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ABSTRACT

Rapid advances in digital sensors, networks, storage, and computation coupled

with decreasing costs is leading to the creation of huge collections of data. Increasing

data volumes, particularly in science and engineering, has resulted in the widespread

adoption of parallel and distributed file systems for storing and accessing data effi-

ciently. However, as file system sizes and the amount of data “owned” by users grows,

it is increasingly difficult to discover and locate data amongst the petabytes of data.

While much research effort has focused on the methods to efficiently store and process

data, there has been relatively little focus on methods to efficiently explore, index,

and search data using the same high-performance storage and compute systems.

In order to better understand the composition and size of today’s storage

systems in high-performance computing systems, we obtained file system dumps from

several production file systems and we used this information to characterize usage

across several dimensions. These results highlight the magnitude of the challenge

when indexing large quantities of data.

We initially explored the prospect of using existing search engine building

blocks (e.g. CLucene) to integrate search in a high-performance distributed file system

(e.g. FusionFS), by proposing and building the FusionDex system, a distributed

indexing and query model for unstructured data. We found indexing performance

to be orders of magnitude slower than theoretical speeds we could achieve in raw

storage input and output, and sought to investigate a new clean-slate design for high-

performance indexing and search.

We proposed the SCANNS indexing framework to address the problem of effi-

ciently indexing data in high-end systems, characterized by many-core architectures,

with multiple NUMA nodes and multiple PCIe NVMe storage devices. We designed

SCANNS as a single-node framework that can be used as a building block for im-

ix



plementing high-performance indexed search engines, where the software architecture

of the framework is scalable by design. The indexing pipeline is exposed and allows

easy modification and tuning, enabling SCANNS to saturate storage, memory and

compute resources on different hardware. The proposed indexing framework uses a

novel tokenizer and inverted index design to achieve high performance improvement

both in terms of indexing and in terms of search latency.

Given the large amounts and the variety of data found in scientific large-scale

file systems, it stands to reason to try to bridge the gap between various data rep-

resentations and to build and provide a more uniform and compact search space.

ScienceSearch is a search infrastructure for scientific data that uses machine learn-

ing to automate the creation of metadata tags from different data sources, such as

published papers, proposals, images and file system structure. ScienceSearch is a

production system that is deployed on a container service platform at NERSC and

provides search over data obtained from NCEM. We conducted a performance eval-

uation of the ScienceSearch infrastructure focusing on scalability trends in order to

better understand the implications of performing search over an index built from the

generated metadata tags.

Drawing from the insights gained from SCANNS and the performance evalua-

tion of ScienceSearch, we plan to explore the problems of building persistent indexes

and further investigate the performance implications of advanced query models over

the persistent index. We will explore methods for distributing indexing and search to

scale to some of the largest HPC storage systems available. Specifically, we will in-

vestigate integration of the distributed SCANNS system into parallel and distributed

storage systems to enable automatic metadata and data indexing and search.
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CHAPTER 1

INTRODUCTION

Rapid advances in digital sensors, networks, storage, and computation coupled

with decreasing costs is leading to the creation of huge collections of data—commonly

referred to as “Big Data.” These data have the potential to enable new insights and

discoveries that can change the way business, science, and government deliver services

to their consumers and can impact society as a whole. Increasing data volumes, par-

ticularly in science and engineering, has led to the widespread deployment of parallel

and distributed file systems for storing and accessing data efficiently. However, as

file system sizes and the amount of data “owned” by users grow, it is increasingly

difficult to discover and locate information amongst the petabytes of accessible data,

with exabytes of storage capacity on the horizon. While much research effort has

focused on the methods to efficiently store and process data, there has been relatively

little focus on methods to efficiently explore, index, and search data using the same

high-performance storage and compute systems.

One of the most significant burdens faced by the scientific community is the

lack of efficient tools that enable targeted search and exploration of large file systems.

While it is now trivial to quickly find websites from the approximately 2 billion

websites in existence, it is remarkably difficult for researchers to search across their

scientific data stored on large-scale storage systems. Google has pioneered much of

the information retrieval and search engine research; however, its area of focus is

large-scale distributed search over web data rather than searching over scientific data

stored in high-performance file systems—two areas with significantly different data,

storage, processing, and query models.

In the enterprise search domain there are several tools that are commonly used

to enable search, such as Apache Lucene [1], Apache Solr [2], and ElasticSearch [3].
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According to surveys from both academia [4] and industry [5], Apache Lucene is the

most popular tool used to implement search engines. These surveys also show that

the top three search tools are either Apache Lucene or services that build on Apache

Lucene (Apache Solr and ElasticSearch), thus, Apache Lucene represents 69–73% of

the enterprise search market. Apache Lucene was originally implemented in 1999

and was designed for commodity hardware that consisted primarily of single-core and

single CPU systems, with a single hard disk, and for full-text indexing and search,

and they are not designed to make use of the advanced features of HPC systems

and modern hardware. Instead, they achieve scalability via distribution and index

sharding and often rely on tight coupling with distributed file system, such as the

Hadoop File System [6], which are not supported on HPC systems. Apache projects

are often implemented in Java, which also has not garnered wide adoption in HPC

systems. Other existing works from HPC have aimed to tackle this problem, however

they typically have focused on indexing and search of metadata [7, 8] as opposed to

the scientific data itself. Oftentimes, solutions are being built that are applications

specific, leading to inefficiencies as the community continuously ”reinvents the wheel.”

In the absence of better options, scientists often fall back to the state of the art

methods for finding data in single, centralized systems. That is, they use traditional

Linux tools: ls and grep, or find. However, these tools are not designed for large

file systems. For example, listing all files (a common operation when searching for

a specific file name) in a production parallel file system commonly found on large

computing clusters could take many weeks to complete (given that it contains billions

of files and metadata performance is typically limited to thousands of operations per

second). Further, this does not consider the time to read the data itself, a task that

could compound the search time by several orders of magnitude. Searching through

a 10 petabyte file system (the size of the persistent storage system on the Theta

supercomputer at Argonne) by reading through the entire data could take over 3
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years at a modest 100MB/sec read rate, a typical performance level if a user were to

issue a search request from a login node.

Existing tools are not suitable in the context of large-scale storage systems.

We believe that tools which allow data and metadata stored on today’s HPC storage

systems (e.g. Lustre [9], GPFS [10], Ceph [11]), many of which are accessible via

Globus [12], should be index-able and search-able in a transparent effortless way while

not impacting the performance of the storage system for I/O intensive workloads.

Scientific data comes in many flavors, from free-text data (e.g., logs in text

files), to numerical data (e.g., matrices in HDF5, time-series data), to image data

(e.g., medical images in DICOM format), to video data (e.g., videos from biology

studying organisms behavior). Each data type might need specialized indexing and

search methods, further complicating an already difficult problem at scale. Due to the

sheer amount of data found in today’s HPC systems, any solution must be distributed,

be parallel in nature, and exploit recent advancements in non-volatile memory.

1.1 Indexing and Search Problem Space

Advances in search technologies over the last several decades have contributed

to the evolution of computing. However, while internet, enterprise, and desktop

search capabilities have changed drastically, relatively little focus has been given

to search requirements in science and engineering domains as well as on large-scale

cyberinfrastructure resources. We describe here motivating use cases from science

and engineering as well as cyberinfrastructure providers.

1.1.1 Science.

Materials Science: The Materials Data Facility (MDF) [13] is a centralized

hub for publishing, sharing, and discovering materials science data. MDF stores over

19 million files (61TB of data), uploaded by close to 1000 users from different research
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groups, spanning many disciplines of materials science. The repository contains a

range of different data types from common formats (e.g., text and images) through

to materials-specific formats. It includes both large (e.g., datasets gathered via x-ray

scattering and tomography, high-energy diffraction microscopy, and neutron scatter-

ing datasets) as well as smaller datasets (e.g., datasets gathered via atomic force

(AFM), scanning electron (SEM), and transmission electron (TEM) microscopy).

However, the expansive range of materials data held by MDF can make it

difficult for users to find data relevant to their work, so utility is rooted in the quality

of metadata elements to make data findable and accessible. MDF data are primarily

stored at Argonne National Laboratory (ANL) and the National Center for Supercom-

puting Applications (NCSA), and are accessible via Globus (see Figure 1.1). MDF

asks publishers to provide metadata describing uploaded data; however, in practice

this metadata is limited to publication-style data, rather than metadata describing

the specific data. The MDF team have spent considerable effort developing their

own specialized extractors called MatIO; however, they are limited to a small slice

of the data included in MDF. Currently, MDF uses Globus Search, an ElasticSearch-

based service for indexing the available metadata. The index is approximately 1GB

in size—a small fraction of the 61TB of data.

