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1 Abstract 
The Globus Toolkit® (GT) is the “de facto standard” for grid computing.  Measuring the performance of various 
components of the GT in a wide area network (WAN) as well as a local area network (LAN) is essential in 
understanding the performance that is to be expected from the GT in a realistic deployment in a distributed and 
heterogeneous environment where there might be complex interactions between network connectivity and service 
performance.  The focus of this paper is the performance of job submission mechanism (GRAM), an essential GT 
component that is very likely to be used in a mixed LAN and WAN environment.  We specifically tested the 
scalability, performance, and fairness of the pre-WS GRAM and WS-GRAM bundled with GT 3.9.4.  To drive our 
empirical evaluation of GRAM, we used DiPerF, a DIstributed PERformance testing Framework, whose design was 
aimed at simplifying and automating service performance evaluation. …  

 

2 Introduction 
The Globus Toolkit is the “de facto standard” for grid computing as it has been called by numerous agencies and 
world recognized news sources such as the New York Times.  Measuring the performance of the Globus Toolkit is 
important to ensure that the Grid will continue to grow and scale as the user base and infrastructure expands.  
Furthermore, the testing of the toolkit and grid services is difficult due to the distributed and heterogeneous 
environment Grids are usually found in.  Performing distributed measurements is not a trivial task, due to difficulties 
1) accuracy – synchronizing the time across an entire system that might have large communication latencies, 2) 
flexibility – in heterogeneity normally found in WAN environments and the need to access large number of 
resources, 3) scalability – the coordination of large amounts of resources, and 4) performance – the need to process 
a large number of transactions per second.  In attempting to address these four issues, we developed DiPerF, a 
DIstributed PERformance testing Framework, aimed at simplifying and automating service performance evaluation. 
DiPerF coordinates a distributed pool of machines that run clients of a target service, collects and aggregates 
performance metrics, and generates performance statistics. The data collected provides information on a particular 
service’s maximum throughput, on service ‘fairness’ when multiple clients access the service concurrently, and on 
the impact of network latency on service performance from both client and service viewpoint. Using this data, it 
may be possible to build empirical performance estimators that link observed service performance (throughput, 
response time) to offered load.  These estimates can be then used as input by a resource scheduler to increase 
resource utilization while maintaining desired quality of service levels. All steps involved in this process are 
automated, including dynamic deployment of a service and its clients, testing, data collection, and the data analysis.   

DiPerF is a modularized tool, with various components written in C/C++/perl; it has been tested over PlanetLab, 
Grid3, and the Computer Science Cluster at the University of Chicago.  We have implemented several variations 
(ssh, TCP, UDP) of the communication between components in order to give DiPerF the most flexibility and 
scalability in a wide range of scenarios.  We have investigated both the performance and scalability of DiPerF and 
found that DiPerF is able to handle up to 10,000+ clients and 100,000+ transactions per second; we also performed a 
validation study of DiPerF to ensure that the aggregate client view matched the tested service view and found that 
the two views usually matched within a few percent.   
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In profiling the performance of the Globus Toolkit, we investigated the performance of three main components: 1) 
job submission, 2) information services, and 3) a file transfer protocol.  All these components of the Globus Toolkit 
are vital to the functionality, performance, and scalability of the grid.  We specifically tested: 1) pre WS GRAM and 
WS GRAM included [1, 2, 3, 4, 5] with Globus Toolkit 3.2 and 3.9.4, 2) the scalability and performance of the WS-
MDS Index bundled with Globus Toolkit 3.9.5, and 3) the scalability and fairness of the GridFTP server included 
with the Globus Toolkit 3.9.5.  We also investigated the performance of two grid services: 1) DI-GRUBER, a 
distributed usage SLA-based broker, a grid service based on the Globus Toolkit 3.2 and 3.9.5, and 2) instance 
creation and message passing performance in the Globus Toolkit 3.2.  Through the various test case studies we 
performed using DiPerF, we believe it has proved to be a valuable tool for scalability and performance evaluation 
studies, as well as for automated extraction of service performance characteristics.   

2.1 Motivation & Goals 
Multiple threads motivated me to measure the performance of the Globus Toolkit, which in turn motivated the 
building of DiPerF.  The Globus Toolkit is the “de facto standard” for grid computing.  Measuring the performance 
of the various components of the Globus Toolkit in a WAN as well as a LAN is essential in understanding the 
performance that is to be expected from the Globus Toolkit in a realistic deployment in a distributed and 
heterogeneous environment.  Furthermore, measuring the performance of grid services in a WAN is similarly 
important due to the complex interactions between network connectivity and service performance.   

Although performance testing is an ‘everyday’ task, testing harnesses are often built from scratch for a particular 
service. DiPerF can be used to test the scalability and performance limits of a service: that is, find the maximum 
offered load supported by the service while still serving requests with an acceptable quality of service.  Actual 
service performance experienced by heterogeneous and geographically distributed clients with different levels of 
connectivity cannot be easily gauged based on controlled LAN-based tests.  Therefore significant effort is 
sometimes required in deploying the testing platform itself. With a wide-area, heterogeneous deployment provided 
by the PlanetLab [6, 7] and Grid3 [8] testbed, DiPerF can provide accurate estimation of the service performance as 
experienced by such clients.  

2.2 Obstacles 
Automated performance evaluation and result aggregation across a distributed test-bed is complicated by multiple 
factors. In building DiPerF, we encountered 4 main obstacles: 

• accuracy – time  synchronization   

• flexibility: heterogeneity in WAN environments & accessing of many resources 

• scalability – coordination of many resources 

• performance – processing large number of transactions per second 

The accuracy of the performance metrics collected is heavily dependent on the accuracy of the timing mechanisms 
used and on accurate clock synchronization among the participating machines. DiPerF synchronizes the time 
between client nodes with a synchronization error smaller than 100ms on average.  The reliability of presented 
results is important, especially in wide-area environments: we detect client failures during the test that could impact 
on reported result accuracy.   

The heterogeneity normally found in WAN environments pose a challenging problem for any large scale testing due 
to different remote access methods, different administrative domains, different hardware architectures, and different 
operating systems and host environments.  We have shown DiPerF to be flexible by implementing the support for 
three testbeds: Grid3, PlanetLab, and the University of Chicago CS cluster.  Grid3 offers a testbed in which DiPerF 
uses the Globus Toolkit as the main method of deploying clients and retrieving performance metrics.  PlanetLab 
offers a unique environment where there is a uniform remote access method, the client code gets deployed via rsync, 
and the communication is implemented via ssh, TCP, or UDP.  The UChicago CS cluster is similar to that of 
PlanetLab, however it has the advantage of having a network file system (NFS) which make the deployment of 
clients almost trivial; on the other hand, the communication occurs in exactly the same manner as it does in 
PlanetLab.   
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The scalability of the framework itself is important; otherwise DiPerF will not be able to saturate a target service. 
We insure scalability by only loosely coupling the participating components, and by having multiple 
implementations of communication protocols between components.  DiPerF has been designed and implemented to 
be scalable to 10,000+ clients that could generate 100,000+ transactions per second.   

