
A Performance Analysis of the Globus Toolkit’s Job Submission, GRAM

Ioan Raicu* Catalin Dumitrescu* Ian Foster+*

1 Abstract
The Globus Toolkit® (GT) is the “de facto standard” for grid computing. Measuring the performance of various
components of the GT in a wide area network (WAN) as well as a local area network (LAN) is essential in
understanding the performance that is to be expected from the GT in a realistic deployment in a distributed and
heterogeneous environment where there might be complex interactions between network connectivity and service
performance. The focus of this paper is the performance of job submission mechanism (GRAM), an essential GT
component that is very likely to be used in a mixed LAN and WAN environment. We specifically tested the
scalability, performance, and fairness of the pre-WS GRAM and WS-GRAM bundled with GT 3.9.4. To drive our
empirical evaluation of GRAM, we used DiPerF, a DIstributed PERformance testing Framework, whose design was
aimed at simplifying and automating service performance evaluation. …

2 Introduction
The Globus Toolkit is the “de facto standard” for grid computing as it has been called by numerous agencies and
world recognized news sources such as the New York Times. Measuring the performance of the Globus Toolkit is
important to ensure that the Grid will continue to grow and scale as the user base and infrastructure expands.
Furthermore, the testing of the toolkit and grid services is difficult due to the distributed and heterogeneous
environment Grids are usually found in. Performing distributed measurements is not a trivial task, due to difficulties
1) accuracy – synchronizing the time across an entire system that might have large communication latencies, 2)
flexibility – in heterogeneity normally found in WAN environments and the need to access large number of
resources, 3) scalability – the coordination of large amounts of resources, and 4) performance – the need to process
a large number of transactions per second. In attempting to address these four issues, we developed DiPerF, a
DIstributed PERformance testing Framework, aimed at simplifying and automating service performance evaluation.
DiPerF coordinates a distributed pool of machines that run clients of a target service, collects and aggregates
performance metrics, and generates performance statistics. The data collected provides information on a particular
service’s maximum throughput, on service ‘fairness’ when multiple clients access the service concurrently, and on
the impact of network latency on service performance from both client and service viewpoint. Using this data, it
may be possible to build empirical performance estimators that link observed service performance (throughput,
response time) to offered load. These estimates can be then used as input by a resource scheduler to increase
resource utilization while maintaining desired quality of service levels. All steps involved in this process are
automated, including dynamic deployment of a service and its clients, testing, data collection, and the data analysis.

DiPerF is a modularized tool, with various components written in C/C++/perl; it has been tested over PlanetLab,
Grid3, and the Computer Science Cluster at the University of Chicago. We have implemented several variations
(ssh, TCP, UDP) of the communication between components in order to give DiPerF the most flexibility and
scalability in a wide range of scenarios. We have investigated both the performance and scalability of DiPerF and
found that DiPerF is able to handle up to 10,000+ clients and 100,000+ transactions per second; we also performed a
validation study of DiPerF to ensure that the aggregate client view matched the tested service view and found that
the two views usually matched within a few percent.

*Computer Science Department
The University of Chicago

{iraicu,cldumitr}@cs.uchicago.edu

+Mathematics and Computer Science Division
Argonne National Laboratory

foster@cs.uchicago.edu

Page 2 of 31

In profiling the performance of the Globus Toolkit, we investigated the performance of three main components: 1)
job submission, 2) information services, and 3) a file transfer protocol. All these components of the Globus Toolkit
are vital to the functionality, performance, and scalability of the grid. We specifically tested: 1) pre WS GRAM and
WS GRAM included [1, 2, 3, 4, 5] with Globus Toolkit 3.2 and 3.9.4, 2) the scalability and performance of the WS-
MDS Index bundled with Globus Toolkit 3.9.5, and 3) the scalability and fairness of the GridFTP server included
with the Globus Toolkit 3.9.5. We also investigated the performance of two grid services: 1) DI-GRUBER, a
distributed usage SLA-based broker, a grid service based on the Globus Toolkit 3.2 and 3.9.5, and 2) instance
creation and message passing performance in the Globus Toolkit 3.2. Through the various test case studies we
performed using DiPerF, we believe it has proved to be a valuable tool for scalability and performance evaluation
studies, as well as for automated extraction of service performance characteristics.

2.1 Motivation & Goals
Multiple threads motivated me to measure the performance of the Globus Toolkit, which in turn motivated the
building of DiPerF. The Globus Toolkit is the “de facto standard” for grid computing. Measuring the performance
of the various components of the Globus Toolkit in a WAN as well as a LAN is essential in understanding the
performance that is to be expected from the Globus Toolkit in a realistic deployment in a distributed and
heterogeneous environment. Furthermore, measuring the performance of grid services in a WAN is similarly
important due to the complex interactions between network connectivity and service performance.

Although performance testing is an ‘everyday’ task, testing harnesses are often built from scratch for a particular
service. DiPerF can be used to test the scalability and performance limits of a service: that is, find the maximum
offered load supported by the service while still serving requests with an acceptable quality of service. Actual
service performance experienced by heterogeneous and geographically distributed clients with different levels of
connectivity cannot be easily gauged based on controlled LAN-based tests. Therefore significant effort is
sometimes required in deploying the testing platform itself. With a wide-area, heterogeneous deployment provided
by the PlanetLab [6, 7] and Grid3 [8] testbed, DiPerF can provide accurate estimation of the service performance as
experienced by such clients.

2.2 Obstacles
Automated performance evaluation and result aggregation across a distributed test-bed is complicated by multiple
factors. In building DiPerF, we encountered 4 main obstacles:

• accuracy – time synchronization

• flexibility: heterogeneity in WAN environments & accessing of many resources

• scalability – coordination of many resources

• performance – processing large number of transactions per second

The accuracy of the performance metrics collected is heavily dependent on the accuracy of the timing mechanisms
used and on accurate clock synchronization among the participating machines. DiPerF synchronizes the time
between client nodes with a synchronization error smaller than 100ms on average. The reliability of presented
results is important, especially in wide-area environments: we detect client failures during the test that could impact
on reported result accuracy.

The heterogeneity normally found in WAN environments pose a challenging problem for any large scale testing due
to different remote access methods, different administrative domains, different hardware architectures, and different
operating systems and host environments. We have shown DiPerF to be flexible by implementing the support for
three testbeds: Grid3, PlanetLab, and the University of Chicago CS cluster. Grid3 offers a testbed in which DiPerF
uses the Globus Toolkit as the main method of deploying clients and retrieving performance metrics. PlanetLab
offers a unique environment where there is a uniform remote access method, the client code gets deployed via rsync,
and the communication is implemented via ssh, TCP, or UDP. The UChicago CS cluster is similar to that of
PlanetLab, however it has the advantage of having a network file system (NFS) which make the deployment of
clients almost trivial; on the other hand, the communication occurs in exactly the same manner as it does in
PlanetLab.

Page 3 of 31

The scalability of the framework itself is important; otherwise DiPerF will not be able to saturate a target service.
We insure scalability by only loosely coupling the participating components, and by having multiple
implementations of communication protocols between components. DiPerF has been designed and implemented to
be scalable to 10,000+ clients that could generate 100,000+ transactions per second.

DiPerF has been measured to process up to 200,000 transactions per second via TCP and up to 15,000 transactions
per second via SSH. The performance of DiPerF has been carefully tuned to use the most lightweight protocols and
tools in order to achieve its goals. For example, the communication protocol built on TCP uses a single process and
the select() function to multiplex the 1,000s of concurrent connections. The structures that are used to store and
transfer the performance metrics have been optimized for space and efficiency. Furthermore, each TCP
connection’s buffering is kept to a minimum in order to lower the memory footprint of DiPerF and to ensure the
desired scalability; the drawback of the small memory footprint per connection is the limited connection bandwidth
that could be achieved per connection, but with 1,000s of concurrent connections, this would hardly be an issue.

In summary, DiPerF has been designed from the ground up with scalability, performance, flexibility, and accuracy
as its target goal, and based on the results in this thesis, we believe this target goal has been achieved.

2.3 Contributions
The contributions of this thesis are two fold: 1) a detailed empirical performance analysis of various components of
the Globus Toolkit along with a few grid services, and 2) DiPerF, a tool that makes automated distributed
performance testing easy.

Through our tests performed on GRAM, WS-MDS, and GridFTP, we have been able to quantify the performance
gain or loss between various different versions or implementations, and have normally found the upper limit on both
scalability and performance on these services. We have also been able to show the performance of these
components in a WAN, a task that would have been very tedious and time consuming without a tool such as DiPerF.
By pushing the Globus Toolkit to the limit in both performance and scalability, we was able to give the users a
rough overview of the performance they are to expect so they can do better resource planning. The developers also
gained feedback on the behavior of the various components under heavy stress and allowed them to concentrate on
improving the parts that needed the most improvements. We were also able to quantify the performance and
scalability of DI-GRUBER, a distributed grid service built on top of the Globus Toolkit 3.2 and the Globus Toolkit
3.9.5.

The second main contribution is DiPerF itself, which provides a tool that allows large scale testing of grid services,
web services, and network services to be done in both LAN and WAN environments. DiPerF has been automated to
the extent that once configured, the framework will automatically do the following steps:

• check what machines or resources are available for testing

• deploy the client code on the available machines

• perform time synchronization

• run the client code in a controlled and predetermined fashion

• collect performance metrics from all the clients

• stop and clean up the client code from the remote resources

• aggregate the performance metrics at a central location

• summarize the results

• generates graphs depicting the aggregate performance of the clients and tested service

In summary, DiPerF offers an easy solution to large scale distributed performance measurements.

Page 4 of 31

3 Related Work & Background Information
This section covers the related work to DiPerF including similar studies performed on grid services and various grid
components. It also addresses basic and introductory information on various topics in order to make this thesis self
contained.