Figure 1.1: Materials Data Facility to discover data.
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Earth and Environmental Data: Data Observation Network for Earth

(DataONE) [14] is a community-based federated data repository that provides access

to data from a set of 44 member repositories (see Figure 1.2). These repositories span

a range of earth and environmental data sources including the arctic data center, bio-

logical and chemical oceanography data management office, Cornell lab of ornithology

eBird, and National Ecological Observatory Network. DataONE currently manages

more than 800K datasets exceeding 81 TB of data. Over the last decade, DataONE

datasets have been downloaded more than 16M times. Each dataset in DataONE is

associated with a metadata record, these records are primarily completed manually

following community schema.

Figure 1.2: DataONE single unified search system that spans 44 repositories.

Cosmology: The Sloan Digital Sky Survey (SDSS), one of the most ambi-

tious scientific projects of all time that aims to make a high-quality three-dimensional

map of the universe. SDSS has been collecting data since 1998, and has created 17

data releases. The imaging data include preview images (JPGs) and raw data (FITS).

The data also include catalogs of detected objects, with parameters measured from

imaging, including positions and magnitudes. These catalogs are stored in a com-
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mercial relational database management system (DBMS), Microsoft’s SQL Server,

and are organized in several 2-dimensional tables. The SDSS dataset contains over a

billion objects dispersed over 390 million files (5.5M directories) for a total 652TB of

data [15, 16]. A visual representation of some of this data is captured in Figure 1.3.

Figure 1.3: Two million galaxies and quasars covering 11 billion years of cosmic time

from the eBOSS/SDSS surveys.

Much effort is spent in defining schemas, organizing data, storing metadata in

databases, and building search interfaces for users. Many of the methods used are spe-

cific and tightly coupled to domain-specific data and/or software. The effort required

to implement and maintain a catalog, combined with reduced generality, makes this

an impractical solution for data exploration and search in many applications.

1.1.2 Cyberinfrastructure.

Storage available on campuses, supercomputing centers, and even within in-

dividual research groups is growing rapidly. For example, campus storage routinely

exceeds 1PB which is shared among students and faculty, research computing cen-

ters offer 10s of PB of storage to their users, while large national cyberinfrastructure

providers offer 100 PB of usable storage. At these scales, the estimated resources

needed to index data are astronomical. Table 1.1 summarizes storage sizes and ex-
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pected costs for indexing. This data shows that even modest storage systems may

have hundreds of millions to billions of files, cumulatively totaling petabytes to tens

of petabytes of data. These file systems are in a constant state of change, with aver-

age data modification time measured in hours requiring constant updates to indexes.

When analyzing file system traces, we observed deep directory hierarchies with an av-

erage of 20 to 212 files per directory, which may limit our ability to optimize the index

based on paths. These file system traces offer us a glimpse into the complex world of

distributed storage systems for scientific computing. It should be clear that Lucene

indexing throughput of 383MB/sec or the grep utility’s ability to find keywords deep

in data files at 102MB/sec (the typical performance of these tools when running on

login node accessing these file systems), would take months to years to completely

index and search the storage systems in today’s scientific computing systems.

File System Files Size
ls+grep

search time

Apache Lucene

indexing time

Institution 264M 1.2 PB 146 days 39 days

UChicago RCC - 2.2 PB 267 days 71 days

NCSA Delta - 7PB 850 days 227 days

NERSC 861M 6.3 PB 765 days 204 days

TACC Frontera Scratch - 44PB 5340 days 1425 days

ALCF Eagle - 100PB 12136 days 3238 days

Table 1.1: Characteristics of large file systems and search/indexing times.

Beyond simply needing to index these large file systems, there are frequent

changes to files as they are added, modified, and removed. Figure 1.4 shows the

number bytes created, modified, and deleted daily in 2018 for 35 consecutive days.

The figure shows that peak days exhibit changes of nearly 80TB/day with over 2.5M

files modified (not shown in the figure), and on average 16TB of data was either

added or removed per day. It should be noted that this file system log was captured
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in 2018 and that file system sizes have increased by an order of magnitude since this

time. We therefore expect that millions of file changes per day to be a common use

case even on institution and resource computing center storage. While the number

of changes for supercomputing facilities is likely much larger.

Figure 1.4: NERSC file system data created (green), modified (blue/purple) and

deleted (red) measured in terabytes/day over a 35-day period.

1.2 Indexing and Search Engine Background

In this section we include a few general definitions and observations about

information retrieval and search engine characteristics that are relevant to the prob-

lem of designing, building and maintaining indexed-based search engines. The field

of information retrieval identifies and defines itself as the field that aims to “solve

the problem of locating and retrieving materials from a collection of information re-

sources, in order to satisfy the information need” [17]. Having this definition in mind,

in practice an information retrieval solution, also called an “information retrieval (IR)

engine” or colloquially a “search engine,” has two main functionalities: indexing and

search. Indexing refers to the problem of re-organizing the collection of information
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resources, in such a way that it makes it easy to locate and retrieve relevant materials

from the collection according to some information need. Search is the second function,

and it refers to the actual process of utilizing the re-organized collection of informa-

tion resources, also knows as an “index” in practice, in order to locate and retrieve

materials that are relevant to some information need. In the realm of computers, the

definition of an IR engine, can be adjusted to: solving the problem of locating and

retrieving relevant files from a file system in order to satisfy an information need.

From a structural point of view, a computer search engine can be decomposed

into four main components, as seen in Figure 1.5. The Index Engine is responsible

for extracting the contents of the files in order to re-organize it into an index. This

component can perform myriad different types of operations to increase the quality

of the index, including similarity analysis, stemming, and lemmatization.

Figure 1.5: General architecture of an information retrieval engine.

The second component is the Index itself, which is typically implemented as an

inverted index. The term “inverted index” comes from the inversion between content

and source of the content that happens during indexing. The inverted index is typ-



10

ically implemented through the use of various search data structures in combination

with container data structures, but it can also be implemented using mathematical

constructs, such as vectors and matrices, and it can be stored persistently on disk or

it can be kept in volatile memory or a combination of both.

If the list of files that are returned by the inverted index are not ordered in

any particular way, then the search engine becomes a data retrieval engine, akin to

a relational database that provides only the projection function. In order to be a

truly information retrieval engine, the third, namely Ranking Algorithm component

needs to be part of the overall search engine. The Ranking Algorithm, also sometimes

used as a synonym to the information retrieval model, is responsible for providing a

mechanism to order the returned files from an inverted index by relevance with respect

to an information need. Term Frequency-Inverse Document Frequency (TFIDF) is

a popular model that uses the frequency of words in files (Term Frequency) and

the frequency of files that contain a word (Inverse Document Frequency) to build a

mathematical formula that can be used in conjunction with the terms provided by

the information need to sort the returned files by their relevance. TFIDF attempts to

capture two observations: if a word exists in many files it is likely to be less relevant to

the information need; and if a word occurs many times in a file it is likely to be relevant

to the information need. TFIDF is not the only successful information retrieval model,

but in this work we decide to use it due to its simplicity and effectiveness.

The final component is the Query Engine, that is responsible for processing

the information need. This component typically reads a search query, applies some

of the parsing and analysis techniques present in the Index Engine component, and

filters and sorts the returned results according to the Ranking Algorithm.

Looking closer at the process of re-organizing the collection of information ma-

terials through indexing, certain observations can be made about the characteristics of
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this process, observations that can be used to aid the design of a more efficient index

engine. One such observation pertains to the index itself and whether it already exists

or not. Updating the index versus building the index from scratch imply different

assumptions and requirements on how the index engine should work and what kind

of structure will the inverted index have, which in turn influences the design and thus

the performance. The dynamic versus static property of the collection of materials

received as input can also dictate the behavior and performance of the index engine,

where a constantly changing collection of materials will require an index that can sup-

port fast updates, while for a static collection of materials the index can be optimized

for throughput. Another important observation related to the inverted index refers to

the uniformity of the placement of the index. Maintaining for example a global index

is harder, because it requires a scalable architecture and efficient synchronization and

communication, but it can yield faster and more complete search results, while a set

of local indexes are easier to build, because they require minimum synchronization

and communication, while paying a higher cost for aggregation search results from

different index sources. All of these characteristics and properties of the indexing

process, index engine and inverted index, if understood and exploited properly can

point to the design of scalable and high-performance search engine solutions.
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CHAPTER 2

TOWARDS SCALABLE INDEXING AND SEARCH ON DISTRIBUTED AND
UNSTRUCTURED DATA

In the era of Big Data, modern applications make use of parallel and dis-

tributed strategies to store and process data at scale [18, 19, 20]. While extensive

research has focused on the challenges associated with storing and processing large

amounts of data efficiently, little work has focused on efficient data search in dis-

tributed systems. Although various indexing techniques have been studied in the

database community, adapting them to meet the needs of those applications whose

data are primarily distributed and file-based is still in its infancy. And according

to the International Data Company [21], most of the data found in distributed file

systems is unstructured, posing a serious challenge to the development of efficient

models for querying large, unstructured, and distributed data.