DiPerF has been measured to process up to 200,000 transactions per second via TCP and up to 15,000 transactions 
per second via SSH.  The performance of DiPerF has been carefully tuned to use the most lightweight protocols and 
tools in order to achieve its goals.  For example, the communication protocol built on TCP uses a single process and 
the select() function to multiplex the 1,000s of concurrent connections.  The structures that are used to store and 
transfer the performance metrics have been optimized for space and efficiency.  Furthermore, each TCP 
connection’s buffering is kept to a minimum in order to lower the memory footprint of DiPerF and to ensure the 
desired scalability; the drawback of the small memory footprint per connection is the limited connection bandwidth 
that could be achieved per connection, but with 1,000s of concurrent connections, this would hardly be an issue.   

In summary, DiPerF has been designed from the ground up with scalability, performance, flexibility, and accuracy 
as its target goal, and based on the results in this thesis, we believe this target goal has been achieved. 

2.3 Contributions 
The contributions of this thesis are two fold: 1) a detailed empirical performance analysis of various components of 
the Globus Toolkit along with a few grid services, and 2) DiPerF, a tool that makes automated distributed 
performance testing easy.   

Through our tests performed on GRAM, WS-MDS, and GridFTP, we have been able to quantify the performance 
gain or loss between various different versions or implementations, and have normally found the upper limit on both 
scalability and performance on these services.  We have also been able to show the performance of these 
components in a WAN, a task that would have been very tedious and time consuming without a tool such as DiPerF.  
By pushing the Globus Toolkit to the limit in both performance and scalability, we was able to give the users a 
rough overview of the performance they are to expect so they can do better resource planning.  The developers also 
gained feedback on the behavior of the various components under heavy stress and allowed them to concentrate on 
improving the parts that needed the most improvements.  We were also able to quantify the performance and 
scalability of DI-GRUBER, a distributed grid service built on top of the Globus Toolkit 3.2 and the Globus Toolkit 
3.9.5.  

The second main contribution is DiPerF itself, which provides a tool that allows large scale testing of grid services, 
web services, and network services to be done in both LAN and WAN environments.  DiPerF has been automated to 
the extent that once configured, the framework will automatically do the following steps: 

• check what machines or resources are available for testing 

• deploy the client code on the available machines 

• perform time synchronization 

• run the client code in a controlled and predetermined fashion 

• collect performance metrics from all the clients 

• stop and clean up the client code from the remote resources 

• aggregate the performance metrics at a central location 

• summarize the results 

• generates graphs depicting the aggregate performance of the clients and tested service 

In summary, DiPerF offers an easy solution to large scale distributed performance measurements. 
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3 Related Work & Background Information 
This section covers the related work to DiPerF including similar studies performed on grid services and various grid 
components.  It also addresses basic and introductory information on various topics in order to make this thesis self 
contained. 

3.1 Grid Services and Grid Performance Studies Related Work 
We first cover related work for grid performance studies in general, studies on various components such as 
GridFTP, MDS, and GRAM, and finally the related work to the grid services we tested.   

3.1.1 Grid Performance Studies 
NetLogger [9] targets instrumentation of Grid middleware and applications, and attempts to control and adapt the 
amount of instrumentation data produced in order not to generate too much monitoring data. NetLogger is focusing 
on monitoring, and requires code modification in the clients; furthermore, it does not address automated client 
distribution or automatic data analysis. 

GridBench [10] provides benchmarks for characterizing Grid resources and a framework for running these 
benchmarks and for collecting, archiving, and publishing results. While DiPerF focuses on performance exploration 
for entire services, GridBench uses synthetic benchmarks and aims to test specific functionalities of a Grid node. 
However, the results of these benchmarks alone are probably not enough to infer the performance of a particular 
service. 

The development team of the Globus Toolkit have done extensive testing [11, 12] of the Globus Toolkit in LAN 
environments.  Some of the tests they performed are even more involved and complex than what we have tested in 
this work, but the downside of these results is the artificial environment that is created in a LAN setup with multiple 
clients running on few machines.  The results we obtained with 100s of machines distributed all over the world are 
much more likely to depict the realistic performance of the various Globus Toolkit components. 

Grid applications can combine the use of compute, storage, network, and other resources.  These resources are often 
geographically distributed, adding to application complexity and thus the difficulty of understanding application 
performance.  GridMapper [13] is a tool for monitoring and visualizing the behavior of such distributed systems. 
GridMapper builds on basic mechanisms for registering, discovering, and accessing performance information 
sources, as well as for mapping from domain names to physical locations. The visualization system itself then 
supports the automatic layout of distributed sets of such sources and animation of their activities.  

In grid computing environments, network bandwidth discovery and allocation is a serious issue.  Before their 
applications are running, grid users will need to choose hosts based on available bandwidth.  Running applications 
may need to adapt to a changing set of hosts.  Hence, a tool is needed for monitoring network performance that is 
integral to the grid environment.  To address this need, Gloperf [14] was developed as part of the Globus grid 
computing toolkit.  Gloperf is designed for ease of deployment and makes simple, end-to-end TCP measurements 
requiring no special host permissions.  Scalability is addressed by a hierarchy of measurements based on group 
membership and by limiting overhead to a small, acceptable, fixed percentage of the available bandwidth.   

The Network Weather Service (NWS) [15] is a distributed monitoring and forecasting system. A distributed set of 
performance sensors feed forecasting modules.  There are important differences to DiPerF. First, NWS does not 
attempt to control the offered load on the target service but merely to monitor it. Second, the performance testing 
framework deployed by DiPerF is built on the fly, and removed as soon as the test ends; while NWS sensors aim to 
monitor network performance over long periods of time.  

3.1.2 GRAM Performance Studies Related Work 
The Globus Toolkit’s 3.2 job submission service test suite [16] uses multiple threads on a single node to submit an 
entire workload to the server. However, this approach does not gauge the impact of a wide-area environment, and 
does not scale well when clients use many resources, which means that the service will be relatively hard to saturate.  
The Globus Toolkit 3.9.4 job submission was also partially tested by the same group [12], but the tests are 
incomplete, and do not cover nearly the level of detail that the tests presented in this work. 
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3.2 Background Information on DiPerF components, test cases, and testbeds 
This section contains a brief overview of various key concepts, testbeds, and software packages used in this work in 
order to make this thesis self contained.  It covers 1) the definition of Grid Computing, 2) the description of four 
different testbeds (Grid3, PlanetLab, UChicago CS cluster, and the DiPerF cluster), 3) communication protocols 
(ssh, TCP, UDP), and 4) the background information on the various test cases (Globus Toolkit 3.2, 3.9.5, GRAM, 
GridFTP, WS-MDS, and GRUBER).   

3.2.1 Testbeds 
This section covers the four testbeds (Grid3, PlanetLab, the University of Chicago CS cluster, and the DiPerF 
cluster) that we used in this work.  For each set of experiments in this work, we outline what testbed we used; this is 
an important section since the results of certain tests might vary with the particular testbed.  

3.2.1.1 PlanetLab 
PlanetLab [64] is a geographically distributed platform for deploying, evaluating, and accessing planetary-scale 
network services. PlanetLab is a shared community effort by a large international group of researchers, each of 
whom gets access to one or more isolated "slices" of PlanetLab's global resources via a concept called distributed 
virtualization. In order to encourage innovation in infrastructure, PlanetLab decouples the operating system running 
on each node from a set of multiple, possibly 3rd-party network-wide services that define PlanetLab, a principle 
referred to as unbundled management.  