3.1 Grid Services and Grid Performance Studies Related Work
We first cover related work for grid performance studies in general, studies on various components such as
GridFTP, MDS, and GRAM, and finally the related work to the grid services we tested.

3.1.1 Grid Performance Studies
NetLogger [9] targets instrumentation of Grid middleware and applications, and attempts to control and adapt the
amount of instrumentation data produced in order not to generate too much monitoring data. NetLogger is focusing
on monitoring, and requires code modification in the clients; furthermore, it does not address automated client
distribution or automatic data analysis.

GridBench [10] provides benchmarks for characterizing Grid resources and a framework for running these
benchmarks and for collecting, archiving, and publishing results. While DiPerF focuses on performance exploration
for entire services, GridBench uses synthetic benchmarks and aims to test specific functionalities of a Grid node.
However, the results of these benchmarks alone are probably not enough to infer the performance of a particular
service.

The development team of the Globus Toolkit have done extensive testing [11, 12] of the Globus Toolkit in LAN
environments. Some of the tests they performed are even more involved and complex than what we have tested in
this work, but the downside of these results is the artificial environment that is created in a LAN setup with multiple
clients running on few machines. The results we obtained with 100s of machines distributed all over the world are
much more likely to depict the realistic performance of the various Globus Toolkit components.

Grid applications can combine the use of compute, storage, network, and other resources. These resources are often
geographically distributed, adding to application complexity and thus the difficulty of understanding application
performance. GridMapper [13] is a tool for monitoring and visualizing the behavior of such distributed systems.
GridMapper builds on basic mechanisms for registering, discovering, and accessing performance information
sources, as well as for mapping from domain names to physical locations. The visualization system itself then
supports the automatic layout of distributed sets of such sources and animation of their activities.

In grid computing environments, network bandwidth discovery and allocation is a serious issue. Before their
applications are running, grid users will need to choose hosts based on available bandwidth. Running applications
may need to adapt to a changing set of hosts. Hence, a tool is needed for monitoring network performance that is
integral to the grid environment. To address this need, Gloperf [14] was developed as part of the Globus grid
computing toolkit. Gloperf is designed for ease of deployment and makes simple, end-to-end TCP measurements
requiring no special host permissions. Scalability is addressed by a hierarchy of measurements based on group
membership and by limiting overhead to a small, acceptable, fixed percentage of the available bandwidth.

The Network Weather Service (NWS) [15] is a distributed monitoring and forecasting system. A distributed set of
performance sensors feed forecasting modules. There are important differences to DiPerF. First, NWS does not
attempt to control the offered load on the target service but merely to monitor it. Second, the performance testing
framework deployed by DiPerF is built on the fly, and removed as soon as the test ends; while NWS sensors aim to
monitor network performance over long periods of time.

3.1.2 GRAM Performance Studies Related Work
The Globus Toolkit’s 3.2 job submission service test suite [16] uses multiple threads on a single node to submit an
entire workload to the server. However, this approach does not gauge the impact of a wide-area environment, and
does not scale well when clients use many resources, which means that the service will be relatively hard to saturate.
The Globus Toolkit 3.9.4 job submission was also partially tested by the same group [12], but the tests are
incomplete, and do not cover nearly the level of detail that the tests presented in this work.

Page 5 of 31

3.2 Background Information on DiPerF components, test cases, and testbeds
This section contains a brief overview of various key concepts, testbeds, and software packages used in this work in
order to make this thesis self contained. It covers 1) the definition of Grid Computing, 2) the description of four
different testbeds (Grid3, PlanetLab, UChicago CS cluster, and the DiPerF cluster), 3) communication protocols
(ssh, TCP, UDP), and 4) the background information on the various test cases (Globus Toolkit 3.2, 3.9.5, GRAM,
GridFTP, WS-MDS, and GRUBER).

3.2.1 Testbeds
This section covers the four testbeds (Grid3, PlanetLab, the University of Chicago CS cluster, and the DiPerF
cluster) that we used in this work. For each set of experiments in this work, we outline what testbed we used; this is
an important section since the results of certain tests might vary with the particular testbed.

3.2.1.1 PlanetLab
PlanetLab [64] is a geographically distributed platform for deploying, evaluating, and accessing planetary-scale
network services. PlanetLab is a shared community effort by a large international group of researchers, each of
whom gets access to one or more isolated "slices" of PlanetLab's global resources via a concept called distributed
virtualization. In order to encourage innovation in infrastructure, PlanetLab decouples the operating system running
on each node from a set of multiple, possibly 3rd-party network-wide services that define PlanetLab, a principle
referred to as unbundled management.

PlanetLab Network Performance from 268 nodes to UChicago

0

200

400

600

800

1000

0 10 20 30 40 50 60 70 80 90 100

Network Bandwidth (Mb/s)

N
et

w
or

k
La

te
nc

y
(m

s)

 Minimum Median Average Maximum
Network Throughput 0.003 Mb/s 3.78 Mb/s 4.93 Mb/s 56.99 Mb/s

Network Latency 1.57 ms 67.18 ms 107.04 ms 966.01 ms

Figure 1: PlanetLab Network Performance from 268 nodes to a node at UChicago as measured by IPERF on
April 13th, 2005; each circle denotes a physical machine with the corresponding x-axis and y-axis values as its

network characteristics, namely network latency and bandwidth.

PlanetLab’s deployment is now at over 500 nodes (Linux-based PCs or servers connected to the PlanetLab overlay
network) distributed around the world. Almost all nodes in PlanetLab are connected via 10 Mb/s network links

Page 6 of 31

(with 100Mb/s on several nodes), have processors speeds exceeding 1.0 GHz IA32 PIII class processor, and at least
512 MB RAM. Due to the large geographic distribution (the entire world) among PlanetLab nodes, network
latencies and achieved bandwidth varies greatly from node to node. In order to capture this variation in network
performance, Figure 1 displays the network performance of 268 nodes (the accessible nodes on 04-13-05) as
measured by IPERF on April 13th, 2005. It is very interesting to note the heavy dependency between high
bandwidth / low latencies and low bandwidth / high latencies. In order to visualize the majority of the node
characteristics better, Figure 2 shows the same data from Figure 1, but with the x and y axis shown at log scale.

PlanetLab Network Performance from 268 nodes to UChicago

1

10

100

1000

0.001 0.01 0.1 1 10 100

Network Bandwidth (Mb/s)

N
et

w
or

k
La

te
nc

y
(m

s)

 Minimum Median Average Maximum
Network Throughput 0.003 Mb/s 3.78 Mb/s 4.93 Mb/s 56.99 Mb/s

Network Latency 1.57 ms 67.18 ms 107.04 ms 966.01 ms

Figure 2: PlanetLab Network Performance from 268 nodes to a node at UChicago as measured by IPERF on

April 13th, 2005 shown with x and y axis in log scale.

3.2.1.2 UChicago CS Cluster
The University of Chicago CS cluster contains over 100 machines that are remotely accessible. The majority of
these machines are running Debian Linux 3.0, have AMD Athlon XP Processors at 2.1GHz, have 512 MB of RAM,
and are connected via a 100 Mb/s Fast Ethernet switched network. The communication latency between any pair of
machines in the CS cluster is on average less than 1 ms, with a few having latencies as high as several ms.
Furthermore, all machines share a common file system via NFS (Network File System).

3.2.1.3 DiPerF Cluster
Some tests were performed on a smaller scale LAN that had better network connectivity, specifically 1Gb/s
connections via a switch. The network latencies incurred were generally less than 0.1 ms. This cluster did not run
NFS as was the case in the UChicago CS cluster. The connectivity of the DiPerF cluster to the outside world is
100Mb/s.

Page 7 of 31

Table 1: DiPerF cluster at UChicago hosts hardware and OS details

Machine
Name m5 diablo cobra 512tr viper

Machine
Type x86 64 bit x86 64 bit X86 32 bit X86 32 bit X86 32 bit

OS Linux
Mandrake 10.1

Linux
Suse 9.2

Linux
Suse 9.2

Linux
Suse 9.2

Linux
Mandrake 10.1

OS
Release

2.6.8.1-
12mdksmp

2.6.8-
24-default

2.6.4-
52-default

2.6.8-
24-default

2.6.8.1-
12mdk

of
Proc. 2 1 1 1 1

CPU
Speed 1600 MHz 1800 MHz 2166 MHz 2166 MHz 1466 MHz

Cache
Size

L1: 256KB
L2: 2048KB

L1: 128KB
L2: 256KB

L1: 128KB
L2: 256KB

L1: 128KB
L2: 256KB

L1: 128KB
L2: 256KB

CPU
Type

AMD
Opteron

AMD
Athlon 64

AMD Athlon
XP

AMD
Athlon XP

AMD
Athlon XP

Memory
Total

1 GB DDR
PC3200 Dual Channel

1 GB DDR
PC3200 Dual Channel

1 GB DDR
PC2700

1 GB DDR
PC2700

768 MB
SDRAM
PC133

Swap
Total 1 GB 1 GB 1 GB 1 GB 1 GB

Network
Link

1 Gb/s Int.
100 Mb/s Ext.

1 Gb/s Int.
100 Mb/s Ext.

1 Gb/s Int.
100 Mb/s Ext.

1 Gb/s Int.
100 Mb/s Ext.

100 Mb/s Int.
100 Mb/s Ext.

Network
MTU 1500 B 1500 B 1500 B 1500 B 1500 B

3.2.2 Test Cases
This section will cover the basics of the various components of the Globus Toolkit, including GridFTP, MDS, and
GRAM. It will also cover the basic architecture of GRUBER, a grid service built on top of the Globus Toolkit 3.2.