We propose an indexing solution that takes into account the unstructured and

distributed nature of Big Data. While many Big Data systems use a single coordi-

nator to manage resources and data placement (e.g., Hadoop [22] and Myria [23]),

the proposed indexing strategy envisions a fully distributed architecture, deploying

indexing modules locally on each node of the underlying distributed file system. This

model assumes a relatively common distributed file system model: one in which files

are stored on the nodes as a whole. That is they are not segmented into blocks

or chunks that are spread across multiple nodes. Thus, at the cost of restricting

the model to a file level storage paradigm, the indexing-related computations can be

done locally, which reduces communication between nodes. This scheme removes the

concept of a single point of failure and reduces the potential performance degradation

from inter-node interference, while preserving scalability.

FusionDex is the proposed indexing solution and is implemented in the Fu-
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sionFS [24] distributed file system which leverages the ZHT [25] distributed key/value

store, and uses the CLucene [26] framework as the indexing engine. CLucene provides

the libraries for efficiently indexing and querying data. Inter-node communication is

accomplished through FusionFS’s data transfer service. Investigation of FusionDex’s

performance, on a 64 node cluster, showed that the distributed indexing approach

has high performance gains in comparison with state-of-the-art approaches, such as

Hadoop Grep [27] and Cloudera Search [28]. Comparison of the search latency be-

tween Linux grep (52000ms) and FusionDex (23ms), on a single node, shows signifi-

cant speedup, thus highlighting the potential value of such an approach.

2.1 Design Principles

In comparison with well structured data, found for example in relational

database systems, unstructured data does not preserve the same structural char-

acteristics, pre-defined data models, or well-described organization. As such, tradi-

tional models used for indexing relational data cannot be applied to unstructured

data. While there are countless examples of indexing approaches for unstructured

and text-based data, including Lucene and the many relational databases that now

support free-text queries, these cannot be directly applied to large storage systems

due to their distributed nature and extreme data scales. With these properties in

mind, FusionDex aims to eliminate the performance bottlenecks and single point of

failure of distributed indexing of unstructured, file-based data.

The first design principle of FusionDex is that it does not have global coor-

dinators. This approach differs from popular Big Data systems, like Hadoop [22],

Myria [23] and SciDB [29], that rely on a single coordinator or master that is in

charge of managing the entire system. FusionDex is completely distributed, each

node playing the role of both an indexing unit and of a utility interface (e.g., query

interface). A user may submit queries to any node, the operation is then distributed
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throughout the system (across nodes) automatically and efficiently. The response

is then assembled by each node and sent back to the client via the same interface.

Through caching mechanisms and the balancing of communication, the distributed

search throughput can be significantly increased in contrast to the throughput of a

single search server or coordinator.

Removing the coordinator has, admittedly, its own drawbacks. The reason

why so many systems embrace the idea of single coordinator is obvious: it is easy to

maintain consistency and synchronization between operations. Proper management

of the operations and the internal state of the components found in a peer-to-peer

system, on the other hand, not only requires greater care from the perspective of

design and development but also incurs N-to-N network overhead. For the general

problem of querying distributed data, there is no definitive solution that satisfies all

constraints, but in practice, trade-offs are balanced so that the problem is solved

for a reduced number of cases. In FusionDex’s case, the benefits of efficiently and

easily updating global system consistency and coherence, usually obtained through a

master node or coordinator, are traded for the benefits of increased scalability, thus

providing a means for managing and maintaining Big Data.

The second design principle is that FusionDex aims to minimize data move-

ment, for example during the indexing of files in the distributed file system. This

design decision is somewhat a consequence of the removal of a global coordinator.

Without a global coordinator the network traffic would follow an N-to-N pattern,

which would cause a performance catastrophe if each node exchanges a considerable

amount of data. To overcome this challenge, the proposed model precludes the inter-

node interference at the file level, by only allowing message exchange across nodes.

In other words, the system is designed around a single indexing module deployed

on each node, where each index module is responsible only for the local files found
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on the respective node. Therefore, FusionDex expects many small-size messages to

build up the global state. The rationale is that modern network hardware is usually

throttled by bandwidth rather than latency, making FusionDex’s small messages an

ideal solution that does not pose much pressure on the systems.

2.2 Architecture

FusionDex is designed with a share-nothing policy in mind. Such systems

do not require coordinators, instead they operate by relying on direct collaboration

between the nodes. FusionDex is designed to work with a share-nothing distributed

file system such as HDFS [22] or FusionFS [24], both of which store information in

the form of files. Importantly, files are stored in their entirety on an individual node,

that is, they are not split into blocks or chunks across nodes.

The general architecture of FusionDex is illustrated in Figure 2.1. Each com-

pute node holds its own local storage comprised of local files and the associated index.

In addition, each node is deployed with a daemon service, namely query server (Q

Server), and a client process (Q Client). The Q Server is responsible for the indexing

of local data and performing local search. Where a search operation is triggered by

any of the clients. The Q Client handles query execution, distributing it to other

nodes and finally assembling a response. Query clients provide an interface through

which users or applications can submit queries to FusionDex.

It should be noted that a query server does not necessarily receive requests

from the local query client: any client can communicate with any server in the cluster

in a N-to-N communication pattern. Figure 2.2 shows the communication pattern of

a scenario in which a user sends a query to a Q Client. The Q Client then distributes

that query operation to all Q Servers. FusionDex implements a custom communica-

tion protocol that leverages the programming interfaces provided by FusionFS. This
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Figure 2.1: An architectural view of FusionDex deployed to a share-nothing cluster.

flexibility permits FusionDex to attain high performance through the seamless in-

terconnection between the indexing service and the distributed file system, but also

between the client and the server modules.

Figure 2.2: A scenario in which a user sends a query to a Q Client, that distributes

the operation to all Q Servers.

2.2.1 Building Blocks.

FusionDex leverages CLucene to enable efficient indexing and high perfor-

mance search performance. It also leverages FusionFS’s highly optimized communi-
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cation model to share data between nodes.

2.2.1.1 CLucene: local indexing.

As we can see in Figure 2.1, from a single node’s perspective all files are

only indexed locally. While many popular indexing tools exist, we chose an open-

source implementation as the local indexing module: CLucene [26]. CLucene is the

C++ port of the popular and open source Apache Lucene [30]—a high-performance

full-text search engine library, implemented in Java. CLucene is not as mature as

Apache Lucene, but offers advantages including increased performance and implicit

compatibility with the FusionFS distributed file system, that is written in C++.

2.2.1.2 FDT: inter-node communication.

In order to satisfy the design goals of the proposed solution, FusionFS has been

extended to enable inter-node queries over the indexes and efficient communication

between indexes. FusionFS has its own inter-node data transfer service, called Fusion

Data Transfer (FDT), that migrates data chunks in the context of POSIX system

calls. The flexibility of the FusionFS system allowed the easy integration of a new

set of operation types to the FDT layer, such that an N-to-N index query is routed

properly throughout the node topology and such that the results are routed correctly

back to the specific index node query server.

2.2.2 Index Creation, Removal, and Update.

Since files are distributed among the FusionFS nodes, each node maintains the

index of the files that reside on it. This is possible because FusionFS is designed to

allow applications to carry out local reads and writes to files using a scratch location.

FusionFS manages a global namespace for file paths, translating the absolute path

of each file into a relative path on that node. FusionDex’s CLucene index uses the

translated paths to crawl local data and build the index for each file locally.
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When a file is modified the index needs to be updated, in order to reflect the

change. FusionDex relies on FusionFS’s APIs to listen for notifications when files are

modified. In FusionDex, an index update message is issued only when a file is closed,

after the processing of the file has finished. Thus, opening or reading a file will not

trigger an index update. This is possible as FusionFS tracks whether or not a file is

modified. FusionDex uses the CLucene update function which automatically deletes

the document from the index and re-adds a new version.

File de-indexing, or the process of index removal, occurs in two cases: when

a file is removed from the distributed file system or when a file is moved from one

node to another (usually in the case of remote writing). In either case the following

de-indexing procedure is applied. FusionDex relies on FusionFS’s management of the

removal process. When a file is to be removed, a FusionFS node sends a message to the

node that “owns” that file. FusionDex extends this mechanism to add an additional

message that instructs the node to de-index the file. This message is sent prior to

the original removal message. Therefore, the file is removed from the remote node’s

index first. It is then followed by the removal of the actual file from the distributed

file system. One additional step is needed in the case of file relocation: the file that

would reside in the local node after the relocation process, will be added to the local

node’s index upon the completion of file migration and possibly write operation.

2.2.3 Server Protocols.

Figure 2.3 illustrates the architecture of the query module on the server side.