PlanetLab Network Performance from 268 nodes to UChicago
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Figure 1: PlanetLab Network Performance from 268 nodes to a node at UChicago as measured by IPERF on 
April 13th, 2005; each circle denotes a physical machine with the corresponding x-axis and y-axis values as its 

network characteristics, namely network latency and bandwidth. 

PlanetLab’s deployment is now at over 500 nodes (Linux-based PCs or servers connected to the PlanetLab overlay 
network) distributed around the world.  Almost all nodes in PlanetLab are connected via 10 Mb/s network links 
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(with 100Mb/s on several nodes), have processors speeds exceeding 1.0 GHz IA32 PIII class processor, and at least 
512 MB RAM.  Due to the large geographic distribution (the entire world) among PlanetLab nodes, network 
latencies and achieved bandwidth varies greatly from node to node.  In order to capture this variation in network 
performance, Figure 1 displays the network performance of 268 nodes (the accessible nodes on 04-13-05) as 
measured by IPERF on April 13th, 2005.  It is very interesting to note the heavy dependency between high 
bandwidth / low latencies and low bandwidth / high latencies.  In order to visualize the majority of the node 
characteristics better, Figure 2 shows the same data from Figure 1, but with the x and y axis shown at log scale.  

PlanetLab Network Performance from 268 nodes to UChicago
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Figure 2: PlanetLab Network Performance from 268 nodes to a node at UChicago as measured by IPERF on 

April 13th, 2005 shown with x and y axis in log scale. 

3.2.1.2 UChicago CS Cluster 
The University of Chicago CS cluster contains over 100 machines that are remotely accessible.  The majority of 
these machines are running Debian Linux 3.0, have AMD Athlon XP Processors at 2.1GHz, have 512 MB of RAM, 
and are connected via a 100 Mb/s Fast Ethernet switched network.  The communication latency between any pair of 
machines in the CS cluster is on average less than 1 ms, with a few having latencies as high as several ms.  
Furthermore, all machines share a common file system via NFS (Network File System).   

3.2.1.3 DiPerF Cluster 
Some tests were performed on a smaller scale LAN that had better network connectivity, specifically 1Gb/s 
connections via a switch.  The network latencies incurred were generally less than 0.1 ms.  This cluster did not run 
NFS as was the case in the UChicago CS cluster.  The connectivity of the DiPerF cluster to the outside world is 
100Mb/s.   
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Table 1: DiPerF cluster at UChicago hosts hardware and OS details 

Machine 
Name m5 diablo cobra 512tr viper 

Machine 
Type x86 64 bit x86 64 bit X86 32 bit X86 32 bit X86 32 bit 

OS Linux 
Mandrake 10.1 

Linux 
Suse 9.2 

Linux 
Suse 9.2 

Linux 
Suse 9.2 

Linux 
Mandrake 10.1

OS 
Release 

2.6.8.1- 
12mdksmp 

2.6.8- 
24-default 

2.6.4- 
52-default 

2.6.8- 
24-default 

2.6.8.1- 
12mdk 

# of 
Proc. 2 1 1 1 1 

CPU 
Speed 1600 MHz 1800 MHz 2166 MHz 2166 MHz 1466 MHz 

Cache 
Size 

L1: 256KB 
L2: 2048KB 

L1: 128KB 
L2: 256KB 

L1: 128KB 
L2: 256KB 

L1: 128KB 
L2: 256KB 

L1: 128KB 
L2: 256KB 

CPU 
Type 

AMD 
Opteron 

AMD 
Athlon 64 

AMD Athlon 
XP 

AMD 
Athlon XP 

AMD 
Athlon XP 

Memory 
Total 

1 GB DDR 
PC3200 Dual Channel 

1 GB DDR 
PC3200 Dual Channel

1 GB DDR 
PC2700 

1 GB DDR 
PC2700 

768 MB 
SDRAM 
PC133 

Swap 
Total 1 GB 1 GB 1 GB 1 GB 1 GB 

Network 
Link 

1 Gb/s Int. 
100 Mb/s Ext. 

1 Gb/s Int. 
100 Mb/s Ext. 

1 Gb/s Int. 
100 Mb/s Ext. 

1 Gb/s Int. 
100 Mb/s Ext. 

100 Mb/s Int. 
100 Mb/s Ext. 

Network 
MTU 1500 B 1500 B 1500 B 1500 B 1500 B 

3.2.2 Test Cases 
This section will cover the basics of the various components of the Globus Toolkit, including GridFTP, MDS, and 
GRAM.  It will also cover the basic architecture of GRUBER, a grid service built on top of the Globus Toolkit 3.2. 

3.2.2.1 Globus Toolkit 3.9.5 
The Globus Toolkit 3.9.5 is in essence the Beta version of GT4 released in April 2005; since all the experiments 
were conducted prior to this date, all results are based on pre-GT4 releases.  As shown in Figure 3, GT4 comprises 
both a set of service implementations (“server” code) and associated “client” libraries. GT4 provides both Web 
services (WS) components (on the top) and non-WS components (on the bottom).  Note that all GT4 WS 
components use WS-Interoperability-compliant transport and security mechanisms, and can thus interoperate with 
each other and with other WS components.  In addition, all GT4 components, both WS and non-WS, support X.509 
end entity certificates and proxy certificates. Thus a client can use the same credentials to authenticate with any GT4 
WS or non-WS component. 

Nine GT4 services implement Web services (WS) interfaces:  

• job management (GRAM) 

• reliable file transfer (RFT) 

• delegation 

• Monitoring and Discovery System (MDS) 
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o MDS-Index 

o MDS-Trigger 

o MDS Aggregator  

• community authorization (CAS) 

• OGSA-DAI data access and integration 

• GTCP Grid TeleControl Protocol for online control of instrumentation.  

For two of these services, GRAM and MDS-Index, pre-WS “legacy” implementations are also provided. These pre-
WS implementations will be deprecated at some future time as experience is gained with WS implementations.  For 
three additional GT4 services, WS interfaces are not yet provided (but will be in the future): 

• GridFTP data transport  

• replica location service (RLS), and  

• MyProxy online credential repository 

 
Figure 3: GT4 Key Components [73] 

Other libraries provide powerful authentication and authorization mechanisms, while the eXtensible I/O (XIO) 
library provides convenient access to a variety of underlying transport protocols.  SimpleCA is a lightweight 
certification authority. 

3.2.2.2 GRAM 
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GRAM (Grid Resource Allocation and Management) simplifies the use of remote systems by providing a single 
standard interface for requesting and using remote system resources for the execution of "jobs". The most common 
use (and the best supported use) of GRAM is remote job submission and control. This is typically used to support 
distributed computing applications. 

