matchmaking between what the user wants, with the software requirements, and the available resources. 

3.1 DiPerF: Collection of performance measurements in a distributed environment 

There has been much work [4-10] in the area of performance measurements for both service performance in a 
distributed environment and network performance. An important aspect to understanding the performance of 
complex system that has not been addressed in the literature is the performance of individual clients (and the 
aggregate performance of many clients). To address this specific point, I have developed DiPerF [1], a scalable 
distributed performance testing framework that is aimed at simplifying and automating service performance 
evaluation. DiPerF’s overall objective is to collect the necessary performance metrics from a complex distributed 
system in order to quantify service performance, client performance, and communication infrastructure (i.e., 
network) performance. DiPerF coordinates a pool of machines that test a target service, collects and aggregates 
performance metrics, and generates performance statistics. The aggregate data collected provide information on 
service throughput, on service ‘fairness’ when serving multiple clients concurrently, and on the impact of network 
latency on service performance. DiPerF was designed to scale to 10,000s of concurrent clients with 100,000s of 
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transactions per second. The central hypothesis is that such a framework can be built and that the collected metrics 
can be combined to depict the aggregate client view. The expected outcome is a fully automated tool implemented 
over several testbeds (e.g., Grid3, PlanetLab, clusters) that tests service performance and provides detailed statistics 
about the network and the service performance from both the client and service view. The preliminary results 
obtained from two test cases (GRAM job submission in Globus Toolkit and web server performance) and another 
scalability study currently being investigated shows that the scalability goals of DiPerF are realizable and suggest 
that DiPerF provides a solid foundation for the proposed research. The expected significance of DiPerF is the ability 
to observe the client view, the service view, and the network performance with the goal that these three different 
views combined together can offer insight regarding the performance of a service that was not present in just one of 
the views.  

3.2 DiProfile: Perform software characterization 

Modeling distributed applications (i.e. parallel computational programs) might be more challenging since the dataset 
on which the applications work against often influence the performance of the application, and therefore general 
static predictive models might not be sufficient.  Using DiPerF and a small dedicated cluster of machines, we can 
build dynamic performance models to automatically map raw hardware resources to the performance of a particular 
distributed application and its representative workload; in essence, these dynamic performance models can be 
thought of as job profiles, and will be implemented in the component DiProfile.  The intuition behind DiProfile is 
that based on some small sample workload (with varying sizes) and a small set of resources (with varying size), we 
can make predictions regarding the execution time and resource utilization of the entire job running over the 
complete dataset.  The DiProfile stage will be a relatively expensive component in both time and computational 
resources, however its overhead will be warranted as long as the typical job submitted is significantly larger than the 
amount of time DiProfile needs to build its dynamic performance models. 

We envision that several different software classes will emerge which DiProfile will be able to automatically 
identify which class any software belongs to; these classes would probably represent the average case resource 
utilization for each respective metric.  Some of these classes could be: 

• CPU Intensive only 
• Network Intensive only 
• Memory Intensive only (capacity) 
• Memory Intensive only (bandwidth) 
• Storage Intensive only (capacity) 
• Storage Intensive only (bandwidth) 
• Any combination of the above classes 

The number of software classes could quickly grow due to the many combinations possible, however defining such 
software classes will have certain advantages especially in scalability at the sacrifice of some expressivity.  One 
could imagine once some software is characterized and classified with a particular class, then defining rules to 
decide what other software could be co-scheduled concurrently could be easily realized.    

The questions that remain unanswered for this section are: 

1. Can the performance of a complex piece of software that heavily depends on its input be characterized in 
its entirety in a fraction of the time that it would take to run the entire workload? 

2. Is the average case resource utilization sufficient to make the software class useful in real world resource 
management?  

3. How flexible will the job profiler be to different types of software classes? 

4. What is the maximum amount of time users are willing to wait for a job profile? 

5. What overall performance improvement is needed in order to offset the extra complexity, time, and 
resources that the software profiler introduces? 