The query server is implemented with a thread pool, allowing concurrent requests to

be satisfied in parallel without blocking. When a server receives a query request, it

immediately queues the request. One of its worker threads then takes the request

from the queue and performs the specific query task. This task involves a search on

the local index. Each worker thread keeps track of the index location, meaning that
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Figure 2.3: Protocols of Concurrent Requests on Query Server.

worker threads can perform queries in parallel without interfering with one another.

One visible benefit of this approach is that the client waiting time for the first response

is greatly reduced, since the query request is handled in an asynchronous fashion.

2.2.4 Client Protocols.

Figure 2.4: Protocols of Concurrent Requests on Query Client.

Figure 2.4 shows the internal organization of the query module from the client

side. The query client provides an interface via which users (or applications) can

submit queries to FusionDex. Each query client maintains a collection of worker

threads. Each query client is aware of the topology and functional disposition of the

members in the cluster, knowing the locations of the nodes where query servers are

deployed. The membership information is initially read from a configuration file—the
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same configuration used to define the FusionFS distributed file system. When a user

issues a query via a client, a particular worker thread picks a server node from the

queue, establishes communication with each query server in the file system, and sends

the query to each server. Clients are independent in that they do not need to concern

themselves with the locations of the indexes, thus the client modules can be deployed

to any node as long as the membership information is available.

2.3 Evaluation

2.3.1 Experiment Setup.

The test environment, on which we evaluated FusionDex, was deployed on

Amazon Web Services Elastic Compute Cloud (EC2). In order to better investi-

gate scalability and performance under realistic scenarios we configured two clusters

with varying hardware. In each experiment we modified the number of nodes per

cluster. The first cluster (C1) was deployed on m3.large instances, each of which

was equipped with 2 Intel Xeon E5 vCPUs, 7.5 GB of memory, and 32 GB SSDs.

The second cluster (C2) was deployed on m3.2xlarge instances, each of which was

equipped with 8 Intel Xeon E5 vCPUs, 30 GB of memory, and 160 GB SSDs. The

evaluation process included: a performance comparison between FusionDex, Linux

grep and Hadoop grep on the relatively lower-end cluster C1, and a more in depth

analysis, comparing FusionDex and Cloudera Search, on the higher-end cluster C2.

In the absence of data from a production distributed file system we developed a

test dataset derived from the the Wikipedia dataset [31]. The test dataset was roughly

10 TB in size and it was split into 64 MB files, that were evenly distributed across

the nodes provisioned for each experiment. The evaluation process encompassed the

issuing of 1,000 queries over these files. The queries were expressed as simple searches

of a single keyword picked from a pool of the most popular nouns and verbs found
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in the test dataset (i.e: surprise, running, conduct, pale, allow, spent, plan, winter,

middle, degree. Experiments were carried out in an incremental manner with respect

to the number of nodes, the upper limit was 64 nodes.

2.3.2 Baseline Performance.

Baseline performance evaluation of FusionDex is conducted on a single node.

2.3.2.1 Index and write throughput.

The raw indexing throughput and file write throughput are shown in Figure 2.5

for increasing data size. The write throughput is calculated as the size of the file, that

can be pushed to FusionFS, per second, with indexing enabled. The index throughput

is computed as the amount of data that can be indexed in FusionFS, per second. The

figure illustrates that FusionDex can achieve a write throughput of approximately 100

MB/s and an index throughput of approximately 1 MB/s irrespective of data size.

Figure 2.5: Indexing and write throughput on single node

2.3.2.2 Search latency.

The search latency is determined as the time it takes for the server to respond

to a search request sent from a client. Figure 2.6 shows the search latency, with and

without caching. Intuitively, the expectation is that as the file size increases the search
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latency also increases. However, these experiments showed that even with data sizes of

100 MB, search latency barely exceeds 0.3 seconds. In order to further reduce latency,

we enabled caching (this is useful in the cases when data is not frequently updated),

and found that the latency could be further improved by an order of magnitude.

Figure 2.6: Search latency on single node

2.3.2.3 Search throughput.

Search throughput is calculated as the number of concurrent clients that the

server can respond to per second. In carrying out this evaluation the data size was

kept constant, at the arbitrary value of 1 GB. The number of clients that concurrently

queried the server was increased by modifying the client configuration files. In this

evaluation the number of worker threads on the server that handle incoming requests

was also varied to match the number of clients. Figure 2.7 shows that the search

throughput is poor when caching is disabled. This was expected since the search

did not cache previous requests. On the other hand, when caching was enabled the

throughput showed substantial improvement, as the number of clients increased.

2.3.3 Comparison to State-of-the-art Systems.

In this section we compare FusionDex to several systems that provide search

capabilities on distributed file systems. More precisely, we explore the ability of these
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Figure 2.7: Search throughput on single node

systems to scale to large distributed systems: from 4 to 64 nodes. We compared

FusionDex with state-of-the-art solutions for querying distributed systems: Linux

grep, Hadoop grep, and Cloudera Search.

Linux grep searches input files line by line, identifying matches to a given

pattern list. When it finds a match in a line, it copies the line to standard output

(by default), or returns a user-specified format as described by the given parameters.

Hadoop grep [22] works differently from the default Linux grep, in that it

does not display the complete matching line but only the matching string. Hadoop

grep runs two MapReduce jobs in sequence. The first job counts how many times

a matching string occurred in a given file and the second job sorts those matching

strings by their frequency and stores the output in a single output file.

Cloudera Search relies on MapReduce jobs to batch index documents. Cloud-

era Search uses the MapReduceIndexerTool [28], a MapReduce batch job driver that

takes a configuration file and creates a set of Solr index shards from a set of input file.

It then writes the indexes into HDFS in a flexible, scalable, and fault-tolerant manner.

The indexer creates an offline index on HDFS in the output directory. Solr merges
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the resulting offline index into a live running service. The MapReduceIndexerTool

does not operate on HDFS blocks as input splits, which means that when indexing

a smaller number of large files, fewer nodes may be involved. Searches in Cloudera

Search are conducted using the Apache Solr REST interface.

2.3.3.1 Indexing Throughput.

Figure 2.8 shows the indexing throughput of FusionDex and Cloudera Search

with an increasing number of nodes. The figure shows that FusionDex outperforms

Cloudera Search except in a small cluster with 4 nodes. The reason for this behavior

is due to FusionDex’s indexing model, as compared to Cloudera’s indexing batch tool.

More precisely, when one file is indexed in FusionFS, the index is locked such that

other files must wait. These locks have consequences especially when indexing a large

number of files under extremely short time frames as in this case. Cloudera Search also

implements index locking, however, rather than lock for individual files it instead locks

once for the entire batch. Of course, this behavior also means that indexed documents

are more quickly queryable in FusionDex than Cloudera Search. Nevertheless, as we

increase the number of nodes FusionDex performs much better than Cloudera Search

by a factor of at least 2.5. This is due to the decentralized approach employed by

FusionDex, as the distributed indexing process amongst multiple nodes amortizes

FusionDex’s overhead. That is not the case with Cloudera Search, and therefore its

indexing throughput does not increase significantly with the number of nodes.

2.3.3.2 Search Latency.

Figure 2.9 shows the search latency for Hadoop Grep, FusionFS Search and

Cloudera Search on cluster configurations of 4, 16 and 64 nodes. The figure shows

that Hadoop grep has the worst performance of all search applications considered.

This is because Hadoop Grep counts how many times a matching string occurs and
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Figure 2.8: Indexing throughput on multiple nodes

then sorts the matching strings. Cloudera Search and FusionDex outperform Hadoop

Grep by several orders of magnitude. Cloudera Search with and without caching

performs similarly for all cluster sizes with a difference of only 12 ms between all

results. FusionDex performs significantly better than all other search applications,

more than twice as fast as Cloudera Search for all configurations when using caching.

Again, the improved performance of FusionDex is due to its ability to distribute

queries and perform operations in parallel.

