
A Performance Evaluation of WS-MDS in the Globus Toolkit  
  

Ioan Raicu*   Catalin Dumitrescu*   Ian Foster+* 

 

Abstract 
The Globus Toolkit® (GT) is the “de facto standard” 
for grid computing.  Measuring the performance of 
various components of the GT in a wide area network 
(WAN) as well as a local area network (LAN) is 
essential in understanding the performance that is to 
be expected from the GT in a realistic deployment in a 
distributed and heterogeneous environment where 
there might be complex interactions between network 
connectivity and service performance.  The focus of 
this paper is the performance of Monitoring and 
Discovery System (MDS), an essential GT component 
that is very likely to be used in a mixed; LAN and WAN 
environment.  We specifically tested the scalability, 
performance, and fairness of the WS-MDS Index 
bundled with GT 3.9.5.  To drive our empirical 
evaluation of WS-MDS, we used DiPerF, a DIstributed 
PERformance testing Framework, whose design was 
aimed at simplifying and automating service 
performance evaluation.       

1 Introduction 
The Globus Toolkit [1, 2] is the “de facto standard” for 
grid computing as it has been called by numerous 
agencies and world recognized news sources such as 
the New York Times.  Measuring the performance of 
various components of the Globus Toolkit is important 
to ensure that the Grid will continue to grow and scale 
as the user base and infrastructure expands.  
Furthermore, the testing of the toolkit and grid services 
is difficult due to the distributed and heterogeneous 
environment Grids are usually found in.  Performing 
distributed measurements is not a trivial task, due to 
difficulties 1) accuracy – synchronizing the time across 
an entire system that might have large communication 
latencies, 2) flexibility – in heterogeneity normally 
found in WAN environments and the need to access 
large number of resources, 3) scalability – the 
coordination of large amounts of resources, and 4) 
performance – the need to process a large number of 
transactions per second.   

In attempting to address these four issues, in previous 
work [3, 4] we developed DiPerF, a DIstributed 

PERformance testing Framework, aimed at simplifying 
and automating service performance evaluation. 
DiPerF coordinates a distributed pool of machines that 
run clients of a target service, collects and aggregates 
performance metrics, and generates performance 
statistics.  DiPerF can be used to test the scalability and 
performance limits of a service: that is, find the 
maximum offered load supported by the service while 
still serving requests with an acceptable quality of 
service.  Actual service performance experienced by 
heterogeneous and geographically distributed clients 
with different levels of connectivity cannot be easily 
gauged based on controlled LAN-based tests.  
Therefore significant effort is sometimes required in 
deploying the testing platform itself. With a wide-area, 
heterogeneous deployment provided by the PlanetLab 
[5, 6] and Grid3 [7, 8] testbed, DiPerF can provide 
accurate estimation of the service performance as 
experienced by such clients. 

The focus of this paper is the performance of 
Monitoring and Discovery System (MDS), an essential 
Globus Toolkit component that is very likely to be 
used in a mixed, LAN and WAN environment.  We 
specifically tested the scalability, performance, and 
fairness of the WS-MDS Index bundled with GT 3.9.5. 

The contributions of this paper is a detailed empirical 
performance analysis of the WS-MDS component in 
the Globus Toolkit 3.9.5.  Through our tests performed 
on WS-MDS, we have been able to quantify the 
performance gain or loss between various different 
implementations, and have found the upper limit on 
both scalability and performance on these services.  
We have also been able to show the performance of 
these components in a WAN, a task that would have 
been very tedious and time consuming without a tool 
such as DiPerF.  By pushing the Globus Toolkit to the 
limit in both performance and scalability, we was able 
to give the users a rough overview of the performance 
they are to expect so they can do better resource 
planning.  The developers also gained feedback on the 
behavior of the WS-MDS under heavy stress and 
allowed them to concentrate on improving the parts 
that needed the most improvements.   

