
Accelerating CRUD with Chrono Dilation for
Time-Series Storage Systems

Lan Nguyen
Illinois Institute of Technology

Chicago, IL, USA
lnguyen18@hawk.iit.edu

Ioan Raicu (Advisor)
Illinois Institute of Technology

Chicago, IL, USA
iraicu@iit.edu

Abstract
In recent years, we have seen an un-precedented growth of

data in our daily lives ranging fromhealth data from anApple
Watch, financial stock price data, volatile crypto-currency
data, to diagnostic data of nuclear/rocket simulations. The
increase in high-precision, high-sample-rate time-series data
is a challenge to existing database technologies. We have
developed a novel technique that utilizes sparse-file support
to achieve O(1) time complexity in create, read, update, and
delete (CRUD) operations while supporting time granularity
down to 1-second. We designed and implemented XStore1
to be lightweight and offer high performance without the
need to maintain an index of the time-series data. We have
conducted a detailed evaluation between XStore and existing
best-of-breed systems such asMongoDB using synthetic data
spanning 20 years, with second granularity, totaling over 5
billion data points. Through empirical experiments against
MongoDB, XStore achieves 2.5X better latency and delivers
up to 3X improvement in throughput.

CCSConcepts: • Information systems→Key-value stores;
Point lookups; Record and block layout.

Keywords: data storage, sparse file, time-series, key-value
store, file systems, simulation, CRUD

ACM Reference Format:
Lan Nguyen and Ioan Raicu (Advisor). 2023. Accelerating CRUD
with Chrono Dilation for Time-Series Storage Systems. In Proceed-
ings of The International Conference for High-Performance Comput-
ing, Networking, Storage, and Analysis (SC23). ACM, New York, NY,
USA, 3 pages.

1https://gitlab.com/lvn2007/XStore

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SC23, November 12–17, 2023, Denver, CO
© 2023 Association for Computing Machinery.

1 Introduction
In recent years, we have seen an un-precedented growth

of data in our daily lives ranging from health data originates
from smart watch to financial stock price data. Granted that
there exists a diverse set of database/storage system solutions
designed to support time-series data. It has come to our
attention that solutions such as MongoDB employs B-Tree
or similar for its storage engine. Incurring a logarithmic
cost of traversing a tree but also cost of searching linearly
through each document to locate a correct target within a
time bucket [1, 2].
With that said, we are motivated to identified and ad-

dressed the following but not limited to:

• Chrono structure – Accelerate performance through
the adoption of a heavily structure time-series data

• Tree structure – The elimination of tree structure usage
provides superior savings in system’s resources

• Scalability – Achieve constant time complexity irrespec-
tive of granularity/size

• Index – Sustain high performance across workloads
without index

2 XStore System Architecture
We have developed a technique that utilizes sparse-file

support to achieve constant time complexity in create, read,
update, and delete (CRUD) operations while making it ag-
nostic to time granularity. We designed and implemented
XStore to be lightweight and offer high performance with-
out the need to maintain an index of the time-series data.
XStore is a time-series specialized key-value store database,
a type of a NoSQL database program designed to address an
ever-growing amount of time-series data.
Storing and retrieving data is a 2-step process for any

particular row of data given a target timestamp. By com-
puting the file path based on the target timestamp, we can
determine the exact location of a target data file resize on a
physical storage medium. Once a target file has been located,
we proceed with computing an offset position of a given
timestamp. Upon completion, we have acquired a definitive
location of data that is associated with a specific timestamp.
This approach allows us to implement the time-series storage
system without the need for an explicit index to be created

https://gitlab.com/lvn2007/XStore


SC23, November 12–17, 2023, Denver, CO Nguyen and Raicu

or maintained. For visual representation of the data organi-
zation in XStore, see Figure 1. In summary XStore posses the
following attributes:
• Relies on sparse file – Enable the ability to only physi-

cally occupy space on disk with actual data
• Evaluated with 128 bytes per row (fully configurable)
• Support for unlimited column in a row
• Data is stored in binary file format without compression

for optimized space efficiency and performance

Figure 1. XStore Organization

3 Performance Evaluation
To validate our proposed methodology, we ran a hand-

ful of benchmarks with a focus in latency and throughput.
The benchmarks were developed and ran on four dedicated
Chameleon Cloud [3] and Mystic [5] baremetal instances as
client (in Python) and server for both XStore and MongoDB
respectively. All four instances have identical specifications,
that is:
• 2x Intel® Xeon® E5-2670 v3 Processor – @2.30GHz
• 8x 16GB (128 GB) of DDR4-2,133 ECC Registered RAM
• 1x Seagate ST9250610NS SATA 7,200 RPM HDD
• Broadcom NetXtreme II BCM57800 1/10 Gigabit Ethernet
• Linux Ubuntu 22.04 LTS • Filesystem: EXT4