3.2.2.1 Globus Toolkit 3.9.5
The Globus Toolkit 3.9.5 is in essence the Beta version of GT4 released in April 2005; since all the experiments
were conducted prior to this date, all results are based on pre-GT4 releases. As shown in Figure 3, GT4 comprises
both a set of service implementations (“server” code) and associated “client” libraries. GT4 provides both Web
services (WS) components (on the top) and non-WS components (on the bottom). Note that all GT4 WS
components use WS-Interoperability-compliant transport and security mechanisms, and can thus interoperate with
each other and with other WS components. In addition, all GT4 components, both WS and non-WS, support X.509
end entity certificates and proxy certificates. Thus a client can use the same credentials to authenticate with any GT4
WS or non-WS component.

Nine GT4 services implement Web services (WS) interfaces:

• job management (GRAM)

• reliable file transfer (RFT)

• delegation

• Monitoring and Discovery System (MDS)

Page 8 of 31

o MDS-Index

o MDS-Trigger

o MDS Aggregator

• community authorization (CAS)

• OGSA-DAI data access and integration

• GTCP Grid TeleControl Protocol for online control of instrumentation.

For two of these services, GRAM and MDS-Index, pre-WS “legacy” implementations are also provided. These pre-
WS implementations will be deprecated at some future time as experience is gained with WS implementations. For
three additional GT4 services, WS interfaces are not yet provided (but will be in the future):

• GridFTP data transport

• replica location service (RLS), and

• MyProxy online credential repository

Figure 3: GT4 Key Components [73]

Other libraries provide powerful authentication and authorization mechanisms, while the eXtensible I/O (XIO)
library provides convenient access to a variety of underlying transport protocols. SimpleCA is a lightweight
certification authority.

3.2.2.2 GRAM

Page 9 of 31

GRAM (Grid Resource Allocation and Management) simplifies the use of remote systems by providing a single
standard interface for requesting and using remote system resources for the execution of "jobs". The most common
use (and the best supported use) of GRAM is remote job submission and control. This is typically used to support
distributed computing applications.

GRAM is designed to provide a single common protocol and API for requesting and using remote system resources,
by providing a uniform, flexible interface to local job scheduling systems. The Grid Security Infrastructure (GSI)
provides mutual authentication of both users and remote resources using GSI (Grid-wide) PKI-based identities.
GRAM provides a simple authorization mechanism based on GSI identities and a mechanism to map GSI identities
to local user accounts. [74]

We evaluated three implementations of a job submission service bundled with various versions of the Globus
Toolkit:

• GT3.2 pre-WS GRAM

• GT3.2 WS GRAM

• GT4 WS GRAM.

GT3.2 pre-WS GRAM performs the following steps for job submission: a gatekeeper listens for job requests on a
specific machine; performs mutual authentication by confirming the user’s identity, and proving its identity to the
user; starts a job manager process as the local user corresponding to authenticated remote user; then the job manager
invokes the appropriate local site resource manager for job execution and maintains a HTTPS channel for
information exchange with the remote user.

GT3.2 WS GRAM, a WS-based job submission service, performs the following steps: a client submits a
createService request which is received by the Virtual Host Environment Redirector, which then attempts to forward
the createService call to a User Hosting Environment (UHE) where mutual authentication / authorization can take
place; if the UHE is not created, the Launch UHE module is invoked; WS GRAM then creates a new Managed Job
Service (MJS); MJS submits the job into a back-end scheduling system [75].

GT3.9.5 WS-GRAM models jobs as lightweight WS-Resources rather than relatively heavyweight Grid services.
WS GRAM combines job-management services and local system adapters with other service components of GT 4.0
in order to support job execution with coordinated file staging. Figure 4 depicts the complex set of message
exchanges that occurs in WS-GRAM. We note that both pre-WS GRAM and WS GRAM are complex services: a
job submission, execution, and result retrieval sequence may include multiple message exchanges between the
submitting client and the service. [76]

Figure 4: WS GRAM Component Architecture Approach [76]

Page 10 of 31

The heart of the WS GRAM service architecture is a set of Web services designed to be hosted in the Globus
Toolkit's WSRF core hosting environment. Each submitted job is exposed as a distinct resource qualifying the
generic ManagedJob service. The service provides an interface to monitor the status of the job or to terminate the
job (by terminating the ManagedJob resource). Each compute element, as accessed through a local scheduler, is
exposed as a distinct resource qualifying the generic ManagedJobFactory service. The service provides an interface
to create ManagedJob resources of the appropriate type in order to perform a job in that local scheduler.

At a high level, we can consider the main client activities around a WS GRAM job to be a partially ordered
sequence as depicted in Figure 5. [76]

Figure 5: Partially ordered sequence of client activities around a WS GRAM job [76]

4 DiPerF Framework
DiPerF [82] is a DIstributed PERformance testing Framework aimed at simplifying and automating service
performance evaluation. DiPerF coordinates a pool of machines that test a single or distributed target service,
collects and aggregates performance metrics from the client point of view, and generates performance statistics. The
aggregate data collected provides information on service throughput, service response time, on service ‘fairness’
when serving multiple clients concurrently, and on the impact of network latency on service performance. All steps
involved in this process are automated, including dynamic deployment of a service and its clients, testing, data
collection, and data analysis.

Figure 6 shows an example screenshot of a demo showing off the DiPerF from beginning to end. The screenshot
below shows the end of the experiment in which the data analysis is complete and the graph with both the client and
server view of the results have been generated; the GKrellM [83] Monitor is used to show the hosts (server and
controller) performance in terms of CPU utilization, network transfer rates, and hard disk throughput.

Page 11 of 31

Figure 6: DiPerF demo showing the end of an experiment with 1000 clients accessing a TCP server

DiPerF consists of two major components: the controller and the testers (Figure 7). A user of the framework
provides to the controller the address or addresses of the target service to be evaluated and the client code for the
service. The controller starts and coordinates a performance evaluation experiment: it receives the client code,
distributes it to testers, coordinates their activity, collects and finally aggregates their performance measurements.
Each tester runs the client code on its machine, and times the (RPC-like) network calls this code makes to the target
service. Finally, the controller collects all the measurements from the testers and performs additional operations
(e.g., reconciling time stamps from various testers) to compute aggregated performance views.

Figure 8 depicts an overview of the deployment of DiPerF in different testbeds (PlanetLab, UChicago CS cluster,
and Grid3). Note the different client deployment mechanisms between the different testbeds, with GT GRAM based
submission for Grid3 and ssh based for the other testbeds. Another interesting difference between Grid3 and the
other testbeds is the fact that the controller only communicates with a resource manager, and it is the resource
manager’s job to deploy and launch the tester/client code on physical machines in Grid3; in the other testbeds, the
controller is directly responsible of having a complete list of all machines in the testbed and the communication is
directly between the remote machine and the controller.

Page 12 of 31

Figure 7: DiPerF framework overview

The interface between the tester and the client code can be defined in a number of ways (e.g., by using library calls);
we take what we believe is the most generic avenue: clients are full blown executables that make one RPC-like call
to the service. If multiple calls are to be made in each execution of the executable (i.e. when just starting the
executable is expensive as is the case in many Java programs), a more sophisticated interface can be designed where
the tester gets periodic information from the client code in a predefined format.

The framework is supplied with a set of candidate nodes for client placement, and selects those available as testers.
In future work, we will extend the framework to select a subset of available tester nodes to satisfy specific
requirements in terms of link bandwidth, latency, compute power, available memory, and/or processor load. In its
current version, DiPerF assumes that the target service is already deployed and running.

Some metrics are collected directly by the testers (e.g., response time), while others are computed at the controller
(e.g., throughput and service fairness). Additional metrics (e.g. network related metrics such as network throughput,
size of data transmitted, time to complete a subtask, etc), measured by clients can be reported, through an additional
interface, to the testers and eventually back to controller for statistical analysis. Testers send performance data to the
controller while the test is progressing, and hence the service evolution and performance can be visualized ‘on-line’.

Communication among DiPerF components has been implemented with several flavors: ssh based, TCP, and UDP.
When a client fails, we rely on the underlying protocols (i.e. whatever the client uses such as TCP, UDP, HTTP, pre-
WS GRAM, etc) to signal an error which is captured by the tester which is in turn sent to the controller to delete the
client from the list of the performance metric reporters. A client could fail because of various reasons: 1) predefined
timeout which the tester enforces, 2) client fails to start (i.e. out of memory - OS client machine related), 3) and
service denied or service not found (service machine related). Once the tester is disconnected from the controller, it
stops the testing process to avoid loading the target service with requests which will not be aggregated in the final
results.

Page 13 of 31

Figure 8: DiPerF framework overview deployment scenario

Page 14 of 31

4.1 Scalability Issues
Our initial implementation [82] of DiPerF as it appeared at Grid2004 was scalable, but it could be improved, and
hence we made several improvements to increase the scalability and performance of DiPerF. Based on the
implementation using the ssh based communication protocol, DiPerF was limited to only about 500 clients. We
therefore concentrated on reducing the amount of processing per transaction, reducing the memory footprint of the
controller, and reducing the number of processes being spawned in relation to the number of desired testers/clients
throughout the experiment.

In order to make DiPerF as flexible as possible for a wide range of configurations, we stripped down the controller
from most of its data processing tasks (which are online) and moved them to the data analysis component (which is
offline); this change helped the controller be more scalable, freeing the CPU of unnecessary load throughout the
experiment. If it is desirable for the results to be viewed in real-time as the experiment progresses, then there exists
another version of the controller that is more complex, but will give the user feedback of the performance in real-
time. Furthermore, for increased flexibility, the controller can work in two modes: write data directly to the hard
disk, or keep data in memory for faster analysis later and reduced load due to the fact that it does not have to write to
the disk except when the experiment is over.