3.3 DiPredict: Automatic mapping of software requirements to raw resources & Service Performance 
Predictions 

Using the data generated by DiProfile, I believe it is possible to build analytical models that estimate a service 
performance given some characterization of the resources that would be utilized and the current state of those 
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resources. Previous research [11-19] has used statistical time series, regression and/or historical information in order 
to perform predictions in the context of service performance or network performance. On the other hand, there are 
other multivariate analytical models that have the potential of having better predicting accuracy. The Grid is a 
complex system, and often no particular metric is sufficiently comprehensive; however, an approach (such as neural 
networks or support vector machines) having the capability to learn relationships automatically among various 
dependent metrics can be a significantly more powerful approach that would yield enhanced prediction accuracy in a 
wider range of circumstances.  

There is a gap between software requirements (high level) and hardware resources (low level). Automatic mapping 
could produce better scheduling decisions and give users feedback with the expected running time of their software.  
Using DiProfile, we can make predictions on the performance of the jobs based on the amount of raw resources 
dedicated to the jobs.  The accuracy of the predictions will heavily rely on the idea that reliable software 
performance characterization is possible with only a fraction of the data input space. 

The questions that remain unanswered for this section are: 

6. Can this automatic mapping (software requirements  hardware resources) be achieved for a wide range of 
software classes? 

7. Are the predictions accurate enough to be useful? 

8. How flexible/fragile are the predictions? 

9. Can the predictions be computed fast enough to satisfy the user agreeable wait time? 

3.4 DiSched: Matchmaking between the needed raw resources and the available resources 

Using DiPred, the scheduler (DiSched) can make better decisions to satisfy the requested duration of the job, where 
the job should be placed, etc.  Since jobs are profiled based on what raw resources they will likely consume and the 
duration of those resource usage, multiple different jobs could be simultaneously submitted to the same nodes 
without any significant loss of individual job performance; this would certainly increase resource utilization and as 
long as the predicted resource usage does not exceed the available resources, the time it takes to complete individual 
jobs should not be significantly affected.  The increase of resource utilization is possible as long as the assumption 
that several different classes of software can be concurrently executed without significant loss of performance.  
Figure 2 attempts to explain this very concept of co-scheduling in which 3 different applications belonging to 
different software classes exhibit different total running time and resource utilization depending on whether the 
software is run in parallel or in series.   

Resource 
Utilization: 

50%

Resource 
Utilization: 

75%

Figure 2: Simple example showing that co-scheduling software that has different requirements (in this case 
CPU and Network resources) could be run in parallel without loss of performance; note that in a serial 

fashion, it would take 299 seconds to complete all 3 jobs, while if we run the first 2 jobs concurrently, it would 
only take 200 seconds 
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It is expected that Resource Managers could use a combination of resource selection algorithms besides the 
proposed DiSched component.  To ensure that the available resources that the scheduler is aware of is maintained 
and updated, resource monitoring (i.e. Ganglia, MDS, etc…) will also be necessary.  Some current resource 
managers use resource monitoring to make scheduling decisions, but often only one job is normally submitted to 
each individual resource.  However, combining resource monitoring with predictive scheduling has the potential to 
not only improve scheduling decisions to yield lower end-to-end job execution times, but to increase resource 
utilization significantly. 

Using DiSched, resource managers / brokers can make more informed decisions regarding resource selection, 
resource allocation / reservation, load balancing, and satisfying a particular Quality of Service (QoS). There has 
been much work (Condor, PBS, LSF, MAUI, in clusters and CSF in Grids [20-27]) in the area of resource managers 
and resource brokers that use the state of current resources to make scheduling decisions. The limitation of this 
approach is that heuristics must be found that finds relationships between the state of current resources and the 
application requirements, something that is currently only automatically realized at a basic level. Furthermore, the 
state of the available resources could both be incomplete and/or stale, and therefore decisions made solely on this 
state could be suboptimal. Finally, collecting the state of the available resources and always having up-to-date 
information is not a scalable approach. The overall objective is to develop a scalable resource selection algorithm 
that utilizes both the state of the current resources and the predictive models that contain dynamic run-time 
information. The central hypothesis is that current resource allocation algorithms could be improved and as the Grid 
grows, the problems with the current resource allocation techniques will become even more apparent as the state of 
the available resources becomes harder to keep up to date. The hypothesis will be tested by the comparison between 
the proposed resource allocation algorithm and existing approaches; the performance characteristics will be the 
resource utilization, the flexibility of the approach under varying conditions, and the scalability of the compared 
approaches. The expected outcome is a scalable resource scheduler that uses both predictive models and available 
resource information to make better resource scheduling decisions that yield higher resource utilization and that 
scales along with the growing Grid. My long term career goal is to integrate the proposed resource allocation 
algorithm into existing resource managers and brokers. Ensuring that the performance of resource managers will be 
maintained as the size of the systems they coordinate grows will be essential to the scalability of the Grid. The 
expected significance consists of the automatic mapping between application requirements and raw resources which 
would lead to better resource selection algorithms; this essentially would allow higher resource utilization in the 
Grid, and hence make the Grid more scalable.  

