
XStore: Xcelerated performance in
time-series key/value STORagE systems
Lan Nguyen

Illinois Institute of Technology
Department of Computer Science

lnguyen18@hawk.iit.edu

Ioan Raicu
Illinois Institute of Technology

Department of Computer Science
iraicu@iit.edu

ABSTRACT
In recent years, we have seen an unprecedented growth of data

in our daily lives ranging from health data from an Apple Watch, fi-
nancial stock price data, volatile crypto-currency data, to diagnostic
data of nuclear/rocket simulations. The increase in high-precision,
high-sample-rate time-series data is a challenge to existing database
technologies. We have developed a novel technique that utilizes
sparse-file support to achieve O(1) time complexity in create, read,
update, and delete (CRUD) operations while supporting arbitrarily
small time granularity. We designed and implemented XStore1 to
be lightweight and offer high performance without the need to
maintain an index of the time-series data. We conducted a detailed
evaluation between XStore and existing best-of-breed systems such
as MongoDB and InfluxDB using synthetic data spanning 20-years
of 1-second granularity data, totaling 662 million rows of data and
170GB of data.

Index terms:
database, NoSQL, data storage, file systems, data analysis, time-series, ex-
treme, performance, high-performance computing, MongoDB, InfluxDB,
XStore

1 INTRODUCTION
Time-series is a successive sequence of data points measured

over a time interval. In many popular database systems, time series
data are often indexed in time order. In other words, an index of a
time-series dataset is often times its timestamp field. Time series are
quite common in our daily lives, more thanwemight think. It ranges
from IoT (Moisture, heart rate, etc.) to scientific researches (Nuclear
simulations, diagnostic data of quantum computing, etc.). However,
it has come to our attention that current database systems are not
optimized enough to deliver the extreme performance that many
scientists sought. That is, submillisecond per insert/query/delete. To
address the performance gap mentioned previously, XStore was
born out of the desire for aNoSQL database that can deliver extreme
performance on an extreme scale. Furthermore, XStore is also made
with memory-efficient. In other words, XStore can deliver extreme
performance without occupying all available system memory. We
hope that with the performance of XStore it gives scientists the
ability to utilize XStore for their time-series analysis tasks and
arrive at an actionable conclusion sooner than ever before.

Correspondingly, XStore’s research enables the possibility to ex-
pand further into other areas where XStore is currently overarching,
including:

1https://gitlab.com/lvn2007/XStore

In data storage, XStore can realize a gain in further performance
boost as well as other related topics such as persistency, conve-
nience, ease of use, etc. Currently, there are several notable applica-
tions such as Network File-Systems (NFS), Parallel File-Systems (PFS),
and Distributed File-Systems (DFS). Consequently, a potential av-
enue for XStore to branch out is to develop a distributed file-system
such that it is latency-optimized coupled with ease-of-use through
single namespace across multiple nodes within its network.

Granted there has been a diverse set of solutions designed to
support database operations for time series. It seems like most if
not all solutions are designed and operated on a technique that was
invented in 1970, 𝐵-𝑇𝑟𝑒𝑒 and its permutation, 𝐵+-𝑇𝑟𝑒𝑒 . Specifically,
an avenue for XStore to branch out is the support of XStore’s data
organization techniques to operate on in-memory mode such as
MongoDB In-Memory storage engine.

Similar, if not the same as the previously mentioned domain,
Database. XStore can explore several opportunities to further the
performance of existing products in the data analysis community.
One of the most popular tool in this community is Pandas in Python.
We hope that with XStore’s data organization techniques, the it-
erative process of time-series data using Pandas can be massively
accelerated in multiple folds.

1.1 Motivations
In recent years, we have seen an un-precedented growth of data

in our daily lives ranging from health data from an Apple Watch,
financial stock price data to diagnostic data of nuclcear/rocket
simulations. The attached [Table 1] and [Figure 1] in this paper
are an example of how typical time series data are stored and
presented in table format. It has come to our attention that most
if not all existing database solutions are not designed to address
the performance gap in data retrieval in an ever-growing number
of time series data. In other words, existing systems rely on an
idea of distributed systems as a mean to scale its efficiency and
performance. Furthermore, existing systems are prone to focus
its capability in storing a large amount of data but not iterative
time-series analytics. Therefore, with results of XStore, we strive
to further the efficiency of analyzing such a massive amount of
data while maintaining scalability while maintaining a minimal
footprint in system usages as well as guarantee a constant time
complexity in CRUD operations. In summary, our goal is to explore
and strive to address the following but not limited to:

(1) Chrono structure – Current’s cutting-edge solutions lack
the performance acceleration through the adoption of struc-
tured time-series data

https://gitlab.com/lvn2007/XStore
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(2) Reliance on Tree – Maintenance of B-Tree/B+-Tree struc-
tures require a sizable amount of memory to maintain an
O(logn) time complexity

(3) Scalability – Lack of support for fine-grain time-series data
while scalability is a concern due to its reliance on Tree
structures in which impacts both performance and system’s
resources

(4) Index – Time-series databases accelerate its performance
through indexes. This incurs a heavy tax on CPU and mem-
ory, yet remains far from reaching a O(1) time complexity
performance

Table 1: TS Table Sample – BTCUSDT Historical Tick Data

Timestamp Price($) Qty (BTC) Trade ID First tradeID Last tradeID Buyer marker . . .

2017-09-01 00:01:00.493 4689.89 0.053417 61458 69180 69180 True . . .
2017-09-01 00:01:00.530 4689.89 0.064732 61459 69181 69182 True . . .
2017-09-01 00:01:00.573 4689.90 0.147065 61460 69183 69183 True . . .
2017-09-01 00:01:18.120 4689.90 0.042047 61461 69184 69184 True . . .
2017-09-01 00:01:18.210 4689.91 0.115178 61462 69185 69185 True . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Figure 1: TS Chart Sample – Historical Trade Size in Bitcoin

1.2 Contributions
In this paper, we hope to contribute the following:

• Anovel technique that utilizes sparse an order magnitude of
time to achieves O(1) time complexity in CRUD operations

• Design and implementation of XStore, addresses the perfor-
mance gap in time-series data retrieval without the needs to
maintain an index or hash-map while maintaining minimal
footprint in system usages

• Enabling the ability to perform iterative time-series anal-
ysis at an extreme performance with wide range of use
cases ranging from financial backtesting to nuclear/rocket
simulations

• Empirical Evaluation results of XStore against the current
bleeding edge technologies such as MongoDB and InfluxDB

2 RELATEDWORK
InfluxDB is an open-source cross-platform designed and specifi-

cally built to handle time series databases. Given that InfluxDB is
SQL-enabled, it allows user to effectively query and analyze real-
time time series data. While InfluxDB is superior to MongoDB in
real-time analytics, its feature-rich functionalities resulted in infe-
rior performance compared to MongoDB. It is imperative to note
that InfluxDB is more appropriate for write-heavy workload such as
ingesting data from IoT sensors. Moreover, InfluxDB can be scaled
horizontally using the existing technique presented in Hadoop [1].