We also added the support of multiple testers on the same node by identifying a tester by the node name followed by
its process ID (pid); this feature helped in managing multiple testers on the same node, which allows the testing of
services beyond the size of the testbed. For example, if using a 100 physical node testbed, and having 10
testers/clients on each node, it would add up to 1000 testers/clients. This method of increasing the number of clients
by running multiple clients on each physical node does not work for any client. If the client is heavy weight, and
requires significant amounts of resources from the node, the average client performance will decrease as the number
of clients increases; note that heavy weight clients will most likely produce inaccurate server performance once the
number of clients surpasses the number of physical machines. On the other hand, this is a nice feature to have
because it makes scalability studies for any client/service possible even with a small number of physical machines.

To alleviate the biggest bottleneck that we could identify, namely the communication based on ssh, we implemented
two other communication protocols on top of TCP and UDP. Running TCP will allow us to have the same benefits
of ssh (reliability), but will have less overhead because the information is not encrypted and decrypted, a relatively
expensive operation. Using sockets, we can also control the buffer sizes of the connections more easily (without
root privileges), and hence get better utilization of the memory of the system, especially since we can sacrifice
buffer size without affecting performance due to the low needed bandwidth per connection. Using UDP, we get a
stateless implementation, which will be much more scalable than any TCP or ssh based implementation. We get all
the advantages of TCP (as mentioned above), but we loose the reliability; simple and relatively inexpensive methods
to ensure some level of reliability could be implemented on top of UDP.

Finally, in order to achieve the best performance with the implementation of the communication over TCP or UDP,
we used a single process which used the select() system function [84] to provide synchronous I/O multiplexing
between 1,000s of concurrent connections. The functions select() wait for a number of file descriptors (found in
fd_set) to change status based on a timeout value specified in the number of seconds and microseconds. First of all,
the fd_set is a fixed size buffer as defined in several system header files; most Linux based systems have a fixed size
of 1024. This means that any given select() function can only have 1024 file descriptors (i.e. TCP sockets) that it is
listening on. This is a huge limitation, and would limit any 1 process implementation over TCP to only 1024 clients.
After modifying some system files (required root access) to raise the constant size fd_set from 1024 to 65536, we
were able to break the 1024 concurrent client barrier. However, we now had another issue to resolve, namely the
expensive operation of initializing the fd_set (one file descriptor at a time) every time a complete pass through the
entire fd_set; with an fd_set size of 1024, this did not seem to be a problem, but with an fd_set size of 65536, it
quickly became a bottleneck. The solution we employed was to keep two copies of the fd_set, and after a complete
pass through all the entire fd_set, simply do a memory to memory copy from one fd_set to another, a significantly
less expensive operation than having to reset the fd_set one file descriptor at a time. We are currently working on
porting the select()-based implementation to a /dev/poll-based [85] implementation that is considered to be
significantly lighter weight than select() with less of an overhead.

With all these performance and scalability improvements, DiPerF can now scale from 4,000 clients using ssh to
60,000 clients using TCP to 80,000 clients using UDP; the achieved throughput varied from 1,000 to 230,000

Page 15 of 31

transactions per second depending on the number concurrent clients and the communication protocol utilized. We
expect DiPerF’s scalability to increase even more once we replace the select() mechanism with /dev/poll;
furthermore, we expect DiPerF’s achieved throughput to increase even more under high concurrency with 10,000+
clients.

4.2 Client Code Distribution
The mechanisms used to distribute client code (e.g., scp, gsi-scp, or gass-server) vary with the deployment
environment. Since ssh-family utilities are deployed on just about any Linux/Unix, we base our distribution system
on scp-like tools. DiPerF specifically uses rsync to deploy client code in a Unix-like environment (i.e. PlanetLab,
UChicago CS cluster, DiPerF cluster), and it uses GT2 GRAM job submission to deploy client code in a grid
environment (i.e. Grid3).

4.3 Clock Synchronization
DiPerF relies heavily on time synchronization when aggregating results at the controller; therefore, an automatic
time synchronization among all clients is integrated into DiPerF to ensure that the final results are accurate.
Synchronization need not be performed on-line; instead, we can compute the offset between local and global time
and apply that offset when analyzing aggregated metrics, assuming that the clock drift over the course of an
experiment is not significant. The solution to clock drift is to perform time synchronization on-line at regular
intervals that are short enough for the drift to be negligible.

Several off-the-shelf options are available to synchronize the time between machines; one example is NTP [86],
which some PlanetLab nodes use to synchronize their time. In a previous study [86], hosts had a mean delay of
33ms, median 32ms, and a standard deviation 115ms from their peer hosts used to synchronize their time with NTP.
These results seem very promising, but unfortunately, at the time that we performed our experiments, we found that
most of the nodes in our testbed on PlanetLab were not very well synchronized, with some nodes having
synchronization differences in the thousands of seconds. Therefore DiPerF assumes the worst: no clock
synchronization mechanism is provided by the deployment platform. To ensure that a mechanism exists to
synchronize time among all nodes within tens of milliseconds accuracy, we implemented a timer component that
allows all nodes participating in an experiment to query for a ‘global’ time.

DiPerF handles time synchronization with a centralized time-stamp server that allows time mapping to a common
base. The time-stamp server is lightweight and can easily handle 1000+ concurrent clients. In order to avoid clock
drift, each client synchronize its clock every five minutes; due to the lightweight time server and relatively rare time
synchronization (every 300 seconds), we estimate that it could handle 1,000,000+.

We have measured the latency from over 100 clients (deployed in the PlanetLab testbed) to our timestamp server at
UChicago over a period of almost 2 hours. During this interval that the (per-node) latency in the network remained
fairly constant and the majority of the clients had a network latency of less than 80ms. The accuracy of the
synchronization mechanism we implemented is directly correlated with the network latency and its variance, and in
the worst case (non-symmetrical network routes), the timer can be off by at most the network latency. Using our
custom synchronization component, we observed a mean of 62ms, median 57ms, and a standard deviation 52ms for
the time skew between nodes in our PlanetLab testbed. See Figure 1 for a visual representation of the network
performance of the PlanetLab testbed.

Given that the response time of the relatively heavy weight services (i.e. GRAM, GridFTP, MDS, GRUBER) that
have been evaluated in this paper are at least one order of magnitude larger, we believe the clock synchronization
technique implemented does not distort the results presented.

4.4 Client Control and Performance Metric Aggregation
The controller starts each tester with a predefined delay (specified in a configuration file when the controller is
started) in order to gradually build up the load on the service as can be visualized in Figure 9. A tester understands a
simple description of the tests it has to perform. The controller sends test descriptions when it starts a tester. The
most important description parameters are: the duration of the test experiment, the time interval between two
concurrent client invocations, the time interval between two clock synchronizations, and the local command that has

Page 16 of 31

to be invoked to run the client. The controller also specifies the addresses of the time synchronization server and the
target service.

Individual testers collect service response times. The controller’s job is to aggregate these service response times,
correlate them with the offered load and with the start/stop time of each tester and infer service throughput, and
service ‘fairness’ among concurrent clients.

Since all metrics collected share a global time-stamp, it becomes simple to combine all metrics in well defined time
quanta (seconds, minutes, etc) to obtain an aggregate view of service performance at any level of detail that is
coarser than the collected data, an essential feature for summarizing results containing millions of transactions over
short time intervals. This data analysis is completely automated (including graph generation) at the user-specified
time granularity.

Figure 9: Aggregate view at the controller. Each tester synchronizes its clock with the time server every five

minutes. The figure depicts an aggregate view of the controller of all concurrent testers.

4.5 Performance Analyzer
The performance analyzer has been implemented in C++ and currently consists of over 4,000 lines of code. Its
current implementation assumes that all performance data is available for processing, which means it is an off-line
process; in the future, we plan to port the current performance analyzer to support on-line analysis of incoming
performance data. The implementation’s main goal has been its flexibility in handling large data analysis tasks
completely unsupervised. Furthermore, the performance analyzer was designed to allow a reduction of the raw

Page 17 of 31

performance data to a summary of the performance data with samples computed at a specified time quantum. For
example, a particular experiment could have accumulated 1,000,000s of performance samples over a period of 3600
seconds, but after the performance analyzer summarizes the data for one sample per second, the end result is
reduced to 3600 samples rather than 1,000,000s of samples.

The generic metrics summarized by the performance analyzer based on the user specified time quantum are:

• service response time or time to serve a request, that is, the time from when a client issues a request to
when the request is completed minus the network latency and minus the execution time of the client code;
this metric is measured from the point of view of the client

• service throughput: number of jobs completed successfully by the service averaged over a short time
interval that is specified by the user (i.e. 1 second, 1 minute, etc) in order to reduce the large number of
samples; to make the results easier to understand, most of the graphs showing throughput also use box plot
(moving averages) in order to smooth the throughput metrics out

• offered load: number of concurrent service requests (per second)

• service utilization (per client): ratio between the number of requests completed for a client and the total
number of requests completed by the service during the time the client was active

• service fairness (per client): ratio between the number of jobs completed and service utilization

• job success (per client): the number of jobs that were successfully completed for a particular client

• job fail (per client): the number of jobs that failed for a particular client

• network latency (per client): the round trip network latency from the client to the service as measured by
the “ping” utility

Among the many performance metrics it can extract from the raw performance data, it has a few additional features.
First of all, it has a verify option that allows a user to double check that the raw input data conforms to the correct
formatting requirements, and fixes (mostly by deleting) any inconsistencies it finds. Furthermore, all of the above
metrics that are computed per client can also be computed over the peak portion of the experiment, when all clients
are concurrently accessing the service. This is an important feature for computing the service fairness.