*Computer Science Department 
The University of Chicago 

{iraicu,cldumitr}@cs.uchicago.edu 
 

+Mathematics and Computer Science Division 
Argonne National Laboratory 

foster@cs.uchicago.edu 



2 Related Work 

2.1 MDS Performance Studies Related Work 
Zhang et al. [9] compared the performance of three 
resource selection and monitoring services: the Globus 
Monitoring and Discovery Service (MDS), the 
European Data Grid Relational Grid Monitoring 
Architecture (R-GMA) and Hawkeye. Their 
experiment uses two sets of machines (one running the 
service itself and one running clients) in a LAN 
environment. The setup is manual and each client node 
simulates 10 users accessing the service.  This is 
exactly the scenario where DiPerF would have proved 
its usefulness: it would have freed the authors from 
deploying clients, coordinating them, and collecting 
performance results, and would allow focusing on 
optimally configuring and deploying the services to 
test, and on interpreting performance results.  In a later 
study, Zhang et al. [10] investigated the performance 
of MDS using NetLogger and improved the testbed by 
having a cluster of 7 machines to handle the server side 
services and a cluster of 20 machines to handle the 
client side testbed; unfortunately, their study only 
addressed the performance of MDS in a LAN 
environment.  On the other hand, our study of MDS 
was on a larger scale, utilizing over 100 machines in a 
WAN environment.  We also tested the latest release of 
MDS (WS-MDS), based on the Globus Toolkit 3.9.5, 
which is the latest MDS implementation based on web 
services (WS).  Aloisio et al. [11] studied the 
capabilities and limitations of the Globus Toolkit’s 
Monitoring and Discovery Service; however, their 
experiments were limited to simple tests on a Grid 
Index Information Service (GIIS) only.  Other Globus 
Toolkit component (i.e. GRAM, GridFTP [12], etc) 
performance evaluations have been done by the Globus 
Alliance as well. [13]  

2.2 Background Information 

2.2.1 Testbeds 
Planetlab: PlanetLab [14] is a geographically 
distributed platform for deploying, evaluating, and 
accessing planetary-scale network services. PlanetLab 
is a shared community effort by a large international 
group of researchers, each of whom gets access to one 
or more isolated "slices" of PlanetLab's global 
resources via a concept called distributed 
virtualization. PlanetLab’s deployment is now at over 
500 nodes (Linux-based PCs or servers connected to 
the PlanetLab overlay network) distributed around the 
world.  Almost all nodes in PlanetLab are connected 
via 10 Mb/s network links (with 100Mb/s on several 
nodes), have processors speeds exceeding 1.0 GHz 

IA32 PIII class processor, and at least 512 MB RAM.  
Due to the large geographic distribution (the entire 
world) among PlanetLab nodes, network latencies and 
achieved bandwidth varies greatly from node to node.  
In order to capture this variation in network 
performance, Figure 1 displays the network 
performance between 268 nodes to 1 node at 
UChicago.  It is very interesting to note the heavy 
dependency between high bandwidth / low latencies 
and low bandwidth / high latencies.   

PlanetLab Network Performance from 268 nodes to UChicago

1

10

100

1000

0.001 0.01 0.1 1 10 100

Network Bandwidth (Mb/s)

N
et

w
or

k 
La

te
nc

y 
(m

s)

 Minimum Median Average Maximum 
Network Throughput 0.003 Mb/s 3.78 Mb/s 4.93 Mb/s 56.99 Mb/s 

Network Latency 1.57 ms 67.18 ms 107.04 ms 966.01 ms 
 

 

Figure 1: PlanetLab Network Performance from 268 nodes to 
a node at UChicago as measured by IPERF on April 13th, 

2005; each circle denotes a node with the corresponding x-
axis and y-axis values as its network characteristics, namely 

network latency and bandwidth, in log scale. 

UChicago CS Cluster: The University of Chicago CS 
cluster contains over 100 machines that are remotely 
accessible.  The majority of these machines are running 
Debian Linux 3.0, have AMD Athlon XP Processors at 
2.1GHz, have 512 MB of RAM, and are connected via 
a 100 Mb/s Fast Ethernet switched network.  The 
communication latency between any pair of machines 
in the CS cluster is on average less than 1 ms, with a 
few having latencies as high as several ms.  
Furthermore, all machines share a common file system 
via NFS (Network File System).   

DiPerF Cluster: Some tests were performed on a 
smaller scale LAN that had better network 
connectivity, specifically 1Gb/s connections via a 
switch.  The network latencies incurred were generally 
less than 0.1 ms.  This cluster did not run NFS as was 
the case in the UChicago CS cluster.  The connectivity 
of the DiPerF cluster to the outside world is 100Mb/s.  
The processor speeds ranged from 1.46GHz to 
2.16GHz with 1GB of RAM on each node.  One 
machine named “m5” had dual AMD Opteron 1.6GHz 
processors and was used to run the WS-MDS Index.     

2.2.2 WS-MDS 
Nine GT4 services implement Web services (WS) 
interfaces: 1) job management (GRAM) [15]; 2) 



reliable file transfer (RFT); 3) delegation; 4-6) 
Monitoring and Discovery System (MDS) [16]; 7) 
community authorization (CAS); 8) OGSA-DAI data 
access and integration; 9) GTCP Grid TeleControl 
Protocol for online control of instrumentation.  

The Monitoring and Discovery System (MDS), the 
focus of this paper, is composed of three components: 
MDS-Index, MDS-Trigger, and the MDS Aggregator. 
[16] 

The Index Service collects monitoring and discovery 
information from Grid resources, and publishes it in a 
single location; generally, it is expected that a virtual 
organization will deploy one or more index services 
which will collect data on all of the Grid resources 
available within that virtual organization. 

The Trigger Service collects data from resources on the 
grid and, if administrator defined rules match, can 
perform various actions. An example use is to send 
email when queue length on a compute resource goes 
over a threshold value. 