MongoDB is a cross-platform document-oriented database pro-
gram available from source. Classified as a NoSQL database pro-
gram, MongoDB uses JSON-like documents with optional schemas.
It is worth notingMongoDB supports two type of engines:WiredTiger
and In-Memory [2]. The aforementioned storage engines allowMon-
goDB consumers to have the flexibility to store and consume data
that are either performant in space or speed. Additionally, Mon-
goDB can be horizontally scaled and load balancing through the
use of sharding, a built-in feature of MongoDB. It enables the abil-
ity to increase performance while remaining fault-tolerant in a
distributed environment.

Figure 2: Sample Traverse Path of a B-Tree in MongoDB [3, 4]

Table 2: Bucket Time Span Characteristics[4]

Granularity Bucket Time Span Max Elements
Second 1 Hour 3,600
Minutes 24 Hours 86,400
Hours 30 Days 2,592,000

MongoDB andmost of other time-series databases employ B-Tree
or similar for its storage engine. That is, CRUD operations require
a tree traversal in which does not only incur logarithmic cost of
traversing the tree but also the cost of linearly search through each
document to locate a correct target within each document within
a bucket. According to [Figure 2] is an example of how a CRUD
operations can be carried out inMongoDB; a sample traversing path
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of a B-Tree can be followed as highlighted in green. Given a target
timestamp, MongoDB would need to traverse its B-Tree to locate
the appropriate bucket that contains the target timestamp. Once a
bucket is located, it would then need to traverse linearly through
all of the documents within a bucket to locate the appropriate
document that matches the given target timestamp. For example,
a time-series collections in MongoDB with a seconds granularity
would translate to: A cost of traversing the tree plus the cost of
traversing each documents within a bucket. In an event that the
data is dense coupled with seconds granularity, it would typically
require ≈ 17 − 18 documents scan within a bucket. In other words,
each bucket (seconds granularity) has a maximum amount of 3,600
data points [Table 2], that translates to a scan of ≈ 3,600

18 = 200
data points per document to iterate through to conclude a single
CRUD operation. Last but not least, as documents are organized in
time-ordered bucket, it is important to highlight that the cost of
obtaining a particular target with time that resides in the rear of a
bucket is much higher than the cost of a target with time that resides
in the front of a bucket. Additionally, per MongoDB’s manual [4],
an incorrect configuration of granularity such as for a data with an
arrival interval of minutes, setting it with a granularity of hours
would result in a single bucket contains an entire month’s worth
of data. On the other hand, setting it to seconds would result in a
creation of multiple buckets per polling interval. Therefore, such
cases of improper configurations lead to a massive performance
deterioration.

3 XSTORE SYSTEM ARCHITECTURE
XStore is a time-series specialized key-value store database, a

type of a distributed NoSQL database program designed to address
an ever-growing amount of time-series data. XStore is equipped
with a technique that takes advantage of an order of magnitude of
time to deliver extreme performance that other NoSQL databases
lack thereof. The task of performing simulations on time-series
data with the goal of deriving an optimized set of values for a target
subject is extremely critical. It enables researcher the ability to study
and select an optimal parameters for a specific target subject prior
to deploy those parameters on a real system. A notorious example
of this is the use of backtesting/simulation in finance industry. In
summary, the goal of backtesting is to use computing power to
perform a series of simulations (or backtesting sessions) to find
a set of parameters that historically produce the most profitable
trading strategy. In other words, the entire simulation is to try
all possible combinations. In each simulation, it digests the input
parameter set and runs it against historical time-series data. Finally,
at the end of each simulation session, an outcome is exported from
each simulation.

According to the example provided above, simulation is a multi-
task processes that involve multiple query if data is stored in a
database. With that being said, the goal of XStore is designed with
the following goal but not limited to:

• Performance – Guarantees O(1) complexity for CRUD oper-
ations

• System’s Resource Efficiency – Does not maintain index or
hash-map, reduces processor and memory costs

• Scalable – Maintains a constant O(1) performance regard-
less of granularity or size of time-series data

• Persistent – Employs "Store nothing in memory, always on
disk" policy

3.1 Data Storage
XStores stores data it ingested as a binary file. Due to the nature

of binary files, it allows XStore to effectively perform operations
on a file to achieve superior performance in insert/get/delete. Im-
portantly, XStore maintains a local key value store for efficiency
purposes such that files are opened/closed only once as well as
maintaining metadata for XStore’s databases.

3.1.1 File and Data Organization
The current implementation of XStore has successfully eliminated
the need to invoke open/close on each query. Therefore, XStore’s bi-
nary file operations only require a single open/close at boot/shutdown
respectively.

Figure 3: XStore File Organization

An example of how XStore ingests and organizes time series data
can be understood using [Figure 3]. As mentioned above, XStore
takes advantage of an order of magnitude of time to ensure the
scalability and performance of XStore. That is, for each year of
data, XStore would perform tasks to organize and store data as a
binary file. Note that we will utilize [Figure 3] and [Figure 4] as a
visualization aid for our explanation of how XStore stores its data:

(1) Each database created will be stored in a separate directory
(2) Within each directory, it contains all the data file with

a naming scheme of year.XSTORE i.e., 2018.XSTORE
along with database’s metadata as dbName.XSTORE i.e.,
AAPL.CFG

Referring to [Figure 4], is an example of how data is being stored
by XStore as binary file format. Given that XStore takes advantage
of an order of magnitude of time. Therefore, XStore does not need
to maintain any form of hash-map. Consequently, this technique
enables XStore to guarantee the following:

• No collision due to the nature of time
i.e., There can’t be month 13
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Figure 4: XStore Data Organization

• Logically, each column/item is separated by a comma and
associated with a specific timestamp