GRAM is designed to provide a single common protocol and API for requesting and using remote system resources, 
by providing a uniform, flexible interface to local job scheduling systems. The Grid Security Infrastructure (GSI) 
provides mutual authentication of both users and remote resources using GSI (Grid-wide) PKI-based identities. 
GRAM provides a simple authorization mechanism based on GSI identities and a mechanism to map GSI identities 
to local user accounts. [74] 

We evaluated three implementations of a job submission service bundled with various versions of the Globus 
Toolkit:  

• GT3.2 pre-WS GRAM 

• GT3.2 WS GRAM 

• GT4 WS GRAM.   

GT3.2 pre-WS GRAM performs the following steps for job submission: a gatekeeper listens for job requests on a 
specific machine; performs mutual authentication by confirming the user’s identity, and proving its identity to the 
user; starts a job manager process as the local user corresponding to authenticated remote user; then the job manager 
invokes the appropriate local site resource manager for job execution and maintains a HTTPS channel for 
information exchange with the remote user.  

GT3.2 WS GRAM, a WS-based job submission service, performs the following steps: a client submits a 
createService request which is received by the Virtual Host Environment Redirector, which then attempts to forward 
the createService call to a User Hosting Environment (UHE) where mutual authentication / authorization can take 
place; if the UHE is not created, the Launch UHE module is invoked; WS GRAM then creates a new Managed Job 
Service (MJS); MJS submits the job into a back-end scheduling system [75].  

GT3.9.5 WS-GRAM models jobs as lightweight WS-Resources rather than relatively heavyweight Grid services.  
WS GRAM combines job-management services and local system adapters with other service components of GT 4.0 
in order to support job execution with coordinated file staging.  Figure 4 depicts the complex set of message 
exchanges that occurs in WS-GRAM.  We note that both pre-WS GRAM and WS GRAM are complex services: a 
job submission, execution, and result retrieval sequence may include multiple message exchanges between the 
submitting client and the service. [76]  

 
Figure 4: WS GRAM Component Architecture Approach [76] 
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The heart of the WS GRAM service architecture is a set of Web services designed to be hosted in the Globus 
Toolkit's WSRF core hosting environment.  Each submitted job is exposed as a distinct resource qualifying the 
generic ManagedJob service. The service provides an interface to monitor the status of the job or to terminate the 
job (by terminating the ManagedJob resource).  Each compute element, as accessed through a local scheduler, is 
exposed as a distinct resource qualifying the generic ManagedJobFactory service. The service provides an interface 
to create ManagedJob resources of the appropriate type in order to perform a job in that local scheduler. 

At a high level, we can consider the main client activities around a WS GRAM job to be a partially ordered 
sequence as depicted in Figure 5. [76] 

 
Figure 5: Partially ordered sequence of client activities around a WS GRAM job [76] 

 

4 DiPerF Framework 
DiPerF [82] is a DIstributed PERformance testing Framework aimed at simplifying and automating service 
performance evaluation. DiPerF coordinates a pool of machines that test a single or distributed target service, 
collects and aggregates performance metrics from the client point of view, and generates performance statistics. The 
aggregate data collected provides information on service throughput, service response time, on service ‘fairness’ 
when serving multiple clients concurrently, and on the impact of network latency on service performance.  All steps 
involved in this process are automated, including dynamic deployment of a service and its clients, testing, data 
collection, and data analysis. 

Figure 6 shows an example screenshot of a demo showing off the DiPerF from beginning to end.  The screenshot 
below shows the end of the experiment in which the data analysis is complete and the graph with both the client and 
server view of the results have been generated; the GKrellM [83] Monitor is used to show the hosts (server and 
controller) performance in terms of CPU utilization, network transfer rates, and hard disk throughput. 
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Figure 6: DiPerF demo showing the end of an experiment with 1000 clients accessing a TCP server 

DiPerF consists of two major components: the controller and the testers (Figure 7). A user of the framework 
provides to the controller the address or addresses of the target service to be evaluated and the client code for the 
service. The controller starts and coordinates a performance evaluation experiment: it receives the client code, 
distributes it to testers, coordinates their activity, collects and finally aggregates their performance measurements. 
Each tester runs the client code on its machine, and times the (RPC-like) network calls this code makes to the target 
service. Finally, the controller collects all the measurements from the testers and performs additional operations 
(e.g., reconciling time stamps from various testers) to compute aggregated performance views.  

Figure 8 depicts an overview of the deployment of DiPerF in different testbeds (PlanetLab, UChicago CS cluster, 
and Grid3).  Note the different client deployment mechanisms between the different testbeds, with GT GRAM based 
submission for Grid3 and ssh based for the other testbeds.  Another interesting difference between Grid3 and the 
other testbeds is the fact that the controller only communicates with a resource manager, and it is the resource 
manager’s job to deploy and launch the tester/client code on physical machines in Grid3; in the other testbeds, the 
controller is directly responsible of having a complete list of all machines in the testbed and the communication is 
directly between the remote machine and the controller. 
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Figure 7: DiPerF framework overview 

The interface between the tester and the client code can be defined in a number of ways (e.g., by using library calls); 
we take what we believe is the most generic avenue: clients are full blown executables that make one RPC-like call 
to the service.  If multiple calls are to be made in each execution of the executable (i.e. when just starting the 
executable is expensive as is the case in many Java programs), a more sophisticated interface can be designed where 
the tester gets periodic information from the client code in a predefined format.  

The framework is supplied with a set of candidate nodes for client placement, and selects those available as testers. 
In future work, we will extend the framework to select a subset of available tester nodes to satisfy specific 
requirements in terms of link bandwidth, latency, compute power, available memory, and/or processor load. In its 
current version, DiPerF assumes that the target service is already deployed and running. 

Some metrics are collected directly by the testers (e.g., response time), while others are computed at the controller 
(e.g., throughput and service fairness). Additional metrics (e.g. network related metrics such as network throughput, 
size of data transmitted, time to complete a subtask, etc), measured by clients can be reported, through an additional 
interface, to the testers and eventually back to controller for statistical analysis. Testers send performance data to the 
controller while the test is progressing, and hence the service evolution and performance can be visualized ‘on-line’. 

Communication among DiPerF components has been implemented with several flavors: ssh based, TCP, and UDP.  
When a client fails, we rely on the underlying protocols (i.e. whatever the client uses such as TCP, UDP, HTTP, pre-
WS GRAM, etc) to signal an error which is captured by the tester which is in turn sent to the controller to delete the 
client from the list of the performance metric reporters.  A client could fail because of various reasons: 1) predefined 
timeout which the tester enforces, 2) client fails to start (i.e. out of memory - OS client machine related), 3) and 
service denied or service not found (service machine related).  Once the tester is disconnected from the controller, it 
stops the testing process to avoid loading the target service with requests which will not be aggregated in the final 
results.  
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Figure 8: DiPerF framework overview deployment scenario 
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4.1 Scalability Issues  
Our initial implementation [82] of DiPerF as it appeared at Grid2004 was scalable, but it could be improved, and 
hence we made several improvements to increase the scalability and performance of DiPerF.  Based on the 
implementation using the ssh based communication protocol, DiPerF was limited to only about 500 clients.  We 
therefore concentrated on reducing the amount of processing per transaction, reducing the memory footprint of the 
controller, and reducing the number of processes being spawned in relation to the number of desired testers/clients 
throughout the experiment.   