Figure 2.9: Search latency on multiple nodes
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2.4 Conclusion

The advent of Big Data has resulted in a shift in paradigms and new ways

of thinking about managing large quantities of data that are produced at high ve-

locity. There are many solutions and research initiatives for optimizing distributed

storage and data processing. However, in the context of data indexing and querying

in distributed systems there remain significant challenges with respect to efficiency,

especially when unstructured data is increasingly common. In this work, we pro-

posed FusionDex [32], a distributed indexing and query scheme for unstructured data

dispersed over distributed file system. FusionDex uses CLucene, which is a C++

port of the popular Apache Lucene, as the building block for the indexing engine,

and FusionFS’s data transfer services for inter-node communication. Investigation of

FusionDex’s performance showed high performance gains in comparison with state-

of-the-art approaches, such as Hadoop grep and Cloudera Search. While FusionDex

achieved significant performance gains in terms of latency, the proposed solution

hinted towards indexing becoming a potential bottleneck for increasing data vol-

umes. Using CLucene, FusionDex achieved an indexing throughput of only 2MB/sec

per node, slower by about 2 orders of magnitude below the theoretical capabilities of

the hardware used. Since we discovered indexing performance to be orders of magni-

tude slower than theoretical speeds we could achieve in raw storage input and output,

we sought to investigate a new clean-slate design for high-performance indexing.
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CHAPTER 3

SCALABLE AND CONCURRENT DATA INDEXING AND SEARCHING IN
HIGH-END COMPUTING SYSTEM

In order to address the general problem of efficient data exploration and search

in large file systems, we proposed the SCANNS indexing framework. SCANNS is an

indexing library that is designed to be deployed on single-node high-end systems,

characterized by many-cores architectures, multiple NUMA nodes and multiple PCIe

NVMe devices. SCANNS is designed to be used as a building block for building high-

performance index-based search engines. SCANNS redesigns and exposes the indexing

pipeline, in such a way that it can exploit modern hardware capabilities and can allow

users to tune certain aspects of the pipeline, in order to saturate available compute,

memory, and/or storage resources. In this work we present the SCANNS framework

and the many optimizations and techniques we applied to improve the performance

of the overall framework, and of each pipeline component. We also present practical

insights related to constructing indexes and tuning indexing performance that can

be overlooked when building index-based search engines, such as the importance of

the design of additional data structures required for the inverted index even when

building on a fast search data structure. We perform an experimental evaluation

of the framework and it’s components, and we show that it can achieve magnitudes

higher indexing and search performance when compared to Apache Lucene, a state-

of-the-art information retrieval library.

The contributions of this work are as follows:

• Design and implementation of SCANNS, an tune-able indexing framework that

can exploit the properties of modern high-performance computing systems;

• Tune-able modularized architecture that allows the saturation of storage, mem-

ory and compute resources;
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• Evaluation on machines with up to 192-cores, 768GiB of RAM, 8 NUMA nodes,

and up to 16 NVMe drives, and delivering 19x higher indexing throughput and

280X lower search latency;

3.1 Framework Architecture and Design

This section presents the SCANNS architecture, covering a general overview

of the framework and its underlying components, and detailed description of the

techniques and optimizations used to improve indexing performance.

3.1.1 SCANNS Goals.

The primary goal of SCANNS is to support efficient indexing of data in high-

end computing systems. With that in mind, SCANNS was designed to efficiently

leverage systems that have many cores, multiple NUMA nodes, and multiple NVMe

devices, by exploiting the inherent properties of such systems in order to saturate

their compute, memory and/or storage resources. The secondary goal of SCANNS is

to be versatile enough so that it can accommodate different data sources and formats,

and various information retrieval models, thus the framework is designed as a search

engine library, that can be used to implement specific search engine applications.

3.1.2 SCANNS Overview.

In order to satisfy the goals of SCANNS, we studied the general process of

performing indexing on high-end systems, and identified three key sub-processes. For

each of sub-process we designed a component that focuses on a specific system re-

source and a precise part of the indexing process. When combined, these components

form a complete indexing engine. A diagram of these components and how they

are connected structurally and functionally can be seen in Figure 3.1. The three

components are: the ReaderDriver, which is responsible for reading raw data from a
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storage system and is typically IO-intensive; the Tokenizer, which is responsible for

parsing and tokenizing the raw data into units of data that are useful for a specific

information retrieval model and is usually compute-intensive; and the Indexer, which

is responsible for computing and storing the index from the units of data. All three

components are designed as independent functions, that can be run by one or more

threads, exclusively or shared, giving the the user option to fine tune the number of

threads and the number of components according to the amount of compute, memory,

and storage resources available.

Figure 3.1: SCANNS framework indexing architecture and pipeline.

This framework implements a TFIDF search engine over a collection of files

stored on multiple PCIe NVMe devices and is optimized to achieve high indexing

speeds in the scenario where the index does not already exist and it is being built

for the first time. In this work we assume that the input dataset will not change

while the index is being built and the framework is designed to support fixed-term,

extended boolean search.
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3.1.3 Indexing Engine Execution.

In terms of execution, SCANNS uses multiple threads to parallelize the exe-

cution of the indexing process by data but also by function. The framework uses two

kinds of threads, as seen in Figure 3.1: read threads and index threads. Read threads

are responsible for reading raw blocks of data from the file system(s) and for passing

these blocks to the index threads, and they run local ReaderDriver instances. Index

threads receive raw blocks of data from the read threads and process the blocks of

data in order to build the local index, by running local pairs of the Tokenizer and

Indexer components. Index threads implement the observer design pattern, where

the Tokenzier is the subject and the Indexer is the observer, and makes use of the

internals and interfaces of the Indexer component to store the local indexes in mem-

ory. The number of read and index threads are manually configured at the beginning

of the execution of the indexing framework and remain static until the index is com-

plete. The number of index threads needs to be a multiple of read threads and the

read threads will communicate to the same specific group of index threads for the

entire of the indexing process.

The read threads communicate and share blocks of data with the index threads

through a set of specialized queues, that we called DualQueues. The DualQueue is a

simple implementation of a thread-safe synchronized queue that follows the memory

pool design pattern to recycle the blocks of data that are being pushed and popped

to and from the queue. Figure 3.2 shows that, in terms of design, the DualQueue is

implemented with two synchronized queues, one for the blocks that are empty and

do not have any data, and one for the blocks that are full and have data read into

them. The queues use mutexes and conditional variables to achieve synchronization

and to relieve the system from unnecessary polling when either of the queues is full

or empty. The read and index threads act as producers and consumers, respectively,
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and are responsible with popping, pushing and processing blocks of data.

Figure 3.2: SCANNS DualQueue design.

3.1.4 ReaderDriver.

The ReaderDriver is the SCANNS component responsible for ingesting raw

data from the storage subsystem to main memory as fast as possible. In our case the

ReaderDriver is designed to read blocks of data from a POSIX file systems as fast

as possible and bring it to main memory so that it can be processed by the other

components of the framework. This component is typically bound by the capabilities

of the storage subsystem, but that is not always the case, especially in the case of

many PCIe NVMe storage devices present in the system. We observed, in practice,

that a standard approach to implementing this functionality, where each block of data

read is allocated dynamically at runtime and deallocated when not needed, leads to

suboptimal performance, in terms of how many blocks can be brought in main mem-

ory per second. Thus the first optimization that we propose avoids the overhead of

allocating and deallocating each block of data through the use of the memory pool

design pattern. Basically, since we know that the blocks will be discarded after they

are processed by the framework, we allocate a certain number of blocks at the begin-

ning of the program and we reuse them when they get discarded. This optimization

is built in tandem with the DualQueue, having the ReaderDriver generate, manage

and push the blocks to the queue at the beginning of the program.

In a setup where a machine has many PCIe NVMe devices we observed that
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sometimes the memory subsystem of the OS that manages the file system caches and

buffers can become a performance bottleneck. Since the data that is read from the

input files by the indexing engine is being re-organized, it is not actually required to

be stored in the index. Thus the second optimization that we proposed was to bypass

the OS file system caches and buffers and tell the OS to bring the blocks of data from

the disk directly into ReaderDriver buffer space. This optimization, in conjunction

with enough multi-threading, allows the ReaderDriver to saturate available NVMe

disks in terms of number of blocks read per second.

So far the described ReaderDriver was optimized to read fixed-size blocks of

data from the file system as fast as possible, but in practice this approach can be

problematic. The fixed-size approach can end up breaking tokens in halves, which

need to be addressed and recombined in order to implement a correct indexing engine.

To solve this issue, we proposed the WaveReaderDriver, which uses a small addon

block to read additional data from disk and computes how long the blocks needs to

be so that it does not break tokens in halves. The WaveReaderDriver exposes an

idempotent method for reading blocks of data from a file, that returns a variable-size

block and retains the memory pool design pattern and OS cache and buffer bypass

optimizations. We solved this issue in the ReaderDriver, because we observed that it

is the fastest component and had enough computing resources to spare.

3.1.5 Tokenizer.

The second component in the SCANNS indexing pipeline is the Tokenizer.

This component is responsible for reading the raw data passed from a ReaderDriver

and transforming the raw data into smaller units of data that can be subsequently

used by the Indexer. In the context of this work, the Tokenizer pops a variable-

size block of data from a DualQueue and extracts tokens from the block, that are

separated by some delimiter. Basically this component implements a split function,
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that splits a string into a list of tokens (i.e. substrings that are separated by a list

of characters that act as delimiters). The process behind the Tokenizer is typically

compute-intensive, reading the input string and extracting the tokens sequentially.

While this component can be implemented in a standard way in C through

the use of the strtok() function, we observed that the performance of the standard

approach is very low when compared to how fast the ReaderDriver can read data

from disk. In order to improve the Tokenizer’s performance, we proposed a re-

implementation of the split function, where we replaced the call to strtok() with

an approach that uses branchless programming. Figures 3.3 and 3.4, show the con-

ceptual difference between the standard and the optimized Tokenizers.

Figure 3.3: SCANNS Standard Tokenizer.