• Physically, XStore only stores actual inserted data on disk.
This is possible due to the support of sparse file in many
popular file system in Linux. It does not store timestamp,
represented as Epoch time since timestamp can be com-
puted at run-time based on file name and granularity fetched
from a database’s config file. This has resulted in a drastic
reduction in space wasted for storing timestamp

• XStore does not need to maintain an index or map of Offset
in memory or disk since it is computed at run-time and the
computational cost of offset is minimal

3.1.2 Storage Footprint & Sparse File
To elucidate the gap in performance outlined in existing database
solutions, XStore aims to deliver an extreme performance at the
cost of space-efficient. It is important to note that XStore is space
in-efficient in a sense that its storage footprint is on par with data
stored in a flat file such as csv file. It is imperative to note that time-
series data tends to have an irregular sequence of time. Therefore,
XStore leverages sparse file, a feature that is widely supported by
many modern Linux file systems. With sparse file, data stored by
XStore appears to be large logically. Physically, only actual data
inserted will be stored on disk since holes in a sparse file do not
occupy physical disk space [Figure 5] [5]. To further iterate, we
argue that given the prices of high performance SSD, prices have
declined in an increasingly rapid manner over a short period of time
[6]. Furthermore, prices for a data center grade RAM remain much
more expensive, while instituting far smaller capacity compared
to a high performance SSD. In an event that memory is abundant,
XStore’s performance can be accelerate beyond the limitation of
HDD or SSD by utilizing RAM disk. In addition to these arguments,
XStore is naturally persistent, given its utilization of persistent
storage. Equally important is the fact that XStore leverages persis-
tent storage, which also translates to natural adoption/transition
when matched with a machine that is equipped Intel® Optane DC
Persistent Memory [7] seems to be a Therefore, XStore’s choice of
leveraging SSD to empower its performance is a better trade-off.

Figure 5: Sparse File [5]

XStore has shown promising results in CRUD operations and
it is important to note that XStore performs all these operations
on persistent storage. Therefore, it is imperative for us to address
XStore’s storage consumption. According to our analysis, XStore
occupies approximately the same amount of storage space and is
on par as if data is being stored in a flat file format such as csv file.
To summarize, by default, XStore posses the following:

• Relies on sparse file – Enable the ability to only physically
occupy space on disk for actual data

• 128 bytes per row – Adjustable
• Unlimited column in a row
• Data is stored in binary file format without compression

Despite the benefits of sparse file, there are various trade-offs.
One of the major concern of utilizing a sparse file is disk frag-
mentation. While disk fragmentation pose little to no threat to
storage medium such as SSD, it remains a major cause of an in-
crease/reduction in latency and throughput of a spinning hard drive
[8]. Consequently, on most if not all HDD, we observe a significant
difference in performance between sequential vs. random workload
in a sense that sequential workload yields a much higher perfor-
mance than random workload due to latency cost of moving a disk
spindle [9]. With that being said, for XStore case, it is imperative
that XStore maintains its data in disk blocks in a contiguous or-
der. In [Figure 6] depicts a scenario of which fragmentation can
occurred in a sparse file can pose a major threat to the performance
of XStore. Although, it is worth noting that the fragmentation issue
does not only happen specifically due to the use of a sparse file but
also occur in regular file due to concurrency operations on a file.
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Figure 6: Sparse File – Fragmentation

Notice that for sparse file named 2021.XSTORE (Purple) in [Fig-
ure 6] resides in a storage medium. The blocks allocated for 2021.XS-
TORE is block 1 to block 4 in a contiguous fashion. This indicates
that there is no fragmentation for for 2021 with and data is be-
ing stored in a chronological-order. Given the contiguous order
of blocks allocated, a read operation of an entire data of 2021.XS-
TORE can be carried out sequentially by having the disk spindle
to start from block 1 and keeps reading until the end of block 4.
Therefore, in this scenario of file 2021.XSTORE does not suffer from
performance degradation caused by disk fragmentation.

On the other hand, for file 2022.XSTORE (Orange) in [Figure 6].
Notice that 1

4 of the contents of file 2022.XSTORE is being stored in
block 0. While the remaining of the block is allocated contiguously
from block 5 to block 7. Unlike file 2021.XSTORE, in order to read
all contents of file 2022.XSTORE, a disk spindle will need to first
start at block 0, read an entire block. Then, proceed with moving
the disk spindle again at block 5 then starts reading sequentially
from block 5 to block 7.

An obvious strategy of mitigating disk fragmentation is to pre-
allocatate a certain amount of file blocks. However, this strategy
defeats the purpose of leveraging a sparse file; that is, allocate on
as needed-basis such that actual space taken will only be occupied
by actual data.

Alternatively, given that time-series data tends to arrive in a
chronological order, it helps alleviate some of the concern of data

not being stored non-contiguously. However, the fragmentation
issue persists in an event of file 2021.XSTORE and 2022.XSTORE
are being written concurrently. Even though the OS can delay sync
to disk and try to arrange the inserting data in a way such that
data stored on disk as a contiguous blocks. The allocated blocks
of both files are likely to be interleaved; such as an insert-heavy
workload that limit the OS from caching a large chunks of data to
delay sync to disk. Therefore, another strategy is to perform disk
de-fragmentation. As mentioned in [10], a defragmenter such as
janusd can be employed to address the impact of disk fragmentation
to performance while maintaining a low overhead.

3.1.3 Offset Algorithm
In this section, we would like to introduce and discuss an offset
computation algorithm that XStore uses to achieve a consistent O(1)
performance. Our algorithm is rather simple but highly efficient due
to XStore leverages an order of magnitude of time to its advantage.
It can be understood in the following steps:

(1) Get yearValue from file name
yearVal = 2018 because of 2018.XSTORE

(2) Assumptions:
• monthVal, dayVal, hourVal, ... starts at 0
• We have: baseDT = 01/01/2018 00:00:00

(3) Assume that the target is: 01/02/2018 00:00:02
timeDiff = targetDT - baseDT
timeDiff = 01/02/2018 00:00:02 - 01/01/2018 00:00:00
timeDiff = 86,402 (seconds)

(4) Formula:
𝑂𝑓 𝑓 𝑠𝑒𝑡 = 𝑡𝑖𝑚𝑒𝐷𝑖 𝑓 𝑓 × 𝑟𝑜𝑤𝐿𝑒𝑛𝑔𝑡ℎ
Note: rowLength resides in config file of a database

This algorithm enables XStore to deliver performance at an ex-
treme scale regardless of granularity of any time series dataset.
According to the above algorithm, it only involves simple arith-
metic computations to derive an Offset. In other words, with the
use of Offset, XStore has the ability to open a binary file and seek
directly to a specific location in a binary file; bypassing the needs
of maintaining an index or hash-map of the location of stored data.
Therefore, CRUD operations is guaranteed to be within the con-
stant time complexity of O(1) at any given time, regardless of the
granularity or size of a time series dataset.