In order to make DiPerF as flexible as possible for a wide range of configurations, we stripped down the controller 
from most of its data processing tasks (which are online) and moved them to the data analysis component (which is 
offline); this change helped the controller be more scalable, freeing the CPU of unnecessary load throughout the 
experiment. If it is desirable for the results to be viewed in real-time as the experiment progresses, then there exists 
another version of the controller that is more complex, but will give the user feedback of the performance in real-
time.  Furthermore, for increased flexibility, the controller can work in two modes: write data directly to the hard 
disk, or keep data in memory for faster analysis later and reduced load due to the fact that it does not have to write to 
the disk except when the experiment is over.   

We also added the support of multiple testers on the same node by identifying a tester by the node name followed by 
its process ID (pid); this feature helped in managing multiple testers on the same node, which allows the testing of 
services beyond the size of the testbed.  For example, if using a 100 physical node testbed, and having 10 
testers/clients on each node, it would add up to 1000 testers/clients.  This method of increasing the number of clients 
by running multiple clients on each physical node does not work for any client.  If the client is heavy weight, and 
requires significant amounts of resources from the node, the average client performance will decrease as the number 
of clients increases; note that heavy weight clients will most likely produce inaccurate server performance once the 
number of clients surpasses the number of physical machines.  On the other hand, this is a nice feature to have 
because it makes scalability studies for any client/service possible even with a small number of physical machines.   

To alleviate the biggest bottleneck that we could identify, namely the communication based on ssh, we implemented 
two other communication protocols on top of TCP and UDP.  Running TCP will allow us to have the same benefits 
of ssh (reliability), but will have less overhead because the information is not encrypted and decrypted, a relatively 
expensive operation.  Using sockets, we can also control the buffer sizes of the connections more easily (without 
root privileges), and hence get better utilization of the memory of the system, especially since we can sacrifice 
buffer size without affecting performance due to the low needed bandwidth per connection.  Using UDP, we get a 
stateless implementation, which will be much more scalable than any TCP or ssh based implementation.  We get all 
the advantages of TCP (as mentioned above), but we loose the reliability; simple and relatively inexpensive methods 
to ensure some level of reliability could be implemented on top of UDP.   

Finally, in order to achieve the best performance with the implementation of the communication over TCP or UDP, 
we used a single process which used the select() system function [84] to provide synchronous I/O multiplexing 
between 1,000s of concurrent connections.  The functions  select() wait for a number of file descriptors (found in 
fd_set) to change status based on a timeout value specified in the number of seconds and microseconds.  First of all, 
the fd_set is a fixed size buffer as defined in several system header files; most Linux based systems have a fixed size 
of 1024.  This means that any given select() function can only have 1024 file descriptors (i.e. TCP sockets) that it is 
listening on.  This is a huge limitation, and would limit any 1 process implementation over TCP to only 1024 clients.  
After modifying some system files (required root access) to raise the constant size fd_set from 1024 to 65536, we 
were able to break the 1024 concurrent client barrier.  However, we now had another issue to resolve, namely the 
expensive operation of initializing the fd_set (one file descriptor at a time) every time a complete pass through the 
entire fd_set; with an fd_set size of 1024, this did not seem to be a problem, but with an fd_set size of 65536, it 
quickly became a bottleneck.  The solution we employed was to keep two copies of the fd_set, and after a complete 
pass through all the entire fd_set, simply do a memory to memory copy from one fd_set to another, a significantly 
less expensive operation than having to reset the fd_set one file descriptor at a time.  We are currently working on 
porting the select()-based implementation to a /dev/poll-based [85] implementation that is considered to be 
significantly lighter weight than select() with less of an overhead.   

With all these performance and scalability improvements, DiPerF can now scale from 4,000 clients using ssh to 
60,000 clients using TCP to 80,000 clients using UDP; the achieved throughput varied from 1,000 to 230,000 
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transactions per second depending on the number concurrent clients and the communication protocol utilized.  We 
expect DiPerF’s scalability to increase even more once we replace the select() mechanism with /dev/poll; 
furthermore, we expect DiPerF’s achieved throughput to increase even more under high concurrency with 10,000+ 
clients. 

4.2 Client Code Distribution  
The mechanisms used to distribute client code (e.g., scp, gsi-scp, or gass-server) vary with the deployment 
environment. Since ssh-family utilities are deployed on just about any Linux/Unix, we base our distribution system 
on scp-like tools.  DiPerF specifically uses rsync to deploy client code in a Unix-like environment (i.e. PlanetLab, 
UChicago CS cluster, DiPerF cluster), and it uses GT2 GRAM job submission to deploy client code in a grid 
environment (i.e. Grid3). 

4.3 Clock Synchronization 
DiPerF relies heavily on time synchronization when aggregating results at the controller; therefore, an automatic 
time synchronization among all clients is integrated into DiPerF to ensure that the final results are accurate.  
Synchronization need not be performed on-line; instead, we can compute the offset between local and global time 
and apply that offset when analyzing aggregated metrics, assuming that the clock drift over the course of an 
experiment is not significant.  The solution to clock drift is to perform time synchronization on-line at regular 
intervals that are short enough for the drift to be negligible.    

Several off-the-shelf options are available to synchronize the time between machines; one example is NTP [86], 
which some PlanetLab nodes use to synchronize their time. In a previous study [86], hosts had a mean delay of 
33ms, median 32ms, and a standard deviation 115ms from their peer hosts used to synchronize their time with NTP.  
These results seem very promising, but unfortunately, at the time that we performed our experiments, we found that 
most of the nodes in our testbed on PlanetLab were not very well synchronized, with some nodes having 
synchronization differences in the thousands of seconds.  Therefore DiPerF assumes the worst: no clock 
synchronization mechanism is provided by the deployment platform.  To ensure that a mechanism exists to 
synchronize time among all nodes within tens of milliseconds accuracy, we implemented a timer component that 
allows all nodes participating in an experiment to query for a ‘global’ time.   

DiPerF handles time synchronization with a centralized time-stamp server that allows time mapping to a common 
base. The time-stamp server is lightweight and can easily handle 1000+ concurrent clients.  In order to avoid clock 
drift, each client synchronize its clock every five minutes; due to the lightweight time server and relatively rare time 
synchronization (every 300 seconds), we estimate that it could handle 1,000,000+.   

We have measured the latency from over 100 clients (deployed in the PlanetLab testbed) to our timestamp server at 
UChicago over a period of almost 2 hours. During this interval that the (per-node) latency in the network remained 
fairly constant and the majority of the clients had a network latency of less than 80ms. The accuracy of the 
synchronization mechanism we implemented is directly correlated with the network latency and its variance, and in 
the worst case (non-symmetrical network routes), the timer can be off by at most the network latency. Using our 
custom synchronization component, we observed a mean of 62ms, median 57ms, and a standard deviation 52ms for 
the time skew between nodes in our PlanetLab testbed.  See Figure 1 for a visual representation of the network 
performance of the PlanetLab testbed. 

Given that the response time of the relatively heavy weight services (i.e. GRAM, GridFTP, MDS, GRUBER) that 
have been evaluated in this paper are at least one order of magnitude larger, we believe the clock synchronization 
technique implemented does not distort the results presented.  