The WS MDS Aggregator is the software framework 
on which WS MDS services (currently, the WS MDS 
Index and WS MDS Trigger services) are built. The 
aggregator framework collects data from an aggregator 
source and sends that data to an aggregator sink for 
processing. Aggregator sources distributed with the 
Globus Toolkit include modules that query service 
data, acquire data through subscription/notification, 
and execute programs to generate data. Aggregator 
sinks include modules that implement the WS MDS 
Index service interface and the WS MDS Trigger 
service interface. 

2.2.3 DiPerF Framework 
DiPerF [3, 4] is a DIstributed PERformance testing 
Framework aimed at simplifying and automating 
service performance evaluation. DiPerF coordinates a 
pool of machines that test a single or distributed target 
service, collects and aggregates performance metrics 
from the client point of view, and generates 
performance statistics. The aggregate data collected 
provides information on service throughput, service 
response time, on service ‘fairness’ when serving 
multiple clients concurrently, and on the impact of 
network latency on service performance.  All steps 
involved in this process are automated, including 
dynamic deployment of a service and its clients, 
testing, data collection, and data analysis. 

DiPerF consists of two major components: the 
controller and the testers.  A user of the framework 
provides to the controller the address or addresses of 
the target service to be evaluated and the client code 

for the service. The controller starts and coordinates a 
performance evaluation experiment: it receives the 
client code, distributes it to testers, coordinates their 
activity, collects and finally aggregates their 
performance measurements. Each tester runs the client 
code on its machine, and gets periodic performance 
metrics from the client code made against the target 
service through a predefined interface.  Finally, the 
controller collects all the measurements from the 
testers and performs additional operations (e.g., 
reconciling time stamps from various testers) to 
compute aggregated performance views. 

The framework is supplied with a set of candidate 
nodes, and selects those available as testers. In future 
work, we will extend the framework to select a subset 
of available tester nodes to satisfy specific 
requirements in terms of link bandwidth, latency, 
compute power, available memory, and/or processor 
load. In its current version, DiPerF assumes that the 
target service is already deployed and running. 

Some metrics are collected directly by the testers (e.g., 
response time), while others are computed at the 
controller (e.g., throughput and service fairness). 
Additional metrics (e.g. network related metrics, time 
to complete a subtask, etc), measured by clients can be 
reported, through an additional interface, to the testers 
and eventually back to controller for statistical 
analysis.  

Communication among DiPerF components has been 
implemented with several flavors: ssh based, TCP, and 
UDP.  When a client fails, we rely on the underlying 
protocols (i.e. whatever the client uses such as TCP, 
UDP, HTTP, pre-WS GRAM, etc) to signal an error 
which is captured by the tester which is in turn sent to 
the controller to delete the client from the list of the 
performance metric reporters.  A client could fail 
because of various reasons: 1) predefined timeout 
which the tester enforces, 2) client fails to start (i.e. out 
of memory - OS client machine related), 3) and service 
denied or service not found (service machine related).  
Once the tester is disconnected from the controller, it 
stops the testing process to avoid loading the target 
service with requests which will not be aggregated in 
the final results.    

3 Empirical Performance Results 

3.1 WS-MDS Index Performance 
We evaluated the WS-MDS index bundled with the 
Globus Toolkit 3.9.5 on a machine at UChicago.  The 
metrics collected (client view) by DiPerF are:  



• Service response time or time to serve a query 
request, that is, the time from when a client issues a 
request to when the request is completed 

• Service throughput: aggregate number of queries 
per second from the client view 

• load: number of concurrent service requests 

We ran our experiments on four different 
configurations: 1) LAN tests with 4 machines 
connected via 1 Gb/s from the DiPerF cluster; 2) WAN 
tests with 128 machines from PlanetLab connected via 
10 Mb/s; 3) WAN tests with 288 machines from 
PlanetLab connected via 10 Mb/s; and 4) LAN+WAN 
tests with 3 machines in a LAN and 97 machines in a 
WAN.  We ran the WS-MDS index at UChicago on a 
dual AMD Opteron 1.6GHz with 1GB RAM, 1Gb/s 
network connection locally, and 100 Mb/s network 
connection externally; the DiPerF framework ran on a 
similarly configured machine, except that it had a 
single AMD K7 processor running at 2.16GHz.  For 
each set of tests, the caption below the figure will 
address the particular configuration of the DiPerF 
controller and the testbed configuration which yielded 
the respective results. 

In the figures to follow (Figure 2 – Figure 9), each 
series of points representing a particular metric is also 
approximated using a moving average over a 60 point 
interval; since most raw samples were taken once a 
second, the moving average represents the average 
over 1 minute intervals.  Each figure also has a 
summary of the results in a table in the upper right 
hand corner of each figure; the table contains the 
experiment length in time, number of queries 
processed by the WS-MDS Index, and the 
minimum/median/average/maximum of both collected 
metrics, namely throughput (queries per second), and 
response time (ms). 