3.2 Architecture Layers
3.2.1 Outer Layer – Networking
XStore’s networking stack is fully powered by ZeroMQ, a high-
performance messaging library coupled with Protobuf as its se-
rialization protocol. Given that the ZeroMQ library contains an
exhausted list of supported programming languages, it has enabled
one to consume XStore independent of a specific programming
language.

Per [Figure 7], an arbitrary Client can connect to XStore using
ZeroMQ. Once connected, a client can interact with XStore by
sending a specific request. Given that XStore’s server is designed
according to ZeroMQ’s Router/Dealer pattern. This results in the
ability of XStore to process any arbitrary amount of clients in a
multi-threaded environment. For each client’s request, it will be
received an intermediary instance called ZMQRouter. A ZMQDealer
acts as back-end of XStore such that it attempts to resolve each

5



Lan Nguyen and Ioan Raicu

Figure 7: XStore Networking Layer

request in ZMQ Queue Proxy as fast as possible. Within XStore’s
server, each worker thread has the responsibility to process and
dequeue requests from ZeroMQ’s message queue as fast as possible
using XStore Engine. Upon each processed request, it will return
the response back to the coordinator server to be routed back to
the client. Note that each thread in this context has their own
XStore Engine; which conveniently makes XStore Engine thread-
safe without the needs of thread coordination. It is important to
note that the communications between client/server involve the
process of serializing/deserializing the Protobuf object.

3.2.2 Inner Layer – XStore Engine
In [Figure 8], the inner layer of XStore architecture can be un-
derstood as a high-level overview of an entire XStore eco-system.
Given that each thread will govern its own XStore Engine, there-
fore, each instance of XStore will first begin with initialization.
The initialization step involves administrative operations such as
keeping track of statistics, database summary, log, etc. To achieve
single open/close, XStore Engine will manage its private key value
store that contains all available file descriptors of files that XStore
manages. Previously mentioned, each request message is serialized
and deserialized using Protobuf. Upon deserialization of the mes-
sage from a Protobuf object, XStore will proceed with computing
the offset prior to performing actual actions in XStore’s database
including but not limited to: unaryInsert, batchInsert, unaryQuery,
rangeQuery, etc.. In our current implementation, we have designed
such that the aforementioned operations treat files and directories
as if it is stored locally. At this point, it is important to note that
in the near future, we might design a distributed file-systems that
focuses into managing files in a low-lantecy demanding applica-
tions. As soon as data has been performed on disk, XStore Engine

Figure 8: XStore Engine

will then return the result of the operation back to the appropriate
ZMQ request target.

3.2.3 API
XStore is currently a new project at the DataSys laboratory, circu-
lated internally prior to publication to the public. Therefore, it is
still immature and would require a tremendous effort to become a
production-ready non-relational database. Prior to the below op-
erations, a database must have been initialized through API called
createDB. This API call will perform the following:

(1) Create a directory for a database
(2) Configure config file with the following information:

• Database name
• Granularity
• Row length

With that being said, as of now, XStore is currently supporting
the following APIs:

Unary Insert
(1) Locate DB directory & Parse inserting epoch time
(2) Fetch DB’s metadata from either internal metadata key-

value store in-memory or disk
(3) Enforce time granularity such that configured granularity

(Fetched in previous step) should be equal to the inserting
granularity

(4) Check if year.XSTORE exists. If not, proceed. Otherwise,
skip to step (5)

(5) Create sparse file with n number of elements with each
element has length of rowLength in accordance to database’s
metadata fetched in step (2)

(6) Compute Offset using Offset Algorithm
6
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(7) Seek to exact location of target time based on Offset
(8) Write data into specific time location to binary file

i.e., 01/01/2018 00:00:01 yields offset = 1 × 𝑟𝑜𝑤𝐿𝑒𝑛𝑔𝑡ℎ in
2018.XSTORE that has a granularity configured as SEC-
ONDS

(9) Return insert status

Unary Query – In this API call, it is the same as Unary Insert
from step (1) to (2) then proceeds as following:

(1) Enforce time granularity such that configured granularity
should be equal to the target query granularity

(2) Compute Offset using Offset Algorithm
(3) Seek to exact location of target time based on Offset
(4) Read n bytes (As specified by rowLength in config file) worth

of data
(5) Return target query data

Batch Insert – In this API call, it is the same as Unary Insert
from step (1) to (2) then proceeds as following:

(1) Sort collections of inserting data
(2) Enforce time granularity such that configured granularity

should be equal to the inserting granularity
(3) Organize inserting data by Year
(4) Loop through organized data. On each loop, computes offset

then invoke seek and finally write individual inserting data
(5) Return insert status

Batch Query – In this API call, it is the same as Unary Insert
from step (1) to (2) then proceeds as following:

(1) Sort collections of target timestamp
(2) Enforce time granularity such that configured granularity

should be equal to the target query granularity
(3) Organize query target by year for all target timestamps in

a collection
(4) Loop through organized year. On each loop, computes offset

then invoke seek and finally read individual query target
data

(5) Return a collections of query target data with its respective
timestamp

Range Insert – In this API call, it is the same as Batch Insert
with an exception that in range insert, it assumes that the data to
be inserted is sorted. Therefore, it does not need a sort routine.

Range Query – In this API call, it is the same as Batch Query
with an exception that in range query, it performs a sequential
read starting from a start timestamp to a given end timestamp in a
chronological order. Note that upon this API is called, it performs a
query validation to ensure a range is valid i.e., start timestamp ≤
end timestamp. Therefore, it does not need a sort routine.

It is imperative to note that we are currently implementing an
exhausted list of features that can potentially further the perfor-
mance and usability of XStore. Several notable additions could be:
aggregation (sum, max, min, avg) on range of data, search capability
beyond just timestamp, etc.