The output resulting from the performance analyzer can be automatically graphed using gnuplot [87] for ease of
inspection, and the output can easily be manipulated in order to generate complex graphs combining various metrics
such as the ones found in this thesis.

Figure 10 depicts a sample output from the automated gnuplot based on the summarization of the performance
analyzer of the achieved throughput of a particular service. The original number of individual performance samples
was over 75,000 while the resulting summary had fewer than 700 samples. On the other hand, Figure 11 shows the
same graph manually made that contains the throughput (right axis) and two other metrics (load and response time)
superimposed.

Page 18 of 31

Figure 10: Sample output from the automated graph generated by gnuplot (throughput – right hand axis,

response time and load – left hand axis)

For better presentation purposes, the majority of the results in this thesis will be presented similarly as the results
from Figure 11. At this point, the actual results from these two figures is irrelevant, however the presentation and
the kind of information that is expressed is very important.

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

of

 c
on

cu
rr

en
t c

lie
nt

s
/ t

im
e

(m
s)

0

300

600

900

1200

1500

1800

2100

2400

2700

3000

3300

Tr
ou

gh
pu

t (
qu

er
ie

s
/ s

ec
)

Throughput

Load

Service Response Time

 Minimum Median Average Maximum Standard Deviation
Service Response

Time (ms) 8.21 10.45 10.53 29.09 1.3
Throughput
(trans/sec) 45 1728 1645 2974 877

Figure 11: Sample output from the manual graph containing the same results (throughput – right hand axis)

from Figure 10 plus two other metrics (response time and load)

Page 19 of 31

5 Experimental Results for GRAM in GT3.2 & GT4
This section covers the experimental results obtained while studying various components of the Globus Toolkit
(GRAM, WS-MDS, and GridFTP), and two grid services (DI-GRUBER, and a simple service that performed
instance creation). For details on the specific services tested, please see section 2.3.

We ran our experiments with 89 client machines for pre-WS GRAM and 26 machines for WS GRAM, distributed
over the PlanetLab testbed and the University of Chicago CS cluster (UofC). We ran the target services on an AMD
K7 2.16GHz and the controller on an Intel PIII 600 MHz, both located at UofC. These machines are connected
through 100Mbps Ethernet LANs to the Internet and the network traffic our tests generates is far from saturating the
network links.

The actual configuration the controller passes to the testers is: testers start at 25s intervals and run for one hour
during which they start clients at 1s intervals (or as soon as the last client completed its job if the time the client
execution takes more than 1s). The client start interval is a tunable parameter, and is set based on the granularity of
the service tested. In our case, since both services (pre-WS GRAM and WS GRAM) quickly rose to service
response time of greater than 1s, for the majority of the experiments, testers were starting back-to-back clients.
Experiments ran for a total of 5800s and 4200s for pre-WS GRAM and WS GRAM respectively. (The difference in
total execution time comes from the different number of testers used). Testers synchronize their time every five
minutes. The time-stamp server is another UofC computer.

For pre-WS GRAM, the tester input is a standalone executable that was run directly by the tester, while for the WS
pre-WS GRAM, the input is a jar file and we assume that Java is installed on all testing machines in our testbed.

5.1 GT3.9.4 pre-WS GRAM and WS-GRAM Performance Results
We evaluated two implementations of a job submission service bundled with the Globus Toolkit 3.9.4:

• GT3.9.4 pre-WS GRAM (both client and service is implemented in C)

• GT3.9.4 WS GRAM (client is implemented in C while the service is in JAVA)

The metrics collected by DiPerF are:

• service response time or time to serve a request, that is, the time from when a client issues a request to
when the request is completed minus the network latency and minus the execution time of the client code,

• service throughput: number of jobs completed successfully by the service averaged over a short time
interval,

• offered load: number of concurrent service requests (per second),

We ran our experiments with 115 client machines or less for these experiments; the machines were distributed over
the PlanetLab testbed. We ran the target services (GT3.9.4) on an AMD K7 2.16GHz and the controller on an
identical machine, both located at UChicago. These machines are connected through 100Mbps Ethernet LANs to the
Internet and the network traffic our tests generates is far from saturating the network links.

DiPerF was configured to start the testers at 25s intervals and run each tester for one hour during which they start
clients at 1s intervals (or as soon as the last client completed its job if the time the client execution takes more than
1s). The client start interval is a tunable parameter, and is set based on the granularity of the service tested. In our
case, since both services (pre-WS GRAM and WS GRAM) quickly rose to service response time of greater than 1s,
for the majority of the experiments, testers were starting back-to-back clients.

Experiments ran anywhere from 100 seconds to 6500 seconds depending on how many clients were actually used.
Testers synchronize their time every five minutes. The time-stamp server was another UChicago computer.

In the figures below, each series of points representing a particular metric and is also approximated using a moving
average over a 60 point interval, where each graphs consists of anywhere from several thousand to several tens of
thousands of data points.

Page 20 of 31

5.1.1 WS-GRAM Results
Figure 12 depicts the performance of the WS-GRAM C client accessing the WS-GRAM service in JAVA. We note
a dramatic improvement from the results of the WS-GRAM service implemented in the Globus Toolkit 3.2 as
presented in Error! Reference source not found.. We observe both greater scalability (from 20 to 69 concurrent
clients), and greater performance (from 10 jobs/min to over 60 jobs/minute). We also note that the response time
steadily increased with the increased number of clients. The throughput increase seemed to level off at about 15~20
clients, which indicated that the service was saturated and that any more clients would only increase the response
time.

Figure 13 shows a very similar experiment as the one showed in Figure 12 which justifies our choice of the number
of concurrent clients to use in order to test the WS-GRAM service. Apparently, due to the alpha version of the
GT3.9.4 release, there were still new features being added, software “bugs” to be fixed, and performance
enhancements to be made. Unfortunately, through our relatively large scale experiments, we managed to trip a
scalability problem in which the container would become unresponsive once we reached more than 70 concurrent
clients. We therefore reran the experiment with only 69 clients, and obtained the results of Figure 12.

GT3.9.4 WS GRAM Client (C) and WS GRAM Service (JAVA)

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

Time (sec)

of

 C
on

cu
re

nt
 M

ac
hi

ne
s

/ R
es

po
ns

e
Ti

m
e

(s
ec

)

0

10

20

30

40

50

60

70

80

90

100

Th
ro

ug
hp

ut
 (J

ob
s/

m
in

)

Throughput Response Time

Load

Figure 12: GT3.9.4 WS GRAM client (C implementation) and WS GRAM service (JAVA implementation);
tunable parameters: utilized 69 concurrent nodes, starts a new node every 10 seconds, each node runs for

1000 seconds

GT3.9.4 WS GRAM Client (C) and WS GRAM Service (JAVA)

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600 1800
Time (sec)

of

 C
on

cu
re

nt
 M

ac
hi

ne
s

/ R
es

po
ns

e
Ti

m
e

(s
ec

)

0

10

20

30

40

50

60

70

80

90

100

Th
ro

ug
hp

ut
 (J

ob
s/

m
in

)

Throughput

Response Time

Load

Figure 13: GT3.9.4 WS GRAM client (C implementation) and WS GRAM service (JAVA implementation);

tunable parameters: attempted to use 115 concurrent nodes, but after 72 concurrent clients started, the

Page 21 of 31

service became unresponsive; a new node was started every 25 seconds, and each node was scheduled to run
for 3600 seconds

Figure 14 depicts the performance of the WS-GRAM client with the output enabled. We have enabled the remote
client output to be sent back to the originating job submission point, however as can be seen in Figure 14, it seems
that this incurs a big performance penalty over the same job submission mechanisms with the output disabled. We
attempted to use 69 clients, however, at about concurrent 8 clients, the service became unresponsive.

GT3.9.4 WS GRAM Client (C) with Output and WS GRAM Service (JAVA)

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100 110

Time (sec)

of

 C
on

cu
re

nt
 M

ac
hi

ne
s

/ R
es

po
ns

e
Ti

m
e

(s
ec

)

0

10

20

30

40

50

60

70

80

90

100

Th
ro

ug
hp

ut
 (J

ob
s/

m
in

)

Throughput

Response Time

Load

Figure 14: GT3.9.4 WS GRAM client (C implementation) with output enabled and WS GRAM service

(JAVA implementation); tunable parameters: 8 concurrent clients, a new node was started every 10 seconds,
and each node was scheduled to run for 1000 seconds

5.1.2 pre-WS GRAM Results
We performed a similar study on the older pre-WS GRAM implementation that is still bundled with GT3.9.4. We
were interested to see how the performance of the pre-WS GRAM compared to that of WS-GRAM in the latest
implementation of the Globus Toolkit; furthermore, we were also interested in finding out if enabling the output
option had such an adverse effect on the pre-WS GRAM as it did in the WS-GRAM tests.

In comparing the results of the pre-WS GRAM (Figure 15) with those of the WS-GRAM service (Figure 12), we
found very similar performance characteristics. The pre-WS GRAM seems to be more scalable, it withstood 115
clients vs. only 69 clients on the WS-GRAM service. Also, the response times seem to be a little less for the pre-
WS GRAM service; it achieved service response times in the range of 50~60 seconds for 69 concurrent clients,
while the WS-GRAM service achieved response times of close to 70 seconds. The throughout achieve by the pre-
WS GRAM service also seems to be more consistent than that achieved by the WS-GRAM service. Based on our
results, it seems that pre-WS GRAM with output performs only slightly worse than without output; there is about a
10% performance penalty, which is much lower than what we observed for the WS-GRAM. We see an achieved
throughput of slightly less than 80 jobs/min without output and a throughput of slightly more than 70 jobs/min with
output. The response times for about 60 clients increased from about 46 seconds to about 51 seconds.