Figure 2 represents the performance of the WS-MDS 
index with no security when 4 clients in a LAN 
environment targeted the WS-MDS index.  Note the 
large spikes in response times at the beginning of the 
experiment; each spike corresponds to a new client 
starting, and they generally occur only for the first 
query; the summary table gives us a rough idea of how 
long these peaks were, with the highest being over 2 
seconds.  The throughput in terms of transactions per 
second reached as high as 461 queries per second, 
although for the majority of the experiment it was 
mostly between 300 and 350 queries per second.  Each 
of the four clients could generate between 80 to 130 
queries per second, so the aggregate performance along 
with the fact that the processors on the WS-MDS Index 
were only utilized about 60%, it leads us to believe that 

the WS-MDS index could achieve even higher 
throughput.  The network throughput we observed 
seemed to be between 8Mb/s and 12Mb/s at the WS-
MDS Index, so we do not believe that the network 
capacity of 1Gb/s was an issue.  The same exact 
experiment produced very similar results even when 
the LAN network connectivity was downgraded to 
100Mb/s. 

WS-MDS Index LAN Tests:
4 machines, no security

0

10

20

30

40

50

60

70

80

90

100

0 30 60 90 120 150 180 210 240 270 300 330 360

Time (sec)

L
o

ad
 (#

 o
f C

o
n

cu
re

n
t M

ac
h

in
es

) /
 

R
es

p
o

n
se

 T
im

e 
(m

s)

0

50

100

150

200

250

300

350

400

450

500

T
h

ro
u

g
h

p
u

t 
(Q

u
er

ie
s 

/ s
ec

o
n

d
)

Throughput

Load

Response Time

Experiment 
Length (sec) 

Total # of 
Transactions 

Min / Median / Average / Max 
Transactions per sec 

Min / Median / Average / Max 
Response Time (ms) 

360 106K 51 / 329 / 294 / 461 7 / 11 / 23 / 2085 

 

 

Figure 2: WS-MDS Index LAN Tests with no security 
including 4 clients running on 4 physical nodes at UChicago 

in a LAN connected via 1 Gb/s links; tunable parameters: 
utilized 4 concurrent clients, with each client starting every 

15 seconds; left axis – load, response time; right axis – 
throughput 

Figure 3 represents a very similar test to Figure 2, 
except that we ran 100 clients over the same 4 
machines in a LAN.  Note the same behavior in 
response times at the beginning of the experiment, in 
which there are very large spikes in response times as 
new clients join.   

WS-MDS Index LAN Tests:
4 machines, 100 clients, no security

0

100

200

300

400

500

600

700

800

900

1000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time (sec)

L
o

ad
 (

# 
o

f 
C

o
n

cu
re

n
t 

M
ac

h
in

es
) 

/ 
R

es
p

o
n

se
 T

im
e 

(m
s)

 

0

50

100

150

200

250

300

350

400

450

500

T
h

ro
u

g
h

p
u

t 
(Q

u
er

ie
s 

/ s
ec

o
n

d
)

Throughput

Load

Response Time

Experiment 
Length (sec) 

Total # of 
Transactions 

Min / Median / Average / Max 
Transactions per sec 

Min / Median / Average / Max 
Response Time (ms) 

5129 1627K 59 / 371 / 317 / 490 9 / 215 / 360 / 29995 

 

 

 Figure 3: WS-MDS Index LAN Tests with no security 
including 100 clients running on 4 physical nodes at 

UChicago in a LAN connected via 1 Gb/s links; tunable 
parameters: utilized 100 concurrent clients, with each client 

starting every 15 seconds 



The new clients joining (at a rate of 3 per second) seem 
to significantly affect the ability of the WS-MDS Index 
to process queries; the throughput starts out strong, but 
it starts to drop almost reaching 0 in the beginning 
period in which many clients are joining in the 
experiment.  During the period of low throughput due 
to new clients joining, the CPU utilization was very 
low, with instances when it would reach an idle state 
for entire seconds at a time.  Otherwise, the only other 
difference between this experiment and the one in 
Figure 2 is that the throughput reached almost 500 
queries per second with an average of just below 400 
transactions per second.  The CPU utilization was 
closer to saturation with 80~90% utilization.  The 
network usage was around 12Mb/s and 15Mb/s. 

Figure 4 represents a larger experiment including 128 
nodes from PlanetLab in a WAN environment that has 
network bandwidth connectivity of 10Mb/s and 
network latencies of 60 ms on average, and as high as 
200 ms on some nodes.   