Figure 3.4: SCANNS Optimized Branchless Tokenizer.
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We replaced the for loop and the if-block, that strtok() used to iterate over

the list of delimiters to find out if a byte in the input buffer is a delimiter or not,

with an O(1) lookup in a hash table of delimiters. For each character the delimiter

hash table returns zero if the character is a delimiter and zero negated otherwise.

We then replaced the portion of the code where strtok() runs an if-block to check if

it has reached the end of a token and returns the token address when true, with C

ternary operations that implement the same functionality. The ternary operations get

in turn generated into conditional assembly instructions that do not cause branches

or jumps. This optimization removes the overhead of branch misses, that are caused

by the CPU branch predictor and the unstructured nature of the input data, allowing

the Tokenizer to catch up the ReaderDriver, in terms of performance.

3.1.6 Indexer.

The Indexer is the third and last component of the SCANNS framework and

is responsible with taking the tokens/terms, extracted by the Tokenzier, and with

re-organizing them into a TFIDF inverted index, that is stored in main memory.

Figure 3.5 shows the design of the inverted index, which is the core of the Indexer.

For this work we picked hash tables as the search data structure to be incorpo-

rated in the inverted index, due to their increased performance and their potential to

be distributed across computers. The SCANNS inverted index does not depend on a

specific implementation of a hash table and supports pluggable hash tables, in order

to allow the user to use any hash table with any hash function that is appropriate for

their dataset. In SCANNS we used two hash tables: the C++ unordered map, for

the standard hash table, and the Google Swiss Table [33], for the efficient hash table;

and we show that while the search data structure is important, poor inverted index

data structure design can lead to reduced performance.
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The design in Figure 3.5 shows the additional data structures used to im-

plement the TFIDF inverted index: IDFIndexEntry and TFIndexEntry. Both data

structures are implemented as linked lists and each instance stores a pointer to the

next element in the list. The hash table stores in each of its buckets a list of IDFIndex-

Entries, and each IDFIndexEntry keeps track of the token associated with the entry,

the number of files that contain the term, a head and a tail to the TFIndexEntry

linked list. The TFIndexEntry stores the index associated with a file, the frequency

of a term in that file and a pointer to the next TFIndexEntry. During indexing, the

Indexer will perform lookups in the hash table and create new IDFIndexEntries or

TFIndexEntries if they don’t exist and will update the frequency information for each

term-file pair. Since SCANNS is aimed at building the index from scratch for the first

time, we instructed the framework to pass the data blocks to the Indexers such that a

block only belongs to the same file that is being processed or a new file, but never to

a previously processed file. This high-level data flow optimization, allows the Indexer

to avoid additional searches over the list of TFIndexEntries, performing either an

update or an append operation on the tail TFIndexEntry of a IDFIndexEntry, and

thus providing a boost in performance.

Figure 3.5: SCANNS Inverted Index Design.
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But even with this minimalist design and the proposed high-level optimization

on how file blocks are passed to the Indexer, the inverted index yielded poor scalability

with increasing number of cores. After further investigations we identified two main

causes: (1) the standard memory allocator wasn’t scaling to the number of small

IDFIndexEntry and TFIndexEntry objects that were being created and (2) there

were still too many CPU cache misses, caused by the hash table lookup and the

indirection from the inverted index data structures.

To address the problem of memory allocation we proposed the implementation

of a monotonic paged sub-allocator for the index data structures. The sub-allocator

allocates large pages of memory and then creates the required inverted index objects

from those pages in user-space, at faster speeds than when allocating memory and

calling a system call for each object individually.

To deal with the second issue, we introduce an AppendCache to the IDFInd-

exEntry that minimizes the number of memory indirections to the TFIndexEntry list

tail during term frequency updates. The AppendCache is part of the IDFIndexEntry,

thus whenever the IDFIndexEntry is being accessed the AppendCache is brought in

the CPU cache as well, subsequently improving indexing performance. The cache is

flushed when a block from a new file is processed. The last optimization scales well

with datasets where terms appear frequently, and with the page sub-allocator and

enough compute cores, the Indexer can achieve higher performance than state-of-the-

art indexing solutions.

3.1.7 Global optimizations.

The SCANNS framework also incorporates in its design optimizations that

are global in nature and do not belong specifically to only one component. These

optimizations deal with reducing the overheads of inter-NUMA communication, the
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page-fault subsystem of the OS and the tuning of the file block sizes and sub-allocator

page sizes. The first optimization is applied over the ensemble of DualQueues, read

and index threads, making sure that the threads are grouped by NUMA node and

that the memory allocated and accessed by each component also resides in the same

NUMA node. This is achieved through the use of the libnuma library, that allows

users to set NUMA affinities and memory policies to programs.

The second global optimization is the use of huge pages for the monotonic

sub-allocator and for any buffers. With huge pages, the application can relived the

OS from having to handle many page faults, implicitly improving the performance

of any memory-intensive application, including the Indexer component. And the

last set of optimization relate to the tuning of ReaderDriver block sizes and Indexer

sub-allocator page sizes, in order to further improve performance. The SCANNS

framework exposes these parameters to the users, allowing them to better tune the

indexing engine accordingly to the underlying hardware. All of the experimental

results have a certain degree of manual tuning performed.

3.2 Performance Evaluation

In this section, we present the performance evaluation of the SCANNS frame-

work and its constituting components. We include, in the discussion, details about

the experimental setup, the used dataset and the SCANNS components variants.

3.2.1 Experimental Setup.

The experimental setup is comprised of three single-node high-end systems de-

ployed on Mystic, an NSF-funded testbed designed to study system re-configurability.

The three systems differ in many aspects, but for this work the most important dif-

ferences are the number of cores and the number of storage devices available on each

machine. The number of cores are a reflection of computational power, while the stor-
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age devices showcase varied IO capabilities. Table 3.1 presents hardware details for

each system. The three systems allow us to evaluate SCANNS under different environ-

ments: (a) a machine with many cores, 8 NUMA nodes, but few disks (64cores-1disk),

(b) a machine with few cores, 2 NUMA nodes, but many disks (32cores-16disks), and

(c) a machine with many cores, 8 NUMA nodes, and many disks (192cores-16disks).

machine name processors cores memory nvme storage

(a) 64cores-1disk 2 x AMD EPYC 7501 64 128GiB DDR4 1 x Intel Optane 900P SSD

(b) 32cores-16disks 2 x Intel Xeon Gold 6130 32 192GiB DDR4 16 x Samsung 970 EVO SSD

(c) 192cores-16disks 8 x Intel Xeon Platinum 8160 192 768GiB DDR4 16 x Intel Optane 900P SSD

Table 3.1: Mystic Cloud machines used for the experimental evaluation and their

specifications.

We configured the hardware and the OS to use performance governors and

turbo-boost for all CPUs, and all of the storage devices used during experiments

were PCIe NVMe SSDs, that were accessed exclusively, in order to eliminate any

interference caused by other running applications. For systems that have only one

disk we configured XFS directly on the device, while for systems that had more

than one disk, we grouped the disks by NUMA nodes, and configured Linux software

RAID0 arrays with XFS for each group.

In terms of software, 64cores-1disk and 32cores-16disks ran Ubuntu 18.04

LTS with Linux Kernel 4.15 and g++-8.4, while 192cores-16disks ran Ubuntu 20.04

LTS with Linux Kernel 5.4 and g++-10.3. For Google SwissTable we used version

20210324.2 from the abseil library. SCANNS is implemented in C++17 and we use

openjdk-11 to run Apache Lucene.

The datasets used throughout the experimental evaluation were generated

from a file system dump provided by NERSC. The file system dump is a snapshot

of the file system metadata of the NERSC storage system, that was stored in one
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single 240GB file with each line of the file containing a full file path and all POSIX

metadata information (size, timestamps, owners, permissions, inode etc) separated

by space. We cleaned and split the 240GB file system dump file into smaller files of

approximately and up to 32MiB in size. The ReaderDriver and Tokenizer evalution

was done over a collection of small file system dump files of 6144 files (192GiB), while

the TFIDF End-to-End indexing and search evaluation was conducted on a collection

of 1536 files (48GiB). We picked the file system dump dataset because it represents

a real dataset and it has interesting properties: most of the space or slash separated

terms found in the file system dump are alphanumerical and numerical and only a

few have only letters in their composition. This means that classical free-text stem-

ming techniques cannot work with this dataset, which increases difficulty of building

indexes by having many unique terms.

3.2.2 Component Variants.

For each of the SCANNS framework components we implemented multiple

variants to show performance improvements of each optimization and technique used.