4.4 Client Control and Performance Metric Aggregation 
The controller starts each tester with a predefined delay (specified in a configuration file when the controller is 
started) in order to gradually build up the load on the service as can be visualized in Figure 9.  A tester understands a 
simple description of the tests it has to perform. The controller sends test descriptions when it starts a tester. The 
most important description parameters are: the duration of the test experiment, the time interval between two 
concurrent client invocations, the time interval between two clock synchronizations, and the local command that has 
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to be invoked to run the client. The controller also specifies the addresses of the time synchronization server and the 
target service.  

Individual testers collect service response times. The controller’s job is to aggregate these service response times, 
correlate them with the offered load and with the start/stop time of each tester and infer service throughput, and 
service ‘fairness’ among concurrent clients. 

Since all metrics collected share a global time-stamp, it becomes simple to combine all metrics in well defined time 
quanta (seconds, minutes, etc) to obtain an aggregate view of service performance at any level of detail that is 
coarser than the collected data, an essential feature for summarizing results containing millions of transactions over 
short time intervals. This data analysis is completely automated (including graph generation) at the user-specified 
time granularity. 

 
Figure 9: Aggregate view at the controller. Each tester synchronizes its clock with the time server every five 

minutes. The figure depicts an aggregate view of the controller of all concurrent testers. 

4.5 Performance Analyzer 
The performance analyzer has been implemented in C++ and currently consists of over 4,000 lines of code.  Its 
current implementation assumes that all performance data is available for processing, which means it is an off-line 
process; in the future, we plan to port the current performance analyzer to support on-line analysis of incoming 
performance data.  The implementation’s main goal has been its flexibility in handling large data analysis tasks 
completely unsupervised.  Furthermore, the performance analyzer was designed to allow a reduction of the raw 
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performance data to a summary of the performance data with samples computed at a specified time quantum.  For 
example, a particular experiment could have accumulated 1,000,000s of performance samples over a period of 3600 
seconds, but after the performance analyzer summarizes the data for one sample per second, the end result is 
reduced to 3600 samples rather than 1,000,000s of samples.   

The generic metrics summarized by the performance analyzer based on the user specified time quantum are:  

• service response time or time to serve a request, that is, the time from when a client issues a request to 
when the request is completed minus the network latency and minus the execution time of the client code; 
this metric is measured from the point of view of the client 

• service throughput: number of jobs completed successfully by the service averaged over a short time 
interval that is specified by the user (i.e. 1 second, 1 minute, etc) in order to reduce the large number of 
samples; to make the results easier to understand, most of the graphs showing throughput also use box plot 
(moving averages) in order to smooth the throughput metrics out 

• offered load: number of concurrent service requests (per second) 

• service utilization (per client): ratio between the number of requests completed for a client and the total 
number of requests completed by the service during the time the client was active 

• service fairness (per client): ratio between the number of jobs completed and service utilization 

• job success (per client): the number of jobs that were successfully completed for a particular client 

• job fail (per client): the number of jobs that failed for a particular client 

• network latency (per client): the round trip network latency from the client to the service as measured by 
the “ping” utility 

Among the many performance metrics it can extract from the raw performance data, it has a few additional features.  
First of all, it has a verify option that allows a user to double check that the raw input data conforms to the correct 
formatting requirements, and fixes (mostly by deleting) any inconsistencies it finds.  Furthermore, all of the above 
metrics that are computed per client can also be computed over the peak portion of the experiment, when all clients 
are concurrently accessing the service.  This is an important feature for computing the service fairness. 

The output resulting from the performance analyzer can be automatically graphed using gnuplot [87] for ease of 
inspection, and the output can easily be manipulated in order to generate complex graphs combining various metrics 
such as the ones found in this thesis.   

Figure 10 depicts a sample output from the automated gnuplot based on the summarization of the performance 
analyzer of the achieved throughput of a particular service.   The original number of individual performance samples 
was over 75,000 while the resulting summary had fewer than 700 samples.  On the other hand, Figure 11 shows the 
same graph manually made that contains the throughput (right axis) and two other metrics (load and response time) 
superimposed.   
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Figure 10: Sample output from the automated graph generated by gnuplot (throughput – right hand axis, 

response time and load – left hand axis) 

For better presentation purposes, the majority of the results in this thesis will be presented similarly as the results 
from Figure 11.  At this point, the actual results from these two figures is irrelevant, however the presentation and 
the kind of information that is expressed is very important. 
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Figure 11: Sample output from the manual graph containing the same results (throughput – right hand axis) 

from Figure 10 plus two other metrics (response time and load) 
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5 Experimental Results for GRAM in GT3.2 & GT4 
This section covers the experimental results obtained while studying various components of the Globus Toolkit 
(GRAM, WS-MDS, and GridFTP), and two grid services (DI-GRUBER, and a simple service that performed 
instance creation).  For details on the specific services tested, please see section 2.3.     

We ran our experiments with 89 client machines for pre-WS GRAM and 26 machines for WS GRAM, distributed 
over the PlanetLab testbed and the University of Chicago CS cluster (UofC). We ran the target services on an AMD 
K7 2.16GHz and the controller on an Intel PIII 600 MHz, both located at UofC. These machines are connected 
through 100Mbps Ethernet LANs to the Internet and the network traffic our tests generates is far from saturating the 
network links.  

The actual configuration the controller passes to the testers is: testers start at 25s intervals and run for one hour 
during which they start clients at 1s intervals (or as soon as the last client completed its job if the time the client 
execution takes more than 1s). The client start interval is a tunable parameter, and is set based on the granularity of 
the service tested.  In our case, since both services (pre-WS GRAM and WS GRAM) quickly rose to service 
response time of greater than 1s, for the majority of the experiments, testers were starting back-to-back clients.  
Experiments ran for a total of 5800s and 4200s for pre-WS GRAM and WS GRAM respectively.  (The difference in 
total execution time comes from the different number of testers used). Testers synchronize their time every five 
minutes.  The time-stamp server is another UofC computer. 

For pre-WS GRAM, the tester input is a standalone executable that was run directly by the tester, while for the WS 
pre-WS GRAM, the input is a jar file and we assume that Java is installed on all testing machines in our testbed.  

5.1 GT3.9.4 pre-WS GRAM and WS-GRAM Performance Results  
We evaluated two implementations of a job submission service bundled with the Globus Toolkit 3.9.4: 

• GT3.9.4 pre-WS GRAM (both client and service is implemented in C) 

• GT3.9.4 WS GRAM (client is implemented in C while the service is in JAVA) 

The metrics collected by DiPerF are:  

• service response time or time to serve a request, that is, the time from when a client issues a request to 
when the request is completed minus the network latency and minus the execution time of the client code,  

• service throughput: number of jobs completed successfully by the service averaged over a short time 
interval, 

• offered load: number of concurrent service requests (per second),  

We ran our experiments with 115 client machines or less for these experiments; the machines were distributed over 
the PlanetLab testbed. We ran the target services (GT3.9.4) on an AMD K7 2.16GHz and the controller on an 
identical machine, both located at UChicago. These machines are connected through 100Mbps Ethernet LANs to the 
Internet and the network traffic our tests generates is far from saturating the network links.  