WS-MDS Index WAN Tests:
128 machines, no security

0

100

200

300

400

500

600

700

800

900

1000

0 250 500 750 1000 1250 1500 1750

Time (sec)

L
o

ad
 (

# 
o

f 
C

o
n

cu
re

n
t 

M
ac

h
in

es
) 

/ 
R

es
p

o
n

se
 T

im
e 

(m
s)

 

0

50

100

150

200

250

300

350

400

450

500

T
h

ro
u

g
h

p
u

t 
(Q

u
er

ie
s 

/ s
ec

o
n

d
)

Throughput

Load

Response Time

Experiment 
Length (sec) 

Total # of 
Transactions 

Min / Median / Average / Max 
Transactions per sec 

Min / Median / Average / Max 
Response Time (ms) 

1740 454K 5 / 297 / 261 / 487 76 / 248 / 280 / 8311 

 

 

Figure 4: WS-MDS Index WAN Tests with no security 
including 128 clients running on 128 physical nodes in 

PlanetLab in a WAN connected via 10 Mb/s links; tunable 
parameters: utilized 128 concurrent clients, with each client 

starting every 3 seconds 

The maximum throughput achieved was just under 500 
queries per second, with close to 400 queries per 
second on average during the peak portion of the 
experiment when all 128 clients were accessing the 
WS-MDS Index simultaneously.  It is interesting to 
note that the response time only increased from the low 
200 ms to the high 200 ms.  The response time during 
the peak portion of the experiment when there were 
128 machines actively querying the WS-MDS Index 
seems very similar (248 ms vs. 215 ms) to the 
performance of the same experiment performed in a 
LAN as presented in Figure 3; the 15% longer response 
times in the WAN tests could be attributed simply to 
the fact that there were 30% more clients actively 
participating.  We observed that the CPU utilization 

and network bandwidth usage were similar to the LAN 
tests from Figure 3. 

Figure 5 represents another experiment utilizing 
PlanetLab, but this time we used 288 machines all over 
the world instead of the 128 machines from the USA.     

WS-MDS Index WAN Tests:
288 machines, no security

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0 300 600 900 1200 1500 1800 2100 2400 2700

Time (sec)

L
o

ad
 (#

 o
f C

o
n

cu
re

n
t M

ac
h

in
es

) /
 

R
es

p
o

n
se

 T
im

e 
(m

s)
 

0

50

100

150

200

250

300

350

400

450

500

Th
ro

ug
hp

ut
 (

Q
ue

ri
es

 / 
se

co
nd

)

Throughput

Load

Response Time

Experiment 
Length (sec) 

Total # of 
Transactions 

Min / Median / Average / Max 
Transactions per sec 

Min / Median / Average / Max 
Response Time (ms) 

2772 610K 0 / 222 / 220 / 511 51 / 415 / 531 / 22514 

 

 

Figure 5: WS-MDS Index WAN Tests with no security 
including 288 clients running on 288 physical nodes in 

PlanetLab in a WAN connected via 10 Mb/s links; tunable 
parameters: utilized 288 concurrent clients, with each client 

starting every 2 seconds 

This test was very interesting due to the fact that the 
throughput achieved while all 288 machines were 
concurrently accessing the index was around 200 
queries per second on average (when compared to 
almost 400 queries per second that we achieved from 
only 128 machines).  As the number of machines 
started dropping, the throughput started to increase, 
and by about 200 clients, the throughput reached a 
level more similar to what we had seen in previous 
tests.  Although the WS-MDS Index managed to 
service all the 288 clients concurrently, its efficiency in 
terms of sustaining a high throughput clearly dropped. 

Figure 6 and Figure 7 represent the same experiment in 
which we used 97 machines from PlanetLab in a WAN 
setting, and 3 machines at UChicago in a LAN setting.  
Figure 2 and Figure 4 both showed that each LAN and 
WAN individually could achieve 300 to 400 queries 
per second independently.  Figure 5 did not show any 
improvement in the achieved throughput (it actually 
decreased), from which we concluded that the index 
could efficiently handle so many clients in a WAN 
environment.  Figure 6 and Figure 7 tries to capture the 
peak performance of the WS-MDS Index with a 
testbed that we know could generate more queries per 
second than we actually observed in this experiment.  
Ultimately, we obtained performance similar to that of 
Figure 3 and Figure 4 in which we had 100 clients in a 
LAN and 128 clients in a WAN respectively.  One of 
our conclusions after these series of tests is that the 



WS-MDS Index peak throughput on the specific 
hardware and OS we ran it on is 500 queries per 
second.  Our second conclusion is that a WAN 
environment can achieve comparable numbers to that 
of LAN environments given a large enough pool of 
machines.  On the other hand, at least in a WAN 
environment, it seems that the efficiency of the index 
decreases after a critical mass of clients is reached; this 
critical number of clients seems to be in the area of 100 
to 200 clients for our particular hardware that we ran 
the WS-MDS index on and the specific characteristics 
of the testbed utilized.    