The questions that remain unanswered for this section are: 

10. Can software performance predictions aid resource scheduling decisions in a consistent and significant 
manner? 

11. Can a broad type of software (that identifies not resource usage, but rather software features, workload, 
usage patterns, etc) be defined that will most likely benefit from DiSched? 

12. Are dynamic run-time performance models more accurate than static generic performance models, 
especially for certain types of software? 

4.0 Preliminary Results 

The immediate preliminary results involve validating that the assumptions made in Section 2 are valid: 

• Proof that several different classes of software can be concurrently executed without significant loss of 
performance 

• Show that reliable software performance characterization is possible with only a fraction of the entire input 
space  

The long term expected results will be the building of the remaining 3 components (DiProfile, DiPredict, and 
DiSched) with proof that the proposed approach was able to decreased end-to-end job execution times while 
increasing resource utilization using predictive scheduling.  I expect the entire proposed project to take several years 
since it involves rather complex issues and it addresses several open problems.   
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4.1 Testbed 

The computer specifications that the experiments were performed on can be found in Table 1.  On the other hand, 
Table 2 shows the actual performance of the 4 main subsystems that we investigated, namely the memory, hard disk, 
CPU, and network interface.  It is interesting to see that both the CPU and the memory subsystems required the use 
of the CPU extensively, but other subsystems such as the hard disk and network interface card managed to max out 
their performance with only a fraction of the processor utilization.   

Table 1: Computer specifications 

Computer Name diablo
Year of Manufacturing 2003
Processor Family AMD K7 Athlon
Processor Clock 2.16 GHz
L1 Cache Data/Code 32K / 32K
L2 Cache 256K
Front Side Bus (FSB) DEC Alpha EV6
FSB Width 64-bit
FSB Clock 332 MHz
FSB Bandwidth 2654 MB/s
Memory Size 512 MB
Memory Bus Type DDR SDRAM
Memory Width 64-bit
Memory Clock 332 MHz
Memory Bandwidth 2654 MB/s
Chipset Bus Type Via V-Link
Chipset Bus Width 8-bit
Chipset Clock 531 MHz
Chipset Bandwidth 531 MB/s
Network Interface Card NetGear 10/100 PCI NIC
Operating System Linux Mandrake 10.1  

Table 2: Actual performance of 4 main subsystems: memory, hard disk, CPU, and network interface 

 
4.2 Testing Software  

In order to investigate the feasibility of co-scheduling, I developed a “toy” application in C (just a little over 1000 
lines of code) that allows the user to specify the amount of resources that the application is to consume.  The 
configuration parameters are: 

• t: test length in seconds 

• tr: number of transactions 

• cpu: CPU % utilization 

• mem: memory %s utilization 

• net: network %s utilization 

• disk: disk %s utilization 

CPU % Performance
mem (MB/s) 100% 423 MB/s
disk (MB/s) 12% 66 MB/s
cpu (MIPS) 100% 886 MIPS
nic (Mb/s) 14% 95 Mb/s

Overview
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• disk_name: disk file name 

• step: granularity between context switches in microseconds 

• debug: debug messages enabled 

The granularity between context switches was implemented using the select() system function allowing a processes 
to sleep for a predefined amount of time with a granularity of microseconds.  I investigated various different values 
for this step, and found that if the step was too short, the application would spend so much time that it would get 
really little work done because it would be spending all of its time in the select() system call.  I determined that a 
step size of 10 ms was sufficiently large where the select call did not impose much of a performance penalty on the 
application, yet it was small enough for the application to be responsive.   

Figure 3 below shows a screen shot of the “toy” application with the various parameters and a sample output after 
running the application for 10 seconds with 75% CPU utilization. 