DiPerF was configured to start the testers at 25s intervals and run each tester for one hour during which they start 
clients at 1s intervals (or as soon as the last client completed its job if the time the client execution takes more than 
1s). The client start interval is a tunable parameter, and is set based on the granularity of the service tested.  In our 
case, since both services (pre-WS GRAM and WS GRAM) quickly rose to service response time of greater than 1s, 
for the majority of the experiments, testers were starting back-to-back clients.  

Experiments ran anywhere from 100 seconds to 6500 seconds depending on how many clients were actually used.  
Testers synchronize their time every five minutes.  The time-stamp server was another UChicago computer. 

In the figures below, each series of points representing a particular metric and is also approximated using a moving 
average over a 60 point interval, where each graphs consists of anywhere from several thousand to several tens of 
thousands of data points. 
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5.1.1 WS-GRAM Results 
Figure 12 depicts the performance of the WS-GRAM C client accessing the WS-GRAM service in JAVA.  We note 
a dramatic improvement from the results of the WS-GRAM service implemented in the Globus Toolkit 3.2 as 
presented in Error! Reference source not found..  We observe both greater scalability (from 20 to 69 concurrent 
clients), and greater performance (from 10 jobs/min to over 60 jobs/minute).  We also note that the response time 
steadily increased with the increased number of clients.  The throughput increase seemed to level off at about 15~20 
clients, which indicated that the service was saturated and that any more clients would only increase the response 
time.    

Figure 13 shows a very similar experiment as the one showed in Figure 12 which justifies our choice of the number 
of concurrent clients to use in order to test the WS-GRAM service.  Apparently, due to the alpha version of the 
GT3.9.4 release, there were still new features being added, software “bugs” to be fixed, and performance 
enhancements to be made.  Unfortunately, through our relatively large scale experiments, we managed to trip a 
scalability problem in which the container would become unresponsive once we reached more than 70 concurrent 
clients.  We therefore reran the experiment with only 69 clients, and obtained the results of Figure 12.    

GT3.9.4 WS GRAM Client (C) and WS GRAM Service (JAVA)
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Figure 12: GT3.9.4 WS GRAM client (C implementation) and WS GRAM service (JAVA implementation); 
tunable parameters: utilized 69 concurrent nodes, starts a new node every 10 seconds, each node runs for 

1000 seconds 
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Figure 13: GT3.9.4 WS GRAM client (C implementation) and WS GRAM service (JAVA implementation); 

tunable parameters: attempted to use 115 concurrent nodes, but after 72 concurrent clients started, the 
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service became unresponsive; a new node was started every 25 seconds, and each node was scheduled to run 
for 3600 seconds 

Figure 14 depicts the performance of the WS-GRAM client with the output enabled.  We have enabled the remote 
client output to be sent back to the originating job submission point, however as can be seen in Figure 14, it seems 
that this incurs a big performance penalty over the same job submission mechanisms with the output disabled.  We 
attempted to use 69 clients, however, at about concurrent 8 clients, the service became unresponsive.   

GT3.9.4 WS GRAM Client (C) with Output and WS GRAM Service (JAVA)

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100 110

Time (sec)

# 
of

 C
on

cu
re

nt
 M

ac
hi

ne
s 

/ R
es

po
ns

e 
Ti

m
e 

(s
ec

)

0

10

20

30

40

50

60

70

80

90

100

Th
ro

ug
hp

ut
 (J

ob
s/

m
in

)

Throughput

Response Time

Load

 
Figure 14: GT3.9.4 WS GRAM client (C implementation) with output enabled and WS GRAM service 

(JAVA implementation); tunable parameters: 8 concurrent clients, a new node was started every 10 seconds, 
and each node was scheduled to run for 1000 seconds 

5.1.2 pre-WS GRAM Results 
We performed a similar study on the older pre-WS GRAM implementation that is still bundled with GT3.9.4.  We 
were interested to see how the performance of the pre-WS GRAM compared to that of WS-GRAM in the latest 
implementation of the Globus Toolkit; furthermore, we were also interested in finding out if enabling the output 
option had such an adverse effect on the pre-WS GRAM as it did in the WS-GRAM tests.   

In comparing the results of the pre-WS GRAM (Figure 15) with those of the WS-GRAM service (Figure 12), we 
found very similar performance characteristics.  The pre-WS GRAM seems to be more scalable, it withstood 115 
clients vs. only 69 clients on the WS-GRAM service.  Also, the response times seem to be a little less for the pre-
WS GRAM service; it achieved service response times in the range of 50~60 seconds for 69 concurrent clients, 
while the WS-GRAM service achieved response times of close to 70 seconds.  The throughout achieve by the pre-
WS GRAM service also seems to be more consistent than that achieved by the WS-GRAM service.   Based on our 
results, it seems that pre-WS GRAM with output performs only slightly worse than without output; there is about a 
10% performance penalty, which is much lower than what we observed for the WS-GRAM.  We see an achieved 
throughput of slightly less than 80 jobs/min without output and a throughput of slightly more than 70 jobs/min with 
output.  The response times for about 60 clients increased from about 46 seconds to about 51 seconds. 
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GT3.9.4 Pre-WS GRAM Client (C) and Pre-WS GRAM Service (C)
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Figure 15: GT3.9.4 pre-WS GRAM client (C implementation) and pre-WS GRAM service (C 

implementation); tunable parameters: utilized 115 concurrent nodes, starts a new node every 25 seconds, 
each node runs for 3600 seconds 

 

GRAM2: Job submission in interactive mode without output
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Figure 16: GRAM2 without output 
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GRAM2: Job submission in interactive mode with output
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Figure 17: GRAM2 with output 

GRAM2 authentication of job submission
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Figure 18: GRAM2 authentication 
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We also ran some tests to see how long the pre-WS GRAM authentication takes, and we found that it scales very 
well, at least to up to 38 concurrent clients.  We actually had 120 clients in that test, but because of the test 
parameters (test duration and frequency of clients starting), it ended up that only about 38 clients were ever running 
concurrently.  We see the throughput increase steadily the entire time that more clients join, up to a peak of over 
1000 authentications per minute.  It is also very interesting to see that the response time stayed relatively constant, 
between 0.5 seconds and 1 second, regardless of the number of concurrent clients.   

5.1.3 GT3.9.4 GRAM Conclusions 
Comparing the performance of pre-WS and WS GRAM, we find that pre-WS GRAM slightly outperforms WS 
GRAM by about 10% in both throughput and service response time.  When we enabled the remote client output to 
be sent back to the originating job submission point, the performance of WS GRAM suffers tremendously.  Also, for 
WS GRAM, if we loaded the service with too many concurrent clients, the service became unresponsive.  We 
verified the performance of pre-WS GRAM with output and without output, and we found that the performance loss 
with output was only about 10%.   

5.2 Summary  
Table 2 summarizes the performance of pre-WS and WS-GRAM across both GT3 and GT4 found in the previous 
subsection.  The experiments performed on GT3 and GT4 were done almost 1 year apart, and hence the results are 
not directly comparable between GT3 and GT4, but they should give a rough overview of the performance of both 
releases and implementation.  It is noteworthy to point out the dramatic performance improvement WS-GRAM 
experienced from GT3 to GT4, going from less than 10 jobs per minute to almost 60 jobs per minute, and getting a 
reduction of response times from almost 180 seconds to less than 70 seconds.  