WS-MDS Index LAN+WAN Tests
3+97 machines, no security

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Time (sec)

L
o

ad
 (#

 o
f C

o
n

cu
re

n
t M

ac
h

in
es

) 
/ R

es
p

o
n

se
 T

im
e 

(m
s)

0

50

100

150

200

250

300

350

400

450

500

T
h

ro
u

g
h

p
u

t (
Q

u
er

ie
s 

/ s
ec

o
n

d
)

Throughput

Load

Response Time

Experiment 
Length (sec) 

Total # of 
Transactions 

Min / Median / Average / Max 
Transactions per sec 

Min / Median / Average / Max 
Response Time (ms) 

1526 466KK 5 / 324 / 305 / 492 7 / 233 / 266 / 3961 

 

 

Figure 6: WS-MDS Index LAN+WAN Tests with no 
security including 100 clients running on 3 physical nodes at 

UChicago (LAN) and 97 physical nodes in PlanetLab 
(WAN); tunable parameters: utilized 100 concurrent clients, 

with each client starting every 2 seconds 

The next interesting thing we wanted to extract from 
this experiment was how much did the WAN clients 
contribute towards the overall achieved throughput and 
how much we could attribute to the LAN clients.  Just 
as a reminder, the 97 PlanetLab WAN clients were 
connected via 10Mb/s links with network latencies 
between 20 ms and 200 ms and an average of 60 ms.  
On the other hand, the 3 LAN clients were connected 
via 1Gb/s links and 0.1 ms network latencies.  Figure 7 
represents our findings about how much the LAN 
clients and the WAN clients each contributed towards 
the overall throughput. 

Figure 7 shows that for the peak portion of the 
experiment when all 100 clients were running in 
parallel, the LAN clients (3% of all clients) generated 
5% of the queries.  During this period, the 3 LAN 
clients generated on average 18 queries per second, 
while in Figure 2 we observed that 4 LAN clients 
could achieve a throughput well over 350 queries per 
second.  Note how the LAN throughput increases as 
the WAN clients stop participating, eventually 
reaching close to 500 queries per second.   

WS-MDS Index LAN+WAN Tests
3+97 machines, no security

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Time (sec)

L
o

ad
 (

# 
o

f 
C

o
n

cu
re

n
t 

M
ac

h
in

es
) 

/ L
an

 R
es

o
u

rc
e 

U
til

iz
at

io
n

 (
%

)

0

50

100

150

200

250

300

350

400

450

500

T
h

ro
u

g
h

p
u

t 
(Q

u
er

ie
s 

/ s
ec

o
n

d
)

LAN+WAN 
Throughput

Load

LAN Resource Utilization  %

LAN Throughput

WAN Throughput

 

Figure 7: WS-MDS Index LAN+WAN Tests with no 
security including 100 clients running on 3 physical nodes at 

UChicago (LAN) and 97 physical nodes in PlanetLab 
(WAN); tunable parameters: utilized 100 concurrent clients, 

with each client starting every 2 seconds 

This behavior is very peculiar, and it shows the effects 
of a particular design choice of the developers.  Based 
on the results of these experiments, we concluded that 
under heavy load, the WS-MDS Index acts as round 
robin queue.  This caused all clients (irrespective of the 
fact that some were very well connected while others 
were not) to get equal share of resources.  We also 
observed that the achievable throughput is lower when 
there are new clients joining.  The initial connection is 
expensive on the service side that it affects the index’s 
capacity to process queries; there seem to be some 
concurrency issues especially since the processors do 
not seem heavily loaded in the beginning part of the 
experiments when many clients were joining the 
experiment, although the achieved throughput was 
relatively low. 

Both Figure 8 and Figure 9 cover experiments against 
the WS-MDS Index with security enabled.       

WS-MDS Index LAN Tests:
4 machines, security

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

Time (sec)

L
o

ad
 (#

 o
f C

o
n

cu
re

n
t M

ac
h

in
es

) /
R

es
p

o
n

se
 T

im
e 

(m
s)

0

5

10

15

20

25

30

35

40

45

50

55

60

T
h

ro
u

g
h

p
u

t 
(Q

u
er

ie
s 

/ s
ec

o
n

d
)

Throughput

Load

Response Time

Experiment 
Length (sec) 

Total # of 
Transactions 

Min / Median / Average / Max 
Transactions per sec 

Min / Median / Average / Max 
Response Time (ms) 

281 11K 7 / 44 / 40 / 74 32 / 81 / 104 / 3351 

 

 

Figure 8: WS-MDS Index LAN Tests with security including 
4 clients running on 4 physical nodes at UChicago in a LAN 

connected via 1 Gb/s links; tunable parameters: utilized 4 
concurrent clients, with each client starting every 15 seconds 



Figure 8 was a test performed in a LAN environment 
which achieved a throughput of 45 queries per second 
generated by 4 clients at UChicago.  Note the response 
times of about 80 ms per query.  Unlike the results 
from the WAN vs. LAN tests without security in which 
we obtained similar throughput capacity of the index, 
the WAN tests with 128 clients proved to have 
significantly lower performance.  The WAN test 
resulted in a throughput of about 20 queries per 
second, and with response times on the order of 5 to 7 
seconds.  Overall, adding security to the WS-MDS 
Index queries incurs a significant performance penalty. 