 
Figure 3: Sample screen shot of the “toy” application using 75% of the CPU 

 

4.3 Co-Scheduling 

The next few figures depict the performance of the “toy” application and its ability to manage the resource 
utilization as opposed to the operating systems ability to manage the same set of resources.  In all these next 
experiments, we had two scenarios: 1) 1 to 10 applications that all requested in parallel 100% of a particular 
resource (red line), and 2) 1 to 10 applications that each requested just partial resource in parallel (blue line), but 
these partial resources add up to 100% of the resources for each test run.  For example, for 10 concurrent clients in 
Figure 4, the red line represents 10 clients each requesting 100% of the CPU, while the blue line represents 10 
clients each requesting 10% of the CPU.  We can see that the OS does a very good job of managing the multiple 
concurrent clients, while my implementation of the “toy” application seems to have a decreasing aggregate 
performance as the number of clients is increased; this is depicted in Figure 4 - CPU, Figure 5 – MEM, Figure 6 – 
NET, and Figure 7 - DISK.  This can be attributed to the fact that it is unlikely that all various processes managed to 
enter their sleep states synchronized, and hence there were some overlapping between various processes running 
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concurrently, and then several processes sleeping concurrently.  Unfortunately, this is the reality of co-scheduling 
multiple processes on the same physical resource, since processes will never be coordinated perfectly in terms of 
their resource consumption, and hence this phenomenon will be either just as bad if not even worse in the real world.  
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Figure 4: CPU Resource: Aggregate MIPS for 1 to 10 concurrent clients comparing application control 
vs. OS control 
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Figure 5: Memory Resource: Aggregate MB/s for 1 to 10 concurrent clients comparing application 
control vs. OS control 
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Figure 6: Network Resource: Aggregate Mb/s for 1 to 10 concurrent clients comparing application 
control vs. OS control 
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Figure 7: Hard Disk Resource: Aggregate MB/s for 1 to 10 concurrent clients comparing application 
control vs. OS control 
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The next few tables show the performance of 4 processes utilizing different subsystems running concurrently on one 
physical set of resources.  Each row represents an individual process, the capacity column indicates the percentage 
of each respective resource the particular process requested, and the CPU % column represents the actual CPU 
utilization that particular process utilized.  For example, in Table 3, the first process requested 1% of the memory 
performance, which in turn utilized 1% of the processor as well.  The Parallel column represents the performance of 
the process while it was running in parallel with the other 3 processes.  The Serial column represents the 
performance of the particular process as it solely ran on the physical resource.  The % Perf column tries to 
summarize the performance loss between the parallel performance and the serial performance, with the overall 
average being found at the bottom right hand corner of each table.   

Table 3: one process requesting 95% of the CPU while the memory, disk and network processes were 
mostly idle 

 
It is interesting that the performance for the first 3 test cases seemed to not be affected significantly due to having 
several processes running in parallel.  Test case 1 has 1 process requesting 95% of the CPU while the rest of the 
processes sit mostly idle.  Test case 2 has 1 process requesting 95% of the memory bandwidth with the rest of the 
processes sitting relatively idle.  Finally, test case 3 has both the network and disk performance maxed out with the 
memory and CPU relatively idle.  At least in these extreme cases, it seems that co-scheduling does not impose a 
significant performance penalty.   

Table 4: one process requesting 95% of the memory while the CPU, disk and network processes were 
mostly idle 

 
Table 5: two process requesting 100% of the disk and network respectively, while the memory, and 

CPU processes were mostly idle 

 
Table 6: one process requesting 20% of the memory, another requesting 100% of the disk, another with 

61% of the CPU and a forth with 50% of the network 

 

Capacity CPU % Parallel Serial % Perf
mem (MB/s) 20% 20% 79.812 84.7 94%
disk (MB/s) 100% 12% 57.121 66.3 86%
cpu (MIPS) 61% 61% 410.8 540.8 76%
nic (Mb/s) 50% 7% 43.1 47.9 90%

100% 87%Total CPU % Overall Performance

Test Case 4

Capacity CPU % Parallel Serial % Perf
mem (MB/s) 1% 1% 4.2 4.2 98%
disk (MB/s) 100% 12% 65.6 66.3 99%
cpu (MIPS) 1% 1% 8.8 8.9 99%
nic (Mb/s) 100% 14% 93.8 95.8 98%