Page 22 of 31

GT3.9.4 Pre-WS GRAM Client (C) and Pre-WS GRAM Service (C)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500
Time (sec)

of

 C
on

cu
re

nt
 M

ac
hi

ne
s

/ R
es

po
ns

e
Ti

m
e

(s
ec

)

0

10

20

30

40

50

60

70

80

90

100

Th
ro

ug
hp

ut
 (J

ob
s/

m
in

)

Throughput

Response TimeLoad

Figure 15: GT3.9.4 pre-WS GRAM client (C implementation) and pre-WS GRAM service (C

implementation); tunable parameters: utilized 115 concurrent nodes, starts a new node every 25 seconds,
each node runs for 3600 seconds

GRAM2: Job submission in interactive mode without output

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000
Time (sec)

of

 C
on

cu
re

nt
 M

ac
hi

ne
s

/ R
es

po
ns

e
Ti

m
e

(s
ec

)

0

10

20

30

40

50

60

70

80

90

100

Load

Throughput

Response Time

Figure 16: GRAM2 without output

Page 23 of 31

GRAM2: Job submission in interactive mode with output

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

Time (sec)

of

 C
on

cu
re

nt
 M

ac
hi

ne
s

/ R
es

po
ns

e
Ti

m
e

(s
ec

)

0

10

20

30

40

50

60

70

80

90

100

Throughput

Response Time

Load

Figure 17: GRAM2 with output

GRAM2 authentication of job submission

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 500 1000 1500 2000 2500 3000 3500

Time (sec)

of

 C
on

cu
re

nt
 M

ac
hi

ne
s

/ R
es

po
ns

e
Ti

m
e

(s
ec

)

0

100

200

300

400

500

600

700

800

900

1000

Th
ro

ug
hp

ut
 (J

ob
s/

m
in

)

Throughput

Response Time

Load

Figure 18: GRAM2 authentication

Page 24 of 31

We also ran some tests to see how long the pre-WS GRAM authentication takes, and we found that it scales very
well, at least to up to 38 concurrent clients. We actually had 120 clients in that test, but because of the test
parameters (test duration and frequency of clients starting), it ended up that only about 38 clients were ever running
concurrently. We see the throughput increase steadily the entire time that more clients join, up to a peak of over
1000 authentications per minute. It is also very interesting to see that the response time stayed relatively constant,
between 0.5 seconds and 1 second, regardless of the number of concurrent clients.

5.1.3 GT3.9.4 GRAM Conclusions
Comparing the performance of pre-WS and WS GRAM, we find that pre-WS GRAM slightly outperforms WS
GRAM by about 10% in both throughput and service response time. When we enabled the remote client output to
be sent back to the originating job submission point, the performance of WS GRAM suffers tremendously. Also, for
WS GRAM, if we loaded the service with too many concurrent clients, the service became unresponsive. We
verified the performance of pre-WS GRAM with output and without output, and we found that the performance loss
with output was only about 10%.

5.2 Summary
Table 2 summarizes the performance of pre-WS and WS-GRAM across both GT3 and GT4 found in the previous
subsection. The experiments performed on GT3 and GT4 were done almost 1 year apart, and hence the results are
not directly comparable between GT3 and GT4, but they should give a rough overview of the performance of both
releases and implementation. It is noteworthy to point out the dramatic performance improvement WS-GRAM
experienced from GT3 to GT4, going from less than 10 jobs per minute to almost 60 jobs per minute, and getting a
reduction of response times from almost 180 seconds to less than 70 seconds.

Table 2: GRAM performance summary covering pre-WS GRAM and WS-GRAM under both GT3 and GT4

Throughput (transactions/sec) Response Time (sec) Experiment
Description Min Med Aver Max Std.

Dev.

Load at Service
Saturation Min Med Aver Max Std.

Dev.
Figure 27:

GT3 pre-WS GRAM –
89 clients

99.3 193 193 326 38.9 33 1.02 20.4 31.5 739 41.7

Figure 30:
GT3 WS-GRAM –

26 clients
3.13 9.16 8.77 12.8 2.19 20 35.6 178.4 173.6 298 55.9

Figure 36:
GT4 pre-WS GRAM –

115 clients
57 69.8 69.8 81.6 4.23 27 57.6 92 93 167.2 15.1

Figure 33:
GT4 WS-GRAM –

69 clients
47.2 57 56.8 63.9 3.1 20 32.1 67.7 67.4 131.8 9.8

5.3 Other Work that has used DiPerF
The papers or technical reports that used DiPerF along with the place of publishing are:

• DiPerF: an automated DIstributed PERformance testing Framework [82] – Grid2004

• A Scalability and Performance Evaluation of a distributed Usage SLA-based Broker in Large Grid
Environments [26] – GriPhyN/iVDGL Technical Report, March 2005

• DI-GRUBER: A Distributed Approach for Grid Resource Brokering [25] – under review at SC 2005

• ZEBRA: The Globus Striped GridFTP Framework and Server [20] – under review

• Performance Measurements in Running Workloads over a Grid [27] – under review at SC 2005

Page 25 of 31

• Extending a distributed usage SLA resource broker with overlay networks to support Large Dynamic Grid
Environments [91] – work in progress

• Decreasing End-to-End Job Execution Times by Increasing Resource Utilization using Predictive
Scheduling in the Grid [92] – UChicago, Grid Computing Seminar, 2005

Papers or technical reports that have mentioned DiPerF along with the place of publishing are:

• Systems Performance Evaluation Methods for Distributed Systems Using Datastreams [93] – MS Thesis,
University of Kansas, January 2005

• Deploying C++ Grid Services: Options and Performance [94] – Duke University, Federated Distributed
Systems, December 2004

• Connecting Client Objectives with Resource Capabilities: An Essential Component for Grid Service
Management Infrastructures [95] – ICSOC 2004

6 Conclusion
As presented in this work, performing distributed measurements is not a trivial task, due to difficulties 1) accuracy –
synchronizing the time across an entire system that might have large communication latencies, 2) flexibility – in
heterogeneity normally found in WAN environments and the need to access large number of resources, 3) scalability
– the coordination of large amounts of resources, and 4) performance – the need to process large number of
transactions per second. In attempting to address these four issues, we developed DiPerF, a DIstributed
PERformance testing Framework, aimed at simplifying and automating service performance evaluation. DiPerF
coordinates a pool of machines that test a single or distributed target service (i.e. grid services, network services,
distributed services, etc), collects and aggregates performance metrics (i.e. throughput, service response time, etc)
from the client point of view, and generates performance statistics (fairness of resource utilization, saturation point
of service, scalability of service, etc). The aggregate data collected provides information on service throughput,
service response time, on service ‘fairness’ when serving multiple clients concurrently, and on the impact of
network latency on service performance. Furthermore, using the collected data, it is possible to build predictive
models that estimate service performance as a function of service load. Using the power of this framework, we have
analyzed the performance scalability of the several components of the Globus Toolkit and several grid services. We
measured the performance of various components of the GT in a wide area network (WAN) as well as a local area
network (LAN) with the goal of understanding the performance that is to be expected from the GT in a realistic
deployment in a distributed and heterogeneous environment.

The contributions of this thesis are two fold: 1) a detailed empirical performance analysis of various components of
the Globus Toolkit along with a several grid services, and 2) DiPerF, a tool that makes automated distributed
performance testing easy.

Through our tests performed on GRAM, WS-MDS, and GridFTP, we have been able to quantify the performance
gain or loss between various different versions or implementations, and have normally found the upper limit on both
scalability and performance on these services. We have also been able to show the performance of these
components in a WAN, a task that would have been very tedious and time consuming without a tool such as DiPerF.
By pushing the Globus Toolkit to the limit in both performance and scalability, we were able to give the users a
rough overview of the performance they are to expect so they can do better resource planning. The developers also
gained feedback on the behavior of the various components under heavy stress and allowed them to concentrate on
improving the parts that needed the most improvements. We were also able to quantify the performance and
scalability of DI-GRUBER, a distributed grid service built on top of the Globus Toolkit 3.2 and the Globus Toolkit
3.9.5.

The second main contribution is DiPerF itself, which is a tool that allows large scale testing of grid services, web
services, network services, and distributed services to be done in both LAN and WAN environments. DiPerF has
been automated to the extent that once configured, the framework will automatically do the following steps:

• check what machines or resources are available for testing

• deploy the client code on the available machines

Page 26 of 31

• perform time synchronization

• run the client code in a controlled and predetermined fashion

• collect performance metrics from all the clients

• stop and clean up the client code from the remote resources

• aggregate the performance metrics at a central location

• summarize the results

• generates graphs depicting the aggregate performance of the clients and tested service

Some lessons we learned through the work presented in this thesis are:

• building scalable software is not a trivial task

o there were some interesting issues we encountered when we tried to scale DiPerF beyond a few
hundred clients, but after careful tuning and optimizations, we were able to scale DiPerF to
10,000+ clients

o ssh is quite heavy weight for a communication channel, so for a real scalable solution, proprietary
TCP/IP or UDP/IP communication channels are recommended

• time synchronization is a big issue when doing distributed measurements in which the aggregate view is
important; although NTP offers potentially accurate clock synchronization, due to mis-configurations and
possibly not wide enough deployment, NTP is not sufficient in a general case

• C-based components of the Globus Toolkit normally perform significantly better than their Java
counterparts

• depending on the particular service tested, WAN performance is not always comparable to that found in a
LAN; for example, WS-MDS with no security performed comparable between LAN and WAN tests, but
WS-MDS with security enabled achieved less than half the throughput in a WAN when compared to the
same test in a LAN

• the testbed performance (in our case it was mostly PlanetLab) can influence the performance results, and
hence careful care must be taken in comparing experiments done at different times when the state of
PlanetLab could have significantly changed

We conclude with the thought that we succeeded in building a scalable and high performance measurements tool
that can be used to coordinate, measure, and aggregate the performance of thousands of clients distributed all over
the world targeting anything from network services, web services, distributed services, to grid services. We have
shown DiPerF’s accuracy as being very good with only a few percent of performance deviation between the
aggregate client view and the centralized service view. We have also contributed towards a better understanding of
various vital Globus Toolkit components such as GRAM, MDS, and GridFTP.