WS-MDS Index WAN Tests:
128 machines, security

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Time (sec)

L
o

ad
 (

# 
o

f 
C

o
n

cu
re

n
t 

M
ac

h
in

es
) 

/ 
R

es
p

o
n

se
 T

im
e 

(m
s)

 

0

10

20

30

40

50

60

70

80

90

100

T
h

ro
u

g
h

p
u

t (
Q

u
er

ie
s 

/ s
ec

o
n

d
)

Throughput

Load

Response Time

Experiment 
Length (sec) 

Total # of 
Transactions 

Min / Median / Average / Max 
Transactions per sec 

Min / Median / Average / Max 
Response Time (ms) 

2203 43K 1 / 20 / 19 / 36 200 / 5210 / 4566 / 16622 

 

 

Figure 9: WS-MDS Index WAN Tests with security 
including 128 clients running on 128 physical nodes in 

PlanetLab in a WAN connected via 10 Mb/s links; tunable 
parameters: utilized 128 concurrent clients, with each client 

starting every 3 seconds 

3.2 WS-MDS Index “Fairness” 
In order to visualize the “fairness” of the resource 
sharing among the various MDS clients, we took a 
subset (only the peak in which all 288 clients were 
concurrently generating queries) of the experiment 
depicted in Figure 5 and plotted (Figure 10) the 
number of successful queries (the size of the bubble) 
against the nodes network connectivity.   

WS-MDS Index WAN Tests "Fairness":
288 machines, no security

1

10

100

1000

0.001 0.01 0.1 1 10 100

Network Bandwidth (Mb/s)

N
et

w
or

k 
La

te
nc

y 
(m

s)

 
Figure 10: “Fairness” results for the WS-MDS Index WAN 
Tests with no security including 288 clients running on 288 

physical nodes in PlanetLab  

We see how the majority of the nodes seem to be 
relatively the same size, especially for the well 
connected ones.  As the latency increases, we start 
noticing an increasing number of smaller bubbles, 
which shows that poorly connected nodes were getting 
a smaller share of resources.  Overall, despite the large 
variance in network connectivity, the results from 
Figure 10 show a relatively fair distribution of 
resources among the 288 clients distributed throughout 
the world. 

4 Conclusion 
In this paper, we have used DiPerF, a DIstributed 
PERformance testing Framework, to analyze the 
performance scalability of the WS-MDS Index bundled 
with the Globus Toolkit 3.9.5. We measured the 
performance in a wide area network (WAN) as well as 
a local area network (LAN) with the goal of 
understanding the performance that is to be expected 
from the Globus Toolkit in a realistic deployment in a 
distributed and heterogeneous environment.   

Through our tests performed on the WS-MDS, we 
have been able to quantify the performance gain or loss 
between various different versions or implementations, 
and have normally found the upper limit on both 
scalability and performance on these services.  We 
have also been able to show the performance of these 
components in a WAN, a task that would have been 
very tedious and time consuming without a tool such 
as DiPerF.  By pushing the Globus Toolkit to the limit 
in both performance and scalability, we were able to 
give the users a rough overview of the performance 
they are to expect so they can do better resource 
planning.  The developers also gained feedback on the 
behavior of the various components under heavy stress 
and allowed them to concentrate on improving the 
parts that needed the most improvements.   

4.1 WS-MDS Results Summary 
Table 1 shows the summary of the main results from 
the WS-MDS experiments performed in LAN and 
WAN with both security enabled and disabled.   

With no security, WAN throughput performance was 
similar to that of LAN throughput performance given a 
large enough set of clients.  On the other hand, with 
security enabled, the WAN tests showed less than half 
the throughput when compared to a similar test from a 
LAN.  The initial query for a connection could take a 
very long time (we observed times as high as 30 
seconds, and was almost always greater than a second); 
furthermore, many new connections adversely affects 
the efficiency of the index and its ability to process as 
many queries as it could have if it weren’t for the new 



connections.  During the start-up phase of the 
experiments when many clients would be making new 
connections, the throughput would be relatively poor, 
and the CPU utilization would be low as well.  Another 
observation is that under heavy load, the WS-MDS 
index acts as a round robin queue which effectively 
distributes the share of resources evenly across all 
clients irrespective of the connectivity of the client. 