Table 2: GRAM performance summary covering pre-WS GRAM and WS-GRAM under both GT3 and GT4 

Throughput (transactions/sec) Response Time (sec) Experiment 
Description Min Med Aver Max Std. 

Dev. 

Load at Service 
Saturation Min Med Aver Max Std. 

Dev. 
Figure 27:  

GT3 pre-WS GRAM – 
89 clients 

99.3 193 193 326 38.9 33 1.02 20.4 31.5 739 41.7 

Figure 30:  
GT3 WS-GRAM –  

26 clients 
3.13 9.16 8.77 12.8 2.19 20 35.6 178.4 173.6 298 55.9 

Figure 36:  
GT4 pre-WS GRAM – 

115 clients 
57 69.8 69.8 81.6 4.23 27 57.6 92 93 167.2 15.1 

Figure 33:  
GT4 WS-GRAM –  

69 clients 
47.2 57 56.8 63.9 3.1 20 32.1 67.7 67.4 131.8 9.8 

  

5.3 Other Work that has used DiPerF 
The papers or technical reports that used DiPerF along with the place of publishing are: 

• DiPerF: an automated DIstributed PERformance testing Framework [82] – Grid2004 

• A Scalability and Performance Evaluation of a distributed Usage SLA-based Broker in Large Grid 
Environments [26] – GriPhyN/iVDGL Technical Report, March 2005 

• DI-GRUBER: A Distributed Approach for Grid Resource Brokering [25] – under review at SC 2005 

• ZEBRA: The Globus Striped GridFTP Framework and Server [20] – under review 

• Performance Measurements in Running Workloads over a Grid [27] – under review at SC 2005 
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• Extending a distributed usage SLA resource broker with overlay networks to support Large Dynamic Grid 
Environments [91] – work in progress 

• Decreasing End-to-End Job Execution Times by Increasing Resource Utilization using Predictive 
Scheduling in the Grid [92] – UChicago, Grid Computing Seminar, 2005 

Papers or technical reports that have mentioned DiPerF along with the place of publishing are: 

• Systems Performance Evaluation Methods for Distributed Systems Using Datastreams [93] – MS Thesis, 
University of Kansas, January 2005 

• Deploying C++ Grid Services: Options and Performance [94] – Duke University, Federated Distributed 
Systems, December 2004 

• Connecting Client Objectives with Resource Capabilities: An Essential Component for Grid Service 
Management Infrastructures [95] – ICSOC 2004  

6 Conclusion 
As presented in this work, performing distributed measurements is not a trivial task, due to difficulties 1) accuracy – 
synchronizing the time across an entire system that might have large communication latencies, 2) flexibility – in 
heterogeneity normally found in WAN environments and the need to access large number of resources, 3) scalability 
– the coordination of large amounts of resources, and 4) performance – the need to process large number of 
transactions per second.  In attempting to address these four issues, we developed DiPerF, a DIstributed 
PERformance testing Framework, aimed at simplifying and automating service performance evaluation. DiPerF 
coordinates a pool of machines that test a single or distributed target service (i.e. grid services, network services, 
distributed services, etc), collects and aggregates performance metrics (i.e. throughput, service response time, etc) 
from the client point of view, and generates performance statistics (fairness of resource utilization, saturation point 
of service, scalability of service, etc). The aggregate data collected provides information on service throughput, 
service response time, on service ‘fairness’ when serving multiple clients concurrently, and on the impact of 
network latency on service performance.  Furthermore, using the collected data, it is possible to build predictive 
models that estimate service performance as a function of service load.  Using the power of this framework, we have 
analyzed the performance scalability of the several components of the Globus Toolkit and several grid services. We 
measured the performance of various components of the GT in a wide area network (WAN) as well as a local area 
network (LAN) with the goal of understanding the performance that is to be expected from the GT in a realistic 
deployment in a distributed and heterogeneous environment.   

The contributions of this thesis are two fold: 1) a detailed empirical performance analysis of various components of 
the Globus Toolkit along with a several grid services, and 2) DiPerF, a tool that makes automated distributed 
performance testing easy.   

Through our tests performed on GRAM, WS-MDS, and GridFTP, we have been able to quantify the performance 
gain or loss between various different versions or implementations, and have normally found the upper limit on both 
scalability and performance on these services.  We have also been able to show the performance of these 
components in a WAN, a task that would have been very tedious and time consuming without a tool such as DiPerF.  
By pushing the Globus Toolkit to the limit in both performance and scalability, we were able to give the users a 
rough overview of the performance they are to expect so they can do better resource planning.  The developers also 
gained feedback on the behavior of the various components under heavy stress and allowed them to concentrate on 
improving the parts that needed the most improvements.  We were also able to quantify the performance and 
scalability of DI-GRUBER, a distributed grid service built on top of the Globus Toolkit 3.2 and the Globus Toolkit 
3.9.5.  

The second main contribution is DiPerF itself, which is a tool that allows large scale testing of grid services, web 
services, network services, and distributed services to be done in both LAN and WAN environments.  DiPerF has 
been automated to the extent that once configured, the framework will automatically do the following steps: 

• check what machines or resources are available for testing 

• deploy the client code on the available machines 
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• perform time synchronization 

• run the client code in a controlled and predetermined fashion 

• collect performance metrics from all the clients 

• stop and clean up the client code from the remote resources 

• aggregate the performance metrics at a central location 

• summarize the results 

• generates graphs depicting the aggregate performance of the clients and tested service 

Some lessons we learned through the work presented in this thesis are: 

• building scalable software is not a trivial task 

o there were some interesting issues we encountered when we tried to scale DiPerF beyond a few 
hundred clients, but after careful tuning and optimizations, we were able to scale DiPerF to 
10,000+ clients 

o ssh is quite heavy weight for a communication channel, so for a real scalable solution, proprietary 
TCP/IP or UDP/IP communication channels are recommended  

• time synchronization is a big issue when doing distributed measurements in which the aggregate view is 
important; although NTP offers potentially accurate clock synchronization, due to mis-configurations and 
possibly not wide enough deployment, NTP is not sufficient in a general case   

• C-based components of the Globus Toolkit normally perform significantly better than their Java 
counterparts 

• depending on the particular service tested, WAN performance is not always comparable to that found in a 
LAN; for example, WS-MDS with no security performed comparable between LAN and WAN tests, but 
WS-MDS with security enabled achieved less than half the throughput in a WAN when compared to the 
same test in a LAN 

• the testbed performance (in our case it was mostly PlanetLab) can influence the performance results, and 
hence careful care must be taken in comparing experiments done at different times when the state of 
PlanetLab could have significantly changed 

We conclude with the thought that we succeeded in building a scalable and high performance measurements tool 
that can be used to coordinate, measure, and aggregate the performance of thousands of clients distributed all over 
the world targeting anything from network services, web services, distributed services, to grid services.  We have 
shown DiPerF’s accuracy as being very good with only a few percent of performance deviation between the 
aggregate client view and the centralized service view.  We have also contributed towards a better understanding of 
various vital Globus Toolkit components such as GRAM, MDS, and GridFTP. 
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