Throughout all tests, we employed synthetic data (≈ 175GB)
ranges over 20 years from 2000–2020 with ≥ 663M rows and
8 columns. Each row is a key-value pair and ≈ 264 bytes long.
A key is represented as a timestamp (8 bytes) and values to-
taling ≈ 256 bytes. Each column is a hash value (32 bytes)
produced by concatenates the value of timestamp with col-
umn index i.e., [946684800-1, 946684800-2, ..., 946684800-8].

Figure 2. Latency workloads

In Figure 2, we observe an improvement of 1.5-2X com-
paring to MongoDB. Although, both XStore and MongoDB
employs write-delaying strategy. The cost of MongoDB’s
time bucket strategy was highlighted in both read/write
workload due to incurred traversal costs. In random query,
XStore consistently delivers a latency of 13.89 (ms); signifies
the low overhead cost pertaining to our methodology since
disk’s average read/write latency is ≈ 9.5 (ms) [4].

In Figure 3, XStore outperformsMongoDB by 0.5-4X across
all workloads and performance is saturated once batch/range
size is above 32K. Nevertheless, XStore’s capability can fur-
ther extend beyond 512K size as shown in range query work-
load. On the other hand, across all workloads, we notice a
pattern such that a gap in performance between XStore and
MongoDB as size increases.

Figure 3. Throughput workloads

4 Conclusion and Future Work
According to the empirical experiments presented, we

have seen notable improvements in performance across all
workloads. Upholding the claim of our technique in expe-
diting CRUD operations using sparse file coupled with time
dilation.

On the contrary, we deem it is critical to further investigate
the performance impact of sparse file. There are multiple
exciting avenues that we could explore as our next steps as
following: record level compression and generalized search.



Accelerating CRUD with Chrono Dilation for Time-Series Storage Systems SC23, November 12–17, 2023, Denver, CO

References
[1] Carlos Garcia Calatrava, Yolanda Becerra Fontal, FernandoMCucchietti,

and Carla Diví Cuesta. 2021. NagareDB: A resource-efficient document-
oriented time-series database. Data 6, 8 (2021), 91.

[2] MongoDB Inc. [n. d.]. Set Granularity for Time Series Data – Mon-
goDB Manual. https://www.mongodb.com/docs/rapid/core/timeseries/
timeseries-granularity/

[3] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth,
Dan Stanzione, Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody
Hammock, Joe Mambretti, Alexander Barnes, François Halbach, Alex

Rocha, and Joe Stubbs. 2020. Lessons Learned from the Chameleon
Testbed. In Proceedings of the 2020 USENIX Annual Technical Conference
(USENIX ATC ’20). USENIX Association.

[4] Seagate Technology LLC. [n. d.]. Constellation.2 Data Sheet. https:
//www.seagate.com/www-content/product-content/constellation-
fam/constellation/constellation-2/en-gb/docs/constellation2-fips-
data-sheet-ds1719-4-1207gb.pdf

[5] AI Orhean, A Ballmer, T Koehring, K Hale, XH Sun, O Trigalo, N Har-
davellas, S Kapoor, and I Raicu. 2019. Mystic: Programmable systems
research testbed to explore a stack-wide adaptive system fabric. In 8th
Greater Chicago Area Systems Research Workshop (GCASR).

https://www.mongodb.com/docs/rapid/core/timeseries/timeseries-granularity/
https://www.mongodb.com/docs/rapid/core/timeseries/timeseries-granularity/
https://www.seagate.com/www-content/product-content/constellation-fam/constellation/constellation-2/en-gb/docs/constellation2-fips-data-sheet-ds1719-4-1207gb.pdf
https://www.seagate.com/www-content/product-content/constellation-fam/constellation/constellation-2/en-gb/docs/constellation2-fips-data-sheet-ds1719-4-1207gb.pdf
https://www.seagate.com/www-content/product-content/constellation-fam/constellation/constellation-2/en-gb/docs/constellation2-fips-data-sheet-ds1719-4-1207gb.pdf
https://www.seagate.com/www-content/product-content/constellation-fam/constellation/constellation-2/en-gb/docs/constellation2-fips-data-sheet-ds1719-4-1207gb.pdf

	Abstract
	1 Introduction
	2 XStore System Architecture
	3 Performance Evaluation
	4 Conclusion and Future Work
	References