For the ReaderDriver we experimented with the following variants:

• xs-rd-std - (the baseline) reads fixed-size blocks of data without optimizations;

• xs-rd-nonuma - uses the memory pool design pattern and the OS cache and

buffer bypass optimizations;

• xs-rd-numa - similar to xs-rd-nonuma, plus NUMA-aware thread scheduling and

memory allocation;

• xs-rd-wave - similar to xs-rd-numa, but implements the WaveReaderDriver that

reads variable-size blocks of data;

For the Tokenizer evaluation, the implementation used the WaveReaderDriver
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to read and pass blocks of data to the Tokenizer. Instead of index threads, we called

the the threads that ran the Tokenizers tokenize threads. These are the Tokenizer

variants that we experimented with:

• xs-rdtokstd-nonuma - implementation using strtok();

• xs-rdtokstd-numa - similar to xs-rdtokstd-nonuma, plus NUMA-aware thread

scheduling and memory allocation;

• xs-rdtok-nonuma - implementation that uses branchless programming and the

delimiter hash table optimizations;

• xs-rdtok-numa - similar to xs-rdtok-nonuma, plus NUMA-aware thread schedul-

ing and memory allocation;

The TFIDF End-to-End indexing and search evaluation is performed on vari-

ants that include both the WaveReaderDriver and the Tokenizer in their runtime.

We compare the SCANNS variants between themselves but also to an indexing and

search application implemented using the Apache Lucene information retrieval li-

brary. We used ClassicSimilarity and the WhiteSpaceAnalyzer to tell the Lucene

variant to perform the same kind of indexing and search that SCANNS implements,

namely TFIDF. We further tuned the Lucene variant by setting the JVM available

and start memory to the maximum available on the system, we enabled server mode

and parallel garbage collector, and we tuned Lucene itself to use 1GiB buffers and

two merge threads per index thread. In the Lucene variant, similar to the SCANNS

variant, each index thread builds a local index and there is no communication be-

tween the index threads. Here all of the variants that we experimented with during

the TFIDF End-to-End indexing and search:

• xs-rdtokidx-std - implementation using C++ unordered map and without any
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kind of optimizations;

• xs-rdtokidx-swiss - implementation using Google Swiss Table and without any

kind of optimizations;

• apache-lucene - uses Apache Lucene;

• xs-rdtokidx-std-pa - similar to xs-rdtokidx-std, plus monotonic paged sub-allocator,

append cache optimization, NUMA-aware affinity and huge pages;

• xs-rdtokidx-swiss-pa - similar to xs-rdtokidx-swiss, plus monotonic paged sub-

allocator, append cache optimization, NUMA-aware affinity and huge pages;

3.2.3 ReaderDriver.

Figure 3.6a shows the performance the ReaderDriver variants, measured in

MiB/sec with increasing number of read threads, when running on a system that has

only one NVMe device installed but many compute cores. Here we can see that all

variants are able to saturate the single Samsung 970 EVO NVMe device (2.5 GiB/sec)

with a sufficient number of read threads.

In Figure 3.6b we see a different picture. The baseline ReaderDriver seems

to cap at approximately 7.5 GiB/sec, while the optimized versions reach close to the

theoretical limit, which is 56 GiB/sec for 16 Samsung 970 EVO NVMe SSDs (3.5

GiB/sec theoretical throughput per device), assuming linear scalability. The Wa-

veReaderDriver’s throughput caps at 40 GiB/sec, and after investigation we realized

that this is caused by the fact that these SSDs have a 4GiB internal fast cache. The

internal fast cache guarantees the advertised throughput as long as the data does not

exceed the cache size, but in our case the data set size split across 16 devices does

exceed the cache size, which causes the throughput to fluctuate. We consider this to

be acceptable since the Tokenizer and the Indexer typically exhibit lower performance
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than the WaveReaderDriver.

Figure 3.6c shows the performance of the ReaderDriver variants on a system

with many cores and multiple NVMe devices. The most interesting result in this

configuration is the importance of NUMA-aware configurations. We can see an im-

provement of 20% between the variant that uses NUMA aware thread scheduling and

memory allocation versus the one that does not. The WaveReaderDriver achieves

approximately 35 GiB/sec which is close to the theoretical 40 GiB/sec that 16 Intel

Optane 900P devices can achieve.

(a) 64cores-1disk (b) 32cores-16disks

(c) 192cores-16disks

Figure 3.6: ReaderDriver throughput with increasing number of read threads.
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3.2.4 Tokenizer.

Figure 3.7a shows the performance, measured in MiB/sec with increasing num-

ber of read and tokenize threads, for all of the 4 variants, running on the system that

has only one NVMe disk. We can see that all of the variants manage to reach the

disk limit in terms of performance after 8 read threads plus 8 tokenize threads (for a

total of 16 threads), but we can see that the optimized version is able to reach that

limit faster than the standard versions, with or without NUMA-aware affinity. In this

setup the NUMA-aware affinity have no affect as there is only one NVMe device.

Figure 3.7b shows performance on a system that has many NVMe devices but

not many cores. Here we can see a significant difference in performance between the

optimized and standard Tokenizer versions. Throughout all of the number of thread

configurations, we can see that the optimized Tokenizer achieves performance that is

roughly twice as fast as the standard version, reaching approximately 18.8 GiB/sec

throughput with 32 read threads and 32 tokenize threads. In this setup the NUMA-

aware configuration only makes a difference when we saturate the hardware threads of

the machine, but the difference is slight, increasing the performance of the optimized

version from 16.9 GiB/sec to 18.8 GiB/sec.

Figure 3.7c shows performance with many cores and multiple NVMe devices

and here we can clearly see the difference between all variants and thus between

all optimizations. Between the versions that do not use any kind of NUMA-aware

affinity, we can see that the optimized Tokenizer achieves better performance than the

standard version capping up at around 20 GiB/sec, but both versions seem to start

losing performance when the number of read plus tokenize threads exceeds 96. As for

when the Tokenizer also uses NUMA-aware affinity, we can see that both optimized

and standard Tokenizers reach the disk limit and flatten out at a throughput of

approximately 34 GiB/sec. While both of these versions reach the disk cap, we can
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clearly see that the optimized version reaches the cap faster and if the disk wouldn’t

be a limit it would probably still maintain the 2x advantage over the standard variant.

We consider these results satisfactory, since we observed that the slowest component

is the Indexer, that cannot reach the Tokenizer or ReaderDriver in performance.

(a) 64cores-1disk (b) 32cores-16disks

(c) 192cores-16disks

Figure 3.7: ReaderDriver and Tokenizer throughput with increasing number of read

and tokenize threads.

3.2.5 End-to-end TF-IDF indexing and search.

Figure 3.8a shows the performance, measured in MiB/sec of End-to-End in-

dexing with increasing number of read and index threads, for all variants. Each index
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thread is paired with a read thread, with the exception of the Lucene variant that

two merge threads with each index thread instead. We can see that, for a system that

has only one NVMe disk, solutions that do not use any kind of memory optimizations

seem to reach a low performance threshold, at about 400 MiB/sec for the Lucene

variant, 450 MiB/sec for the Swiss Table implementation and 275 MiB/sec for the

standard implementation. When using all of the memory optimizations, since the

Indexer is more memory-intensive rather than compute-intensive, combined with the

NUMA-aware tuning and huge-pages we can see that both the standard and the Swiss

Table implementations can surpass the low performance threshold. The standard im-

plementation reaches up to 815 MiB/sec with 32 index and 32 read threads, while

the Swiss table reaches 2255 MiB/sec. These results show that in order to achieve

high indexing performance, the inverted index needs a fast search data structure but

also an efficient inverted index design.

When looking at a system that has multiple NVMe devices but not that many

cores, as depicted in Figure 3.8b, we see a similar trend. The un-optimized solu-

tions, including the Apache Lucene variant, due the fact that they do not exploit the

memory hierarchy properties of these systems, cannot achieve very high performance

and cap out at 366 MiB/sec for Apache Lucene, 628 MiB/sec for the Swiss Table

implementation and 486 MiB/sec for the standard implementation. Only by incorpo-

rating the memory and NUMA-aware affinity can the standard implementation reach

1185 MiB/sec and the Swiss Table implementation reach 2431 MiB/sec, both with 32

index threads and 32 read threads. This system achieves better performance overall

because there are more memory channels per NUMA node than on 64cores-1disk.