7 Bibliography
[1] The Globus Alliance, www.globus.org.

[2] I. Foster, C. Kesselman “The Grid 2: Blueprint for a New Computing Infrastructure”, “Chapter 1:
Perspectives.” Elsevier Publisher, 2003.

[3] I. Foster, C. Kesselman, S. Tuecke, "The Anatomy of the Grid", International Supercomputing
Applications, 2001.

[4] I. Foster, C. Kesselman, J. Nick, S. Tuecke. The Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration. Open Grid Service Infrastructure WG, Global Grid
Forum, June 22, 2002.

Page 27 of 31

[5] The Globus Alliance, "WS GRAM: Developer's Guide", http://www-
unix.globus.org/toolkit/docs/3.2/gram/ws.

[6] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, "A Blueprint for Introducing Disruptive Technology
into the Internet", Proceedings of the First ACM Workshop on Hot Topics in Networking (HotNets),
October 2002.

[7] A. Bavier et al., "Operating System Support for Planetary-Scale Services", Proceedings of the First
Symposium on Network Systems Design and Implementation (NSDI), March 2004.

[8] I. Foster, et al., "The Grid2003 Production Grid: Principles and Practice", 13th IEEE Intl. Symposium on
High Performance Distributed Computing, 2004.

[9] D. Gunter, B. Tierney, C. E. Tull, V. Virmani, On-Demand Grid Application Tuning and Debugging with
the NetLogger Activation Service, 4th International Workshop on Grid Computing, Grid2003, Phoenix,
Arizona, November 17th, 2003.

[10] G. Tsouloupas, M. Dikaiakos. "GridBench: A Tool for Benchmarking Grids," 4th International Workshop
on Grid Computing, Grid2003, Phoenix, Arizona, November 17th, 2003.

[11] The Globus Alliance, “Globus Toolkit 3.0 Test Results Page”, http://www-
unix.globus.org/ogsa/tests/gt3_tests_result.html

[12] The Globus Alliance, “Overview and Status of Current GT Performance Studies”, http://www-
unix.globus.org/toolkit/docs/development/3.9.5/perf_overview.html

[13] W. Allcock, J. Bester, J. Bresnahan, I. Foster, J. Gawor, J. A. Insley, J. M. Link, and M. E. Papka.
“GridMapper, A Tool for Visualizing the Behavior of Large-Scale Distributed Systems,“ 11th IEEE
International Symposium on High Performance Distributed Computing (HPDC-11), pp179-187,
Edinburgh, Scotland, July 24-16, 2002.

[14] C. Lee, R. Wolski, I. Foster, C. Kesselman, J. Stepanek. “A Network Performance Tool for Grid
Environments,“ Supercomputing '99, 1999.

[15] R. Wolski, N. Spring, J. Hayes, “The Network Weather Service: A Distributed Resource Performance
Forecasting Service for Metacomputing,” Future Generation Computing Systems, 1999.

[16] The Globus Alliance, "GT3 GRAM Tests Pages", http://www-unix.globus.org/ogsa/tests/gram.

[17] X. Zhang, J. Freschl, and J. Schopf. “A Performance Study of Monitoring and Information Services for
Distributed Systems.” Proceedings of HPDC, August 2003.

[18] X. Zhang and J. Schopf. “Performance Analysis of the Globus Toolkit Monitoring and Discovery Service,
MDS2.” Proceedings of the International Workshop on Middleware Performance (MP 2004), April 2004.

[19] G. Aloisio, M. Cafaro, I. Epicoco, and S. Fiore, “Analysis of the Globus Toolkit Grid Information Service”.
Technical report GridLab-10-D.1-0001-GIS_Analysis, GridLab project,
http://www.gridlab.org/Resources/Deliverables/D10.1.pdf.

[20] B. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu, I. Foster. "Zebra: The Globus
Striped GridFTP Framework and Server", submitted for review.

[21] G. Kola, T. Kosar, and M. Livny. “Profiling Grid Data Transfer Protocols and Servers”, Proceedings of
Euro-Par 2004, September 2004.

[22] T. Baer, P. Wyckoff. “A Parallel I/O Mechanism for Distributed Systems”, Proceedings of Cluster '04, San
Diego, CA, September 2004.

[23] X. Liu, H. Xia, and A.A. Chien, "Network Emulation Tools for Modeling Grid Behavior," 3rd IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGrid 2003), May 12-15, 2003 in Tokyo,
Japan.

[24] C. Dumitrescu, I. Foster. "GRUBER: A Grid Resource SLA-based Broker", EuroPar 2005.

Page 28 of 31

[25] C. Dumitrescu, I. Raicu, I. Foster. "DI-GRUBER: A Distributed Approach for Grid Resource Brokering",
submitted for review to SC 2005.

[26] C. Dumitrescu, I. Foster, I. Raicu. "A Scalability and Performance Evaluation of a distributed Usage SLA-
based Broker in Large Grid Environments", GriPhyN/iVDGL Technical Report, March 2005.

[27] C. Dumitrescu, I. Raicu, I. Foster. “Performance Measurements in Running Workloads over a Grid”,
submitted for review to SC 2005.

[28] A. Adams, J. Mahdavi, M. Mathis, and V. Paxson. Creating a scalable architecture for Internet
measurement. IEEE Network, 1998.

[29] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis. An architecture for large-scale internet measurement.
IEEE Communications, 36(8):48–54, August 1998.

[30] V. Paxson. End-to-end Internet packet dynamics. In Proceedings of ACM SIGCOMM ’97, Cannes, France,
September 1997.

[31] N. Anerousis, R. C´aceres, N. Duffield, A. Feldmann, A. Greenberg, C. Kalmanek, P. Mishra, K.
Ramakrishnan, and J. Rexford. Using the AT&T labs PacketScope for Internet measurement. AT&T
Services and Infrastructure Performance Symposium, November 1997.

[32] A. Feldmann. Continuous on-line extraction of HTTP traces from packet traces. Position paper: W3C Web
Characterization Workshop, November 1998.

[33] Internet Protocol Performance Metrics. http://www.advanced.org/ippm/index.html, 1998.

[34] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis. Framework for IP performance metrics. IETF RFC 2330,
1998.

[35] The Surveyor Project. http://www.advanced.org/csgippm/, 1998.

[36] National Laboratory for Applied Network Research. http://www.nlanr.net, 1998.

[37] NLANR Acitve Measurement Program - AMP. http://moat.nlanr.net/AMP.

[38] NLANR Passive Measurement and Analysis - PMA. http://moat.nlanr.net/PMA.

[39] A Distributed Testbed for National Information Provisioning. http://ircache.nlanr.net/Cache/.

[40] Keynote Systems Inc. http://www.keynote.com, 1998.

[41] Collaborative Advanced Interagency Research Network. http://www.cairn.net.

[42] Cooperative Association for Internet Data Analysis. http://www.caida.org, 1998.

[43] CAIDA. “Cooperative Association for Internet Data Analysis.” CAIDA, 1996.

[44] Skitter. http://www.caida.org/tools/measurement/skitter.

[45] V. Jacobson. traceroute. ftp://ftp.ee.lbl.gov/traceroute.tar.Z, 1989.

[46] Coral: Passive network traffic monitoring and statistics collection. http://www.caida.org/tools/coral.

[47] C.R. Simpson Jr., G.F. Riley: NETI@home: A Distributed Approach to Collecting End-to-End Network
Performance Measurements. PAM 2004: 168-174

[48] Ch. Steigner and J. Wilke, "Isolating Performance Bottlenecks in Network Applications", in Proceedings of
the International IPSI-2003 Conference, Sveti Stefan, Montenegro, October 4-11, 2003.

[49] B.B. Lowekamp, N. Miller, R. Karrer, T. Gross, and P. Steenkiste, "Design, Implementation, and
Evaluation of the Remos Network Monitoring System," Journal of Grid Computing 1(1):75--93, 2003.

[50] IEPM. Internet End-to-End and Process Monitoring (SLAC/DOE). http://wwwiepm.slac.stanford.edu/

[51] MAWI (WIDE Project), http://www.wide.ad.jp/wg/mawi/

[52] PPNCG Network Monitoring, http://icfamon.rl.ac.uk/ppncg/main.html

Page 29 of 31

[53] TRIUMF Network Monitoring, http://sitka.triumf.ca/

[54] WAND (Waikato Applied Network Dynamics) WITS (Waikato Internet Traffic Storage) Project,
http://wand.cs.waikato.ac.nz/

[55] Andover News Network's Internet Traffic Report, http://www.internettrafficreport.com/main.htm

[56] MIDS Internet Average, http://average.miq.net/

[57] MIDS Internet Weather Report, http://www.mids.org/weather/

[58] MIDS Matrix IQ Ratings Comparing Performance of Some ISPs, http://ratings.miq.net/

[59] NetSizer (Telcordia Technologies), http://www.netsizer.com/

[60] P. Barford ME Crovella. Measuring Web performance in the wide area. Performance Evaluation Review,
Special Issue on Network Traffic Measurement and Workload Characterization, August 1999.

[61] G. Banga and P. Druschel. Measuring the capacity of a Web server under realistic loads. World Wide Web
Journal (Special Issue on World Wide Web Characterization and Performance Evaluation), 1999.