4 PERFORMANCE EVALUATION
4.1 Testbed

For our experiments, we have configured a cluster of 4x baremetal
compute_haswell_ib instances on Chameleon Cloud [11] with the
following hardware configurations for each machine:

• Dual socket Intel® Xeon® E5-2670 v3 Processor – Haswell
@2.30GHz (12 cores, 24 threads)

• 8x 16GB (128 GB) of DDR4 2,133 ECC Registered RAM
• 1x Seagate ST9250610NS SATA 7200 RPM HDD

Capacity: 250GB with 64MB cache
• Broadcom NetXtreme II BCM57800 1/10 Gigabit Ethernet
• Ubuntu 20.04.5 LTS
• Filesystem: EXT4
• g++ 8.4.0
• C++17
• cppzmq v4.8.1
• Protobuf v3.18.1
• MongoDB v6.0.3

4.2 Microbenchmark – Network Latency

Figure 9: Microbenchmark – Network Latency

Prior to a discussion about how XStore performs against other
high-performance database solution. It is imperative that we un-
derstand that these results are preliminary results of XStore. Addi-
tionally, we would like to perform a network latency benchmark to
further familiarize ourselves with the performance characteristics
of ZeroMQ. In the previous XStore development iteration, we ini-
tially opted to enable networking for XStore using gRPC. However,
we have decided to permanently switch to ZeroMQ due to its per-
formance, building blocks as well as its support for various type of
networking topologies. In this section, we have performed network
latency benchmark on the following:

• gRPC
• Linux TCP Socket transport bytes
• Linux TCP Socket transport Protobuf object
• ZeroMQ (REQ/REP pattern)
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According to [Figure 9], we noticed that ZeroMQ is far superior
compared to gRPC. Consequently, the overhead of using Protobuf
on top of the Linux TCP socket is minimal compared to the benefits
of packing messages using Protobuf. Additionally, we determined
that it is imperative that XStore sacrifice some performance in order
to gain additional features and ease of use by employing ZeroMQ
over Linux TCP Socket.

4.3 Evaluation Configurations

Figure 10: Benchmark Configurations

The evaluation of both XStore and MongoDB is conducted on a
pair of two separate baremetal instances connected via a gigabit
ethernet switch [Figure 10]. That is:

XStore:
• Physical host #1: XStore Client in Python
• Physical host #2: XStore Server

MongoDB:
• Physical host #3: MongoDB Client in Python
• Physical host #4: MongoDB Server

In MongoDB, we have configured it with the most optimal con-
figurations to operate on time-series data as well as equipped data
with a secondary-index [12]. Additionally, caches are cleared in the
beginning of each benchmark session of both XStore and MongoDB.

4.4 Baseline Measurement

Figure 11: Read Latency using O_DIRECT

Throughout the subsequent experiments, to demonstrate the
performance of XStore remains resilient even under an unfavor-
able hardware configurations such as HDD while operating on a
dataset that is ≥ 170 (𝐺𝐵) in size; far exceed the test machine’s
memory capacity. We have acquired a baseline measurement of disk
latency such that it averages around 5.80 (𝑚𝑠) per read operation
[Figure 11]. This baseline measurement was acquired using a Linux
tool called ioping with O_DIRECT flag to bypass Linux kernel’s
caches.

4.5 Benchmark – Unary Insert
In this first benchmark, we compare the insertion latency perfor-

mance including networking cost between XStore and MongoDB in
unary insert. That is, for each of the 1, 000 iterations, client invokes

Table 3: Summary Statistics – Unary Insert (ms)

Min Max Mean Std Dev Avg.
Throughput

XStore (SEQ) 0.55 0.87 0.74 0.04 1,352.65
XStore (RAND) 0.59 0.93 0.76 0.05 1,307.44

XStore
(Ram Disk) 0.55 0.96 0.75 0.05 1,336.26

MongoDB
(SEQ) 0.78 1.95 1.34 0.24 744.98

MongoDB
(RAND) 0.77 1.10 0.93 0.06 1,070.60

MongoDB
(2𝑛𝑑 Index) 0.86 19.06 1.45 0.86 688.02

MongoDB
(Ram Disk) 0.85 31.27 1.41 1.03 711.08

Figure 12: Benchmark – Unary Insert
Note to MongoDB: Replaced 25 observations with latency

≥ 2 (𝑚𝑠) with its respective average

a single insert operation from client to server with a unique insert-
ing data of ≥ 264 bytes. Upon each successful insert, a server will
return insert status to client as a notification indicates the result
of that particular insert operation. It is important to note that the
randomized timestamp is ranging from the start timestamp to the
end timestamp across the entire 170 (𝐺𝐵) dataset.

According to [Figure 12] along with [Table 3], we observed that
compare to MongoDB, XStore took relatively less amount of time to
establish a connection between client and server. Although in Mon-
goDB’s tests, we observed a multiple occasions of spike in latency
that are well above 20 (ms). However, this is likely caused by the
initial handshake between client and server and/or the initialization
required from MongoDB. In the entire test iterations, XStore excels
in performance for both sequential and random insert workloads,
notably, a consistent average latency of 0.74 (𝑚𝑠) and 0.76 (𝑚𝑠) per
round-trip across the wire; translates to an average throughput of
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Figure 13: I/O Activity (Unary Insert)

Figure 14: Processors Activity (Unary Insert)

1, 352.65 and 1, 307.44 rows inserted per second respectively. While
in MongoDB, yields an average of 744.98 and 1, 070.60 rows inserted
per second for sequential and random workload respectively. It is
interesting to observe that both XStore and MongoDB are able to
deliver such low latency on average. This is stemming from the fact
that both solutions employ delaying write to its advantage. That
is, instead of sync each individual insert to disk, it delays the sync
activity and sync to disk at a later time as an attempt to improve
performance/efficiency. Given that XStore defers the sync to disk
responsibility to the OS and MongoDB delays its write. Especially
in MongoDB, it delivers a better performance in random insert
compare to sequential insert. Consequently, it explains how both
XStore and MongoDB is able to deliver such low latency that is
on-par with latency performance of ram disk.