28% 99%Overall Performance

Test Case 3

Total CPU %

Capacity CPU % Parallel Serial % Perf
mem (MB/s) 95% 95% 389.9 402.4 97%
disk (MB/s) 1% < 1% 0.6 0.7 93%
cpu (MIPS) 1% 1% 8.8 8.9 99%
nic (Mb/s) 1% < 1% 0.9 1.0 98%

96% 97%Overall PerformanceTotal CPU %

Test Case 2

Capacity CPU % Parallel Serial % Perf
mem (MB/s) 1% 1% 4.1 4.2 98%
disk (MB/s) 1% < 1% 0.6 0.7 94%
cpu (MIPS) 95% 95% 825.9 842.3 98%
nic (Mb/s) 1% < 1% 0.9 1.0 95%

96% 96%

Test Case 1

Total CPU % Overall Performance
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Test cases 4 and 5 are interesting from the point of view that each process requires a significant amount of resources, 
and hence the larger contention for the scarce resources (especially CPU), leads the performance loss to be around 
15%. 

Table 7: one process requesting 37% of the memory, another requesting 100% of the disk, another with 
37% of the CPU and a forth with 100% of the network 

 
4.4 Software Characterization 

I chose two different problems to investigate, namely the Jacobi 2D problem and the quick sort algorithm.  The 
Jacobi 2D runs in O(n2) and solves a linear system of equations.  It is a regular iterative code that continuously 
updates a 2D matrix within a loop body between some global error-checking stages.  This application is an example 
of a CPU intensive application.  The problem size I experimented with were from a 1x1 matrix to a 1000x1000 
matrix. 

The second problem was the quick sort algorithm that runs in O(n*log(n)).  It sorts a list of integers, ranging from a 
size of 1 to 100,000,000 integers, approximately 1GB of data stored in ASCII text format.  Normally, quick sort is a 
CPU intensive application, however to change the dynamics of the algorithm, I forced the application to read the 
input data from the hard disk.  Although this is a O(n) operation, due the hard disk’s speed being significantly 
slower than main memory, the time it took to read the data off the disk dominated the running time, and hence the 
performance of the quick sort algorithm almost appears to be linear; after careful analysis, it can be seen that the 
graph actually grows faster than linear, but this is only obvious after seeing that a linear approximation does not fit 
the data perfect.   

 
Figure 8: Jacobi 2D performance running time vs. problem size ranging from 1x1 to 1000x1000 

The interesting thing about Figure 8 is the consistency of the time to complete an individual run vs. the problem 
size.  The blue line and markers denote actual performance results, while the red line represents a polynomial 
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approximation of the empirical results.  Note how nicely the last few markers line-up with the polynomial 
approximation where the problem size is 700, 800, 900, and 1000.  As for Figure 9, we see a similar trend where the 
input size gives us a very consistent time to completion, and the larger sizes of the problem space (50 to 100 million) 
seem to match perfectly the polynomial approximation.    

 
Figure 9: Quick sort performance running time vs. problem size ranging from 1 to 100 million integers 

5.0 Conclusion 

This report has covered the following items: 

• A brief overview of DiPerF 

• A literature survey of resource management using predictive scheduling 

• Showed that co-scheduling is possible for several different classes of software without significant loss of 
performance 

• Showed that reliable software performance characterization is possible with only a fraction of the entire input 
space 

• A proposal outlining the entire system of components and the related work 

• Showed that reliable software performance characterization is possible with only a fraction of the entire input 
space (at least for 2 specific problems – Jacobi 2D and quick sort) 

The proposed work is aimed at developing the following four components with the goals to increasing resource 
utilization while decreasing end-to-end job execution times using predictive scheduling in the Grid: 

1. DiPerF – A Distributed Measurement Framework 

2. DiProfile – A Job Profiler for distributed computations 

3. DiPredict – Performance Predictions of distributed computations   

4. DiSched – Resource scheduling using DiPredict in distributed environments 

I believe that the proposed research addresses significant work in the area of performance modeling and resource 
management.  My research work should play a critical role in understanding important problems in the design, 
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development, management and planning of complex and dynamic systems and could enhance the scalability of the 
Grid as well as improve resources utilization despite the Grid’s growing size.  
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