[62] I. Foster and C. Kesselman, Eds., “The Grid: Blueprint for a Future Computing Infrastructure”, “Chapter 2:
Computational Grids.” Morgan Kaufmann Publishers, 1999.

[63] Grid3. http://www.ivdgl.org/grid3/

[64] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M. Bowman, “PlanetLab: An
Overlay Testbed for Broad-Coverage Services,” ACM Computer Communications Review, vol. 33, no. 3,
July 2003.

[65] Information Sciences Institute, University of Southern California, “Internet Protocol,” Request for
Comments 791, Internet Engineering Task Force, September 1981.

[66] Defense Advanced Research Projects Agency & Information Sciences Institute, University of Southern
California, “Transmission Control Protocol,” Request for Comments 793, Internet Engineering Task Force,
September 1981.

[67] J. Postel, ISI, “User Datagram Protocol,” Request for Comments 768, Internet Engineering Task Force,
August 1980.

[68] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, S. Lehtinen, “SSH Protocol Architecture,” Network
Working Group, Internet-Draft, November 19, 2001.

[69] S. Bradner, A. Mankin, “IP: Next Generation (IPng) White Paper Solicitation,” Request for Comments
1550, Internet Engineering Task Force, December 1993

[70] S. Deering, R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,” Request for Comments 1883,
Internet Engineering Task Force, December 1995.

[71] Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S., Kesselman, C, Maguire T., Sandholm, T.,
Snelling, D., and Vanderbilt, P., Open Grid Services Infrastructure (OGSI) Version 1.0. Global Grid
Forum, June 2003.

[72] “GT3 Core Key Concepts”. http://www-unix.globus.org/toolkit/docs/3.2/core/key/index.html

[73] “GT4 Release Contents”. http://www-unix.globus.org/toolkit/docs/development/4.0-
drafts/GT4Facts/index.html#Contents

[74] “GRAM: Key Concepts”. http://www-unix.globus.org/toolkit/docs/3.2/gram/key/index.html

[75] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, S. Tuecke, “A Resource
Management Architecture for Metacomputing Systems”, IPPS/SPDP '98 Workshop on Job Scheduling
Strategies for Parallel Processing, pg. 62-82, 1998.

[76] “GT 4.0 WS GRAM Approach”. http://www-unix.globus.org/toolkit/docs/development/4.0-
drafts/execution/key/WS_GRAM_Approach.html

Page 30 of 31

[77] GridFTP: Universal Data Transfer for the Grid. Globus Project, White Paper.
http://www.globus.org/datagrid/deliverables/C2WPdraft3.pdf

[78] “GT 4.0 Component Fact Sheet: WS MDS (MDS4)”. http://www-
unix.globus.org/toolkit/docs/development/4.0-drafts/info/WSMDSFacts.html

[79] K. Ranganathan, I. Foster, “Simulation Studies of Computation and Data Scheduling Algorithms for Data
Grids”, Journal of Grid Computing, 2003, 1 (1).

[80] K. Ranganathan, I. Foster, “Decoupling Computation and Data Scheduling in Distributed Data-Intensive
Applications”, in 11th IEEE International Symposium on High Performance Distributed Computing. 2002.
Edinburgh, Scotland: IEEE Computer Society Press.

[81] C. Dumitrescu, I. Foster, “Usage Policy-based CPU Sharing in Virtual Organizations”, in 5th International
Workshop in Grid Computing, 2004, Pittsburg, PA.

[82] C. Dumitrescu, I. Raicu, M. Ripeanu, I. Foster. “DiPerF: an automated DIstributed PERformance testing
Framework.” 5th International IEEE/ACM Workshop in Grid Computing, 2004, Pittsburg, PA.

[83] Bill Wilson. “GKrellM Monitor,” http://members.dslextreme.com/users/billw/gkrellm/gkrellm.html

[84] “select(2) - Linux man page”, http://www.die.net/doc/linux/man/man2/select.2.html

[85] Abhishek Chandra and David Mosberger. “Scalability of Linux Event-Dispatch Mechanisms,”
Proceedings of the USENIX Annual Technical Conference (USENIX 2001), Boston, MA, June 2001.

[86] N. Minar, "A Survey of the NTP protocol", MIT Media Lab, Dcemeber 1999,
http://xenia.media.mit.edu/~nelson/research/ntp-survey99.

[87] T. Williams, C. Kelley. “gnuplot, An Interactive Plotting Program”,
http://www.gnuplot.info/docs/gnuplot.pdf

[88] The Ganglia Distributed Monitoring System: Design, Implementation, and Experience. Matthew L.
Massie, Brent N. Chun, and David E. Culler. Parallel Computing, Vol. 30, Issue 7, July 2004.

[89] C. Dumitrescu, I. Foster, "GangSim: A Simulator for Grid Scheduling Studies", Cluster Computing and
Grid (CCGrid), Cardiff, UK, May 2005.

[90] C. Dumitrescu, I. Foster, “GRUBER: A Grid Resource SLA Broker”, GriPhyN/iVDGL Technical Report,
2005.

[91] C. Dumitrescu, I. Raicu, M. Ripeanu. “Extending a distributed usage SLA resource broker with overlay
networks to support Large Dynamic Grid Environments”, work in progress.

[92] I. Raicu. “Decreasing End-to-End Job Execution Times by Increasing Resource Utilization using
Predictive Scheduling in the Grid”, Technical Report, Grid Computing Seminar, Department of Computer
Science, University of Chicago, March 2005.

[93] H. Subramanian. “Systems Performance Evaluation Methods for Distributed Systems Using Datastreams”,
Master Thesis, Information & Telecommunication Technology Center, University of Kansas, January 2005.

 [94] C. Pistol, A. Lungu. “Deploying C++ Grid Services: Options and Performance”, Technical Report,
Federated Distributed Systems, Department of Computer Science, Duke University, December 2004.

[95] A. Dan, C. Dumitrescu, and M. Ripeanu, “Connecting Client Objectives with Resource Capabilities: An
Essential Component for Grid Service Management Infrastructures,” 2nd International Conference on
Service Oriented Computing (ICSOC), November 2004, New York, NY.

[96] R. Wolski, “Dynamically Forecasting Network Performance Using the Network Weather Service”, Journal
of Cluster Computing, Volume 1, pp. 119-132, Jan. 1998.

[97] A. Danalis, C. Dovrolis. “ANEMOS, An Autonomous NEtwork MOnitoring System.“ 4th Passive and
Active Measurements (PAM) Workshop 2003.

Page 31 of 31

[98] U. Hofmann, I. Milouchewa1. “Distributed Measurement and Monitoring in IP Networks.“ SCI 2001/ISAS
2001 Orlando 7/2001.

[99] J. L. Hellerstein, M. M. Maccabee, W. Nathaniel Mills III, and J. J. Turek. “ETE, A Customizable
Approach to Measuring End-to-End Response Times Their Components in Distributed Systems.” 19th
IEEE International Conference on Distributed Computing Systems (ICDCS) 1999.

[100] C. R. Simpson Jr., G. F. Riley: “NETI@home: A Distributed Approach to Collecting End-to-End Network
Performance Measurements.” PAM 2004.

[101] J. Schopf and F. Berman, “Using Stochastic Information to Predict Application Behavior on Contended
Resources," Jrnl. of Foundations of CS, 2001.

[102] W. Smith, I. Foster, and V. Taylor. “Predicting Application Run Times Using Historical Information”.
IPPS/SPDP 1998.

[103] P. Dinda, “A Prediction-based Real-time Scheduling Advisor”, 16th International Parallel and Distributed
Processing Symposium (IPDPS 2002).

[104] D.A. Bacigalupo, S.A. Jarvis, L. He, D.P. Spooner, D.N. Dillenberger, G.R. Nudd, “An investigation into
the application of different performance prediction techniques to distributed enterprise applications”,
Journal of Supercomputing, 2004.

[105] S.A. Jarvis, D.P. Spooner, H.N. Lim Choi Keung, J. Cao, S. Saini, G.R. Nudd. “Performance Prediction
and its use in Parallel and Distributed Computing Systems”, IEEE/ACM International Workshop on
Performance Modelling, Evaluation and Optimization of Parallel and Distributed Systems, 2003.

[106] F. Vraalsen. "Performance Contracts: Predicting and Monitoring Grid Application Behavior." MS Thesis,
Graduate College of UIUC, 2001.

[107] N. N. Tran. “Automatic ARIMA Time Series Modeling and Forecasting for Adaptive Input/Output
Prefetching.” PhD thesis, UIUC, 2001.

[108] J. Oly and D. A. Reed, "Markov Model Prediction of I/O Request for Scientific Application," FAST 2002.

[109] D. Irwin, J. Chase, and L. Grit, “Balancing Risk and Reward in Market-Based Task Scheduling.” HPDC-
13, 2004.

[110] J. Kay, and P. Lauder, “A Fair Share Scheduler,” University of Sydney and AT&T Bell Labs, 1988.

[111] "Maui Scheduler, http://www.supercluster.org/maui/." Center for HPC Cluster Resource Management and
Scheduling, 2004.

[112] LSF Administrator’s Guide, Version 4.1, Platform Computing Corporation, February 2001.

[113] Condor Project, A Resource Manager for High Throughput Computing, Software Project, The University
of Wisconsin, www.cs.wisc.edu/condor.

[114] OpenPBS Project, A Batching Queuing System, Software Project, Altair Grid Technologies, LLC,
www.openpbs.org.

[115] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy, "A Distributed Resource
Management Architecture that Supports Advance Reservations and Co-Allocation," Proc. International
Workshop on Quality of Service, 1999.

[116] “Open source metascheduling for Virtual Organizations with the Community Scheduler Framework
(CSF)”, Technical White Paper, Platform, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