Per [Figure 12], MongoDB’s latency for sequential workload
is worsened upon each subsequent inserts. We observed that in

Figure 15: Memory Activity (Unary Insert)

sequential workload, MongoDB performance deterioration ends on
every 380𝑡ℎ insert. It hinted that MongoDB organizes each time
series data into a bucket and on the ≈ 380𝑡ℎ insert, MongoDB
flushes data resides in a bucket to disk as batches and the actual
writing to disk is carried out asynchronously a batch has been filled-
up to a certain level as a way to improve efficiency. Nevertheless,
per [Figure 12], we observe that with the use of bucket, as a bucket is
filled with data, it deteriorates performance as the bucket becomes
more dense with data. It coincides well with our discussion of
[Figure 2] as the cost of traversing bucket rises in conjunction
with rise in documents per bucket. Therefore, MongoDB suffers
from time taken to locate a specific location of where to insert a
time series data within a bucket. Moreover, MongoDB (2𝑛𝑑 Index)’s
performance meets our expectation. That is, it will take longer
for MongoDB (2𝑛𝑑 Index) to conclude a single insert since there
is an overhead of maintaining a secondary index. In the current
implementation of XStore, it involves the use of both fopen/fclose
which ensure the data remains in buffer to be written to disk. Upon
further investigation, per [Figure 13] and [Figure 14], we notice that
for sequential workload, MongoDB made almost twice as much
write requests to the hard drive as well as consuming twice as much
processor power than XStore. Coupling with [Figure 15] shows that
XStore uses little to no memory compare to MongoDB. It enables us
to conclude that XStore is superior in performance than MongoDB
in sequential workload while efficiently utilize system’s processor
and memory.

While for random workload, per [Figure 13], XStore made a
significant more write requests compare to MongoDB. It is be-
cause XStore organizes time series data by year i.e., 2017.XSTORE,
2018.XSTORE, etc. Thus, a random insert would cause a new sparse
file to be create if a given year is not yet existed. An involvement
of multiple large sparse file would also cause the OS to trigger ad-
ditional calls as the costs of maintaining a complex sparse file such
as filesystem’s metadata updates to maintain logical and physical
offset of a sparse file, block allocation, etc. In constrast to XStore’s
I/O pattern, MongoDB made little to no write calls to the disk drive.
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At the same time, [Figure 15] shows that XStore’s memory remains
flat for the entire duration of the experiment while MongoDB mem-
ory does not only increase but also remain flat after the experiment
has been concluded. Given the data provided in [Figure 13] and
[Figure 15], we realized that MongoDB does not sync the inserting
data to disk but keep them in memory. This means that MongoDB
is less persistent than XStore. Thus, in an event a power outage,
the inserting data will be irrecoverable. According to [Table 3],
even though both XStore and MongoDB delay sync to disk and
the average latency is 0.76 (𝑚𝑠) and 0.93 (𝑚𝑠) in XStore (RAND)
and MongoDB (RAND) respectively. In other words, we can safely
assume that both solution temporarily stores its data in memory
and sync with disk at a later time. It is evidently clear that our
technique is more efficient in figuring out a specific location to
insert without the needs to use bucket. Therefore, we conclude that
XStore is more effective than MongoDB in random workload while
utilize minimal system’s resources.

4.6 Benchmark – Unary Query

Table 4: Summary Statistics – Unary Query (ms)

Min Max Mean Std Dev Avg.
Throughput

XStore (SEQ) 0.50 20.70 0.76 0.63 1,309.49
XStore (RAND) 3.29 77.52 13.89 5.57 71.97

XStore
(Ram Disk) 0.50 1.53 0.67 0.06 1,494.94

MongoDB (SEQ) 1.04 74.71 1.55 2.32 644.86
MongoDB (RAND) 2.69 163.24 37.91 11.78 26.38

MongoDB
(2𝑛𝑑 Index) 2.12 364.71 75.27 34.36 13.29

MongoDB
(Ram Disk) 1.04 7.90 2.93 1.39 340.97

Figure 16: Benchmark – Unary Query

Similarly, in this second test, we performed a query latency per-
formance test including round-trip networking cost between XStore
and MongoDB. In other words, how long does it take for each so-
lution to complete a single query given a random and sequential
timestamp. Throughout this benchmark, we have performed a total
of 1, 000 unary query requests from client to server with each query
request contains a timestamp that is≈ 8 bytes long indicates client’s
target timestamp. Upon each unary query request, a server will
return to client a pair of timestamp (≈ 8 bytes) along with data asso-
ciated with that particular timestamp (≥ 256) bytes. It is imperative
to note that for the random workload, the randomized timestamp
is ranging from the start timestamp to the end timestamp across
the entire 170 (𝐺𝐵) dataset. While in sequential workload, a target
timestamp is incremented by one second upon each subsequent
query.

Figure 17: I/O Activity (Unary Query)

Figure 18: Processors Activity (Unary Query)
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Figure 19: Memory Activity (Unary Query)

According to [Figure 16], we observed that in sequential work-
load, XStore outperformsMongoDB by ≥ 2x; translates to a through-
put of 1, 309.49 rows per second. On average, XStore took 0.76 (𝑚𝑠)
to complete a single query, while MongoDB took 1.55 (𝑚𝑠). Inter-
estingly, MongoDB took almost 3x longer to establish a connection
between client and server; indicates by 20.70 (𝑚𝑠) and 74.71 (𝑚𝑠)
in [Table 4]. On the other hand, given such low average latency
of the two solutions, we realize that any subsequent queries after
the initial query must have been hot-queries and its file descriptor
is already resided in OS caches. Most importantly, per [Figure 16],
we notice that MongoDB (SEQ) latency increases in a very sea-
sonal fashion. This enables us to empirically validate our analysis
MongoDB’s bucket usage (200 documents per bucket). That is, it is
much faster to locate a single item that is in the front of a bucket
than in the back. Upon further investigations of the behavior of the
underlying two solutions under sequential workload. According to
[Figure 17], while it is not obvious due to noise from other activity
within the OS, we observed that both solutions made a relatively
same amount of I/O calls. At the same time, it is interesting to see
that prior to the benchmark, [Figure 19] depicts a clear conclusion
that MongoDB consumes more memory than XStore at idle. Ad-
ditionally, in [Figure 18], the data also points out that MongoDB
consumes more than twice the CPU resource of the host machine.