Table 1: WS-MDS summary of experiments in both LAN 
and WAN with both security enabled and disabled; for the 
“load at service saturation, the * indicates that the service 

was not saturated with the number of concurrent clients that 
were used 

Throughput (trans/sec) Response Time (ms) Experiment 
Description Min Med Aver Max 

Load at Service 
Saturation Min Med Aver Max 

Figure 50: 
LAN 4 51 329 294 461 4* 7 11 23 2085 

Figure 51: 
LAN 4-100 

59 371 317 490 60 9 215 360 29995 

Figure 52: 
WAN 128 5 297 261 487 128* 76 248 280 8311 

Figure 53: 
WAN 288 0 222 220 511 225 51 415 531 22514 

Figure 54: 
WAN 97 + LAN 3 5 324 305 492 100* 7 233 266 3961 

Figure 56: 
LAN 4 + security 

7 44 40 74 4* 32 81 104 3351 

Figure 57: 
WAN 128 + security 1 20 19 36 22 200 5210 4566 16622 

  

4.2 Lessons Learned 
Some lessons we learned through the work presented 
in this thesis are: 
• building scalable software is not a trivial task 
• C-based components of the Globus Toolkit normally 

perform better than their Java counterparts 
• depending on the particular service tested, WAN 

performance is not always comparable to that found 
in a LAN; for example, WS-MDS with no security 
performed comparable between LAN and WAN 
tests, but WS-MDS with security enabled achieved 
less than half the throughput in a WAN when 
compared to the same test in a LAN 

• the testbed performance (in our case it was mostly 
PlanetLab) can influence the performance results, 
and hence careful care must be taken in comparing 
experiments done at different times when the state of 
PlanetLab could have significantly changed 

We conclude with the thought that we succefully tested 
the WS-MDS Index performance in a variety of 
configurations from a LAN to a WAN environment to 
having security enabled and disabled.  We have shown 
in previous work [4] DiPerF’s accuracy as being very 
good with only a few percent of performance deviation 
between the aggregate client view and the centralized 
service view.  Essentially, we have contributed towards 

a better understanding of a very important and vital 
Globus Toolkit component, namely WS-MDS. 

5 Bibliography 
[1]  The Globus Alliance, www.globus.org.  
[2] “GT4 Release Contents”.  http://www-

unix.globus.org/toolkit/docs/development/4.0-
drafts/GT4Facts/index.html#Contents 

[3] C. Dumitrescu, I. Raicu, M. Ripeanu, I. Foster.  
“DiPerF: an automated DIstributed PERformance 
testing Framework.” 5th International IEEE/ACM 
Workshop in Grid Computing, 2004, Pittsburg, PA. 

[4] I. Raicu.  “A Performance Study of the Globus Toolkit® 
and Grid Services via DiPerF, an automated DIstributed 
PERformance testing Framework,” MS Thesis, 
Department of Computer Science, University of 
Chicago, May 2005. 

[5] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, "A 
Blueprint for Introducing Disruptive Technology into 
the Internet", Proceedings of the First ACM Workshop 
on Hot Topics in Networking (HotNets), October 2002.   

[6] A. Bavier et al., "Operating System Support for 
Planetary-Scale Services", Proceedings of the First 
Symposium on Network Systems Design and 
Implementation (NSDI), March 2004.   

[7] I. Foster, et al., "The Grid2003 Production Grid: 
Principles and Practice", 13th IEEE Intl. Symposium on 
High Performance Distributed Computing, 2004.   

[8] Grid3.  http://www.ivdgl.org/grid3/ 
[9] X. Zhang, J. Freschl, and J. Schopf. “A Performance 

Study of Monitoring and Information Services for 
Distributed Systems.” Proceedings of HPDC, August 
2003. 

[10] X. Zhang and J. Schopf. “Performance Analysis of the 
Globus Toolkit Monitoring and Discovery Service, 
MDS2.” Proceedings of the International Workshop on 
Middleware Performance (MP 2004), April 2004. 

[11] G. Aloisio, M. Cafaro, I. Epicoco, and S. Fiore, 
“Analysis of the Globus Toolkit Grid Information 
Service”. Technical report GridLab-10-D.1-0001-
GIS_Analysis, GridLab project. 

[12] GridFTP: Universal Data Transfer for the Grid.  Globus 
Project, White Paper. 

[13] The Globus Alliance, “Overview and Status of Current 
GT Performance Studies”, http://www-
unix.globus.org/toolkit/docs/development/3.9.5/perf_ov
erview.html 

[14] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, 
M. Wawrzoniak, and M. Bowman, “PlanetLab: An 
Overlay Testbed for Broad-Coverage Services,” ACM 
Computer Communications Review, July 2003. 

[15] “GT 4.0 WS GRAM Approach”. http://www-
unix.globus.org/toolkit/docs/development/4.0-
drafts/execution/key/WS_GRAM_Approach.html 

[16] “GT 4.0 Component Fact Sheet: WS MDS”.  
http://www-
unix.globus.org/toolkit/docs/development/4.0-
drafts/info/WSMDSFacts.html 

 