Prior to generating a secondary index for MongoDB, we expect
the query result will improve since there is a secondary index that
could further the performance of MongoDB [13]. Surprisingly, the
benchmark results for MongoDB (2𝑛𝑑 Index) (Random workload),
indicates a performance deterioration when compare with regular
MongoDB without secondary index. Upon further analysis of [Fig-
ure 16] for random workload, despite the fact that there occurred
several spikes in latency for MongoDB, its performance is rela-
tively stable across 1, 000 random unary queries. Additionally, we
observed a significant latency increase in establishing connection
between client and server for both XStore and MongoDB compar-
ing to sequential workload. This is stemming from the fact that in
this test, client side of both solution is querying against a server

that maintains a dataset of ≥ 662 million rows. Despite the fact that
with the current implementation of XStore requiring fopen/fclose
for each individual query, we affirm that the performance can ac-
celerate a bit further. On the contrary, the performance of XStore
shown in [Figure 16] and [Table 4] indicates an average look-up
latency of 13.89 (𝑚𝑠) which is a magnitude worst than its sequen-
tial workload. This is due to the fact that in random workload, the
movement cost of a disk spindle is extremely expensive; the seek
cost (read) for our testbed is 8.5 (𝑚𝑠) according to the advertised
seek time published by Seagate, the hard drive manufacturer of
our testbed [14]. At the same time, it is worth noting that for ran-
dom workload, XStore outperforms MongoDB by over 2.5x in an
average latency to conclude a single random query. Per [Figure 17]
shows that XStore does not only made twice as less of I/O calls as
MongoDB but also was able to deliver the queried data in a much
shorter period of time. This results in a drastic difference in I/O
calls of the entire duration of the benchmark between XStore and
MongoDB. Similarly, per [Figure 14], we observe a similar pattern in
which MongoDB occupies the testbed’s CPU for a longer duration.
Despite MongoDB occupies system’s resources for a longer period
of time, in [Figure 19] depicts a much clearer picture. According
to data in the figure, we observed that the memory usage of Mon-
goDB keeps increasing linearly upon each subsequent query in the
entirety of 1, 000 unary queries. While, XStore remains unchanged
in memory usage. This figure coupled with previous figures enable
us to conclude that even though MongoDB attempts to harness the
memory at its disposal, due to its internal structure of storing data,
it is inferior to XStore in both system’s resources as well as raw
performance. With that being said, we have concluded that with
our novel technique, it has enabled us to achieve a performance on
a hard disk while delivering a major performance improvement in
latency when comparing to other state-of-the-art system such as
GorillaDB on flash [15].

4.7 Benchmark – Range Insert

Figure 20: Benchmark – Range Insert (Average Throughput)
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In this test, we have performed and averaged 10 runs of range
insert with various range sizes ranging from 2, 000 to 512, 000 per
batch. That is, instead of performing 2, 000 individual unary inserts
to complete a 2, 000 inserts. In range insert, we would pack all 2, 000
inserting items together in a single ZMQ message then dispatch
it from client to server. It is important to note that range insert
assumes the inserting data is already organized in a chronological
order. Within each of the aforementioned range size in [Figure 20],
it contains 𝑁 amount of elements to be inserted where each in-
dividual element has a timestamp (≈ 8 bytes) along with ≥ 256
bytes worth of data associated with it. Doing this would allow us to
re-coup losses in performance due to transporting messages over
the wire. Additionally, given XStore’s implementation of range
insert, it writes sequentially to disk for any given range of times-
tamps along with its data. Therefore, allowing XStore to harness
the performance of sequential write.

According to [Figure 20], we observe that XStore delivers a much
higher throughput than MongoDB and MongoDB (2𝑛𝑑 Index) by
≈ 48% and≈ 52% respectively. Similarly, as observed in unary insert,
we noticed a commonality that MongoDB (2𝑛𝑑 Index) delivers a
lower throughput than regular MongoDB. It is interesting to notice
that the performance of MongoDB starts to deteriorated once range
size is above 32, 000. On the other hand, XStore’s performance is
able to grow in-conjunction with growth in range size. Nevertheless,
XStore’s throughput seems to plateaued once range size reaches
128, 000. The performance difference is largely contributed by the
fact that our technique enables XStore to only require a minimal
effort to locate and insert elements into a storage medium while
harnessing the efficiency of both sequential write workload as well
as transporting packet across the network.

4.8 Benchmark – Range Query

Figure 21: Benchmark – Range Query (Average Throughput)

In contrast to unary query, the range query test demonstrate a
performance of querying a range from any given start timestamp
to end timestamp. In other words, instead of performing 2, 000 in-
dividual query, range query would allow us to query a range of

data. This is achieve by dispatching a single request from client to
server where client provides a start and end timestamp of a range
along with its desired database name to be queried from. Similar to
range insert, the range query call enables the ability to re-coup per-
formance losses in transporting messages back and forth multiple
times while harnessing the benefit of sequential read. The test was
performed on various range sizes ranging from 2, 000 to 512, 000.
That is, 2, 000 indicates range from a given start timestamp to an
end timestamp that sums up to 2, 000 i.e., range of timestamp from
1577844623 to 1577846623 contains 2, 000 individual data points
where each data point (≥ 256 bytes) is associated with a unique
timestamp.

Per [Figure 21], we noticed the gap in throughput between XStore
and MongoDB ranges from ≈ 2x to ≈ 3x. Comparably to previous
tests, we observe that MongoDB (2𝑛𝑑 Index) delivers a performance
that’s on-par with regular MongoDB. Simultaneously, we observe
a similar in throughput performance as observed in range insert.
That is, the performance of MongoDB and MongoDB (2𝑛𝑑 Index)
deteriorate once range size is above 32, 000. The fact that MongoDB
(2𝑛𝑑 Index) delivers the same amount of performance for read work-
load is quite interesting given our initial expectation is that with
a secondary index, we should at least observe some improvement.
Unlike in previous test, insert throughput plateaus once range sizes
is above 128, 000, XStore is able to demonstrate its ability to consis-
tently deliver a higher query throughput as range size increases.
Considering XStore’s query throughput, it has exemplified the capa-
bility of conducting time-series analyses at a rapid rate where the
effectiveness of fetching a large range of data then apply analyses
on client’s end is a concern.

4.9 Benchmark – Batch Insert

Figure 22: Benchmark – Batch Insert (Average Throughput)

Comparably to range insert, batch insert is very much alike.
Nevertheless, a major difference is that in this test, we introduce
random workload as a batch. In other words, for every batch size
mentioned in [Figure 22], we would pack a single ZMQ message
that consists of 𝑁 elements corresponding to 𝑁 batch size where
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each element in a batch is not organized in a chronological order.
Therefore, it is a batch of random write workload.

According to [Figure 22], we observe a significant impact in
performance between sequential vs. random workload. Notably,
as batch size increases, MongoDB average throughput decreases.
Concurrently, the performance gap between XStore and MongoDB
also increase in conjunction with increase in batch size. In addition,
we also observe that MongoDB (2𝑛𝑑 Index) does not only fail to
improve performance but also worsen it. Comparing this test with
range insert, the performance gap between XStore and MongoDB is
immensely apparent. Across all batch sizes, XStore’s delivers ≥ 2x
more throughput on average than its counterpart. Such a large gap
in performance between the aforementioned solutions is stemming
from the fact that XStore attempts to sort its inserting data prior
to perform write operations to disk. The sorting routine prior to
performing write is crucial since it allows XStore to attempt to
organize and convert randomwrite workload into a sequential write
workload. Per [Figure 20] and [Figure 22], we observe a similarity
in terms of performance. However, sort routine in batch insert
incurs a cost, which we deem is a good trade-off in regards to the
performance gain from it.

4.10 Benchmark – Batch Query

Figure 23: Benchmark – Batch Query (Average Throughput)

In this last test, it is almost identical to range query but with
an exception that the workload in this test is a batch of random
query. According to [Figure 23], among MongoDB and MongoDB
(2𝑛𝑑 𝐼𝑛𝑑𝑒𝑥 ), it is interesting to notice that without a secondary index,
MongoDB is inoperable for this workload. While equipped with
a secondary index, we observed a performance degradation once
batch size grows beyond 8,000 rows. More importantly, MongoDB
(2𝑛𝑑 𝐼𝑛𝑑𝑒𝑥 ) becomes inoperable once the batch size is above 32,000
rows. This is due to the limitation in BSON file size of MongoDB
(Codename: BSONObjectTooLarge).

Upon further investigation of MongoDB performance’s behavior
on ram disk, [Figure 23] depicts amajor improvement of both XStore
and MongoDB in average throughput. To be specific, operating on

ram disk portray a performance gap such that MongoDB is only
able to deliver at most ≈ 1, 500 rows per second; while, XStore
delivers a throughput of at most 90k rows per second. To further
re-iterate, XStore poses a slight growth in performance from 2k
batch size and upper is due to the benefit from minimization of
network communications.

Initially, XStore consistently outperforms MongoDB by more
than 2x. Nonetheless, the performance gaps broaden as the batch
size grows. In particular, XStore overall throughput persistently
increase along side with batch size. This indicates that given an
undesirable workload such as batch of random queries coupled with
operating on a spinning hard drive, XStore is able to maintain its
performance as data scales. While it’s unfortunate that we did not
perform batch query with size larger than 512𝐾 . The throughput
performance gap between XStore and its previous batch size grows
larger i.e., 4𝐾 vs. 2𝐾 , 8𝐾 vs. 4𝐾 , etc. It indicates that a reasonable
expectation of it would be at least on-par with the performance of
512𝐾 batch size or even better.

4.11 Benchmark – Storage Footprint

Figure 24: Benchmark – Storage Footprint

The current implementation of XStore does not involve any
compression. Therefore, it is expected for XStore to have a larger
storage footprint than MongoDB. As part of XStore’s next devel-
opment iteration, XStore currently interprets and stores data as
string i.e., An integer with value 123, 456 costs 6 bytes instead of 4
bytes. According to [Figure 24], size of MongoDB uncompressed
data is in fact larger than XStore. This is due to the fact that Mon-
goDB heavily relies on BSON format which introduces overheads
such as padding that cause the extra space taken. One of the major
contributor to XStore storage size is its inefficiency in storing its
underlying data.

4.12 Benchmark – Summary
On the contrary, there’s few studies presented a performance that

is comparable with XStore. An example of this could derive from a
work presented by a team of researchers at Facebook.Gorilla paper,
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a fast, scalable, in-memory time series database. In Gorilla paper,
their database system was able to achieve a query performance of
[15]:

• Percentile 50th: 2-3 (ms)
• Percentile 90th: 10 (ms)
• Percentile 99th: 105 (ms)

Given the above results presented above, it is interesting that the
XStore’s technique of leveraging time structure enables superior
performance that does not only outperforms GorillaDB’s on flash
performance but almost in-memory. Although GorillaDB employs
memory to enable such high-performance database, its performance
remains inferior than XStore due to the needs of performing scan
over all in memory data [15]. Additionally, XStore does not rely on
system memory, enabling XStore to be naturally persistent than
Gorilla while matching the performance expected as if data is being
stored and fetched from memory.

In summary, we have concluded that XStore has persistently out-
performed MongoDB predominantly due to the use chronological
structure of time series. That is, MongoDB employs B-Tree which
took O(logn). While, XStore guarantees a constant time for a CRUD
operation since it only requires a simple arithmetic operations to
locate an exact location of where to conduct its operation on any
given timestamp.

5 CONCLUSIONS
According to our analysis based on several benchmarking ses-

sions discussed in this paper, we can confidently conclude that in the
near future, XStore would be able to deliver a superior performance
over the aforementioned database storage systems. Nevertheless,
there are a lot of work ahead of us and we are excited of the promis-
ing solution that XStore brings. Last but not least, it is imperative
for us to benchmark and provide an answer to "Which file system
is best suited for XStore?" and "How does XStore perform compare
to other SQL time-series databases under a distributed, multi-client
workload?".

6 FUTUREWORKS
XStore is a young and an on-going project that is around 1 year

old as of 02/11/2023. Therefore, there is a monumental amount
of work awaits ahead of us. We are optimistic and humble that it
will be an exciting journey ahead. Therefore, we have prepared an
exhaustive list of future work that could be implemented to XStore
in the future:

• Perform benchmark on a real use-case such as conducting a
backtest and parameter optimization in financial engineer-
ing

• Expand benchmark to more comprehensive benchmark
such as benchmark on multiple physical machines, data
stored on DFS, include additional TSDB, etc.

• Research low-latency distributed filesystem
Perhaps, another exciting research topic?

• Branch-out XStore’s techniques to Pandas – Python
• Integrate XSearch/SCANNS [16] into XStore

Enabling the ability to search data within time-series data
• More functionality:

– Enable XStore to support in-memory mode
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