On the system that has many cores and multiple NVMe devices and the most

memory channels per NUMA node, we can see that the SCANNS framework can

reach very high throughput, when the proper optimizations are used. Figure 3.8c
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(a) 64cores-1disk (b) 32cores-16disks

(c) 192cores-16disks

Figure 3.8: End-to-end TF-IDF indexing throughput with increasing number of read

and index threads.

captures this performance, and shows that the un-optimized variants reach a similar

performance limit to the previous setups, where the Apache Lucene implementation

caps at 478 MiB/sec, the standard Indexer caps at 443 MiB/sec and the Swiss Table

Indexer caps at 519 MiB/sec. The plot also shows that when using the memory

optimizations to reduce the cache misses and to reduce the number of page faults

while also using NUMA-aware scheduling of threads and allocation of memory, the

standard Indexer can reach a throughput of 964 MiB/sec, with 24 index threads and

24 read threads, while the Swiss Table Indexer can reach a whopping 9425 MiB/sec,
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with 192 index threads and 192 read threads. This last result shows that actually

in order to build a high-performance indexing engine on a single node computer, one

needs a fast search data structure, such as the Swiss Table, but one also needs to

design the TFIDF inverted index data structures in such a way that they can benefit

from the memory hierarchy.

cores
64cores-1disk 32cores-16disks 192cores-16disks

scanns lucene scanns lucene scanns lucene

1 237 26143 134 23224 229 20056

2 210 27811 134 23327 233 21747

4 214 30866 142 27952 237 25160

8 180 47981 153 28831 238 29412

16 189 45232 160 36787 248 33601

24 - - - - 269 39004

32 218 51520 173 39524 - -

48 - - - - 296 53666

64 264 65920 - - - -

96 - - - - 360 64651

192 - - - - 476 134061

Table 3.2: TFIDF End-to-end search latency (microseconds).

Table 3.2 presents the average search latency of the SCANNS TFIDF imple-

mentation that uses the Swiss Table as the search data structure and the efficient

design and optimization of the inverted index and compares it against the Lucene

variant, on the three different systems. The SCANNS variant exhibits magnitudes

lower latency, overall under 500 microseconds, when compared to the Lucene vari-

ant that runs search queries on average with latency over 20,000 microseconds. One

important observation to make is that even though both variants return the same re-

sults with the same TFIDF relevance scores, the lucene variant also sorts the results,

while the SCANNS variant does not sort the results. The sorting of the results could
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add additional overhead to the SCANNS search operations, but optimizing the query

engine is the subject of future work.

3.2.6 Random Access Memory Benchmark.

The Indexer seems to be the only component that requires further explo-

ration, as even with all our optimizations the throughput does not reach 10 GiB/sec,

even with 192 cores, 8 NUMA nodes and 16 NVMe devices, when the IO-intensive

ReaderDriver and the compute-intensive Tokenizer components with optimization can

achieve throughput in the 30 to 50 GiB/sec. We argue that the reason for such rela-

tively low performance, even in the presence of optimizations, is the memory-intensive

nature of the component and the implied random access present when building an in-

verted index. We ran multiple random access memory benchmarks, where we copied

the elements of an input buffer to an output buffer. Both buffers were pre-allocated

in memory and were split into multiple blocks, and the benchmark distributed the

blocks to multiple NUMA-aware threads that sequentially read the elements in from

each input block and wrote them randomly in an output blocks (see Figure 3.9).

Figure 3.9: Random Access Memory Benchmark Design.

The results that we got for increasing block sizes and increasing number of

threads, run on the 192cores-16disks machine, are depicted in Figure 3.10. It is inter-

esting how much performance degrades when the block size exceeds a certain value,

and in the context of re-organizing data when building and inverted index, we argue

that it points to a practical upper bound in performance. An implementation of an
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inverted index does multiple random read and write accesses, and even if there were

an implementation that would do a single random access it would not exceed the

throughput measured in this experiment. We use this result to argue that the per-

formance of SCANNS is good, when compared to the upper bound random memory

access, and excellent when compared to existing or un-optimized solutions.

Figure 3.10: Random Access Memory Benchmark.

3.3 Conclusion

We introdcuted and presented the SCANNS indexing framework to address

the problem of efficiently indexing data in high-end systems, characterized by many-

core architectures, with multiple NUMA nodes and multiple PCIe NVMe storage

devices. We designed SCANNS as a single-node framework that can be used as a

building block for implementing high-performance indexed search engines, where the

software architecture of the framework is scalable by design. The indexing pipeline

is exposed and allows easy modification and tuning, enabling SCANNS to saturate

storage, memory and compute resources on different hardware. SCANNS also pro-

vides a clear separation between platform or input specific components and platform

independent components, achieving good versatility.



50

We showed that a naive approach to reading data from a modern filesystem,

deployed on multi PCIe NVMe SSD storage devices, will lead to drastic performance

degradation (up to 6x) and we presented several techniques (e.g., memory pool design

pattern and direct IO) that can be used to avoid performance loss. We improved the

speed at which the framework can tokenize blocks of data read from disk, by using a

hashtable to replace delimiters in the block in O(1) and branchless programming to

iterate over the bytes in the block without causing branches or jumps. Since the tokens

from the blocks do not have a fixed length, the CPU branch predictor will not be able

to identify a pattern and will cause branch mispredictions. The removal of branches

from the tokenization process removes the associated cost of branch mispredictions

and allows a better use of the CPU pipelines. The branchless tokenizer outperforms

the standard C strtok() function while maintaining similar semantics.

We showed that the main bottleneck in inverted index solutions is not the

process of reading from disk, or even the process of tokenizing blocks of data read

from disk, but the process of re-organizing the data into the form of an inverted index.

Building the inverted index inherently exhibits random access read/write patterns

which stress the memory subsystem and ultimately becomes the main bottleneck.

However, we showed that with careful index data structure design, such as minimizing

pointer indirection inside the inverted index data structure that subsequently reduces

the number of cache misses, search engines can still obtain increased performance

close to the upper bound supported by the memory subsystem. Finally, combining

each of these components (ReaderDriver, Tokenizer and Indexer) with the proposed

set of global optimizations (NUMA affinity and huge pages) we showed that SCANNS

can achieve up to 19x better indexing while delivering up to 280x lower search latency

when compared to Apache Lucene, on configurations with up to 192-cores, 768GiB

of RAM, 8 NUMA nodes and up to 16 NVMe drives.
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CHAPTER 4

EVALUATION OF A SCIENTIFIC DATA SEARCH INFRASTRUCTURE

Scientific instruments and facilities are generating data at a rapid pace. Future

scientific discoveries will rely on insights derived from data, making search capabilities

critical. However, many science users rely on manual browsing or tools such as find or

grep which provide limited capabilities for large scale data and scientific file formats.

ScienceSearch [34] is a scalable search engine that uses a wide range of ma-

chine learning techniques (natural language processing, deep learning etc) to automate

metadata generation from different data sources, such as published papers, proposals,

images and file system structure. The current implementation is deployed to provide

search over data obtained from NCEM (National Center for Electron Microscopy)

that includes around 5TB of data (500K images). Users can interact with the Sci-

enceSearch infrastructure through a dedicated web interface that accepts a text query

and returns a list of relevant images, papers and proposals within seconds. The sys-

tem is deployed on a container service platform, called Spin, at the National Energy

Research Computing (NERSC) Center, a HPC facility. Such container service plat-

forms have more recently been deployed at HPC facilities to support science gateways,

workflow managers, databases, and other services. Deploying the ScienceSearch in-

frastructure on Spin allows us to leverage the high performance large filesystem at

NERSC while allowing users to query the data through a web interface.

Previous work showed that ScienceSearch is capable of generating relevant

metadata and providing low-latency high quality query results for our initial use case

from NCEM. The ScienceSearch infrastructure allows us to understand and address

key questions related to the scalability of our infrastructure for increasing data sizes

and number of users. The performance of dedicated search infrastructures greatly

depends on the ability to simultaneously serve multiple types of queries while keeping
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search latency as low as possible. Previous work found in literature has explored

scalable search in the context of Internet data [35, 36]. However, these results cannot

be directly applied to scientific data in HPC due to the unique characteristics of

the scientific data (i.e. size, formats, volume) and the performance considerations

of HPC environments. The focus of this work is the evaluation of ScienceSearch

towards understanding design implications for current and future scientific search

infrastructures. We perform a through evaluation of the current infrastructure and

discuss our experiences and results.

In our evaluation, we consider scientific data search queries that can be roughly

classified as two types: targeted and open-ended. A search query may be targeted

where the query results in few hundreds results. While relatively rare in our infras-

tructure, scientists might also issue open-ended queries as part of data exploration

where a search might return thousands or even millions of results. We evaluate Sci-

enceSearch’s underlying infrastructure performance under distinct search scenarios

that emulate both targeted and general/open-ended queries.

We present a thorough performance evaluation of ScienceSearch’s infrastruc-

ture focusing on scalability trends under different query types. We conduct an in-

depth analysis to identify the contribution of each search phase. For our experiments,

we deploy ScienceSearch both on a shared supercomputer infrastructure and on a ded-

icated testbed. Our evaluation considers latency, processing rate, memory utilization

and query throughput. Our evaluation also provides insights towards building gener-

alized search infrastructure for future systems, including performance considerations

for container platforms, need for load-balancing and parallelism, adaptive resource

scaling, and data representation in memory. Our performance evaluation scenarios

answer the following questions:

• How does the type of query (i.e. targeted or open-ended) affect search latency
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and underlying system requirements (such as memory footprint and CPU con-

sumption etc)?

• Is ScienceSearch able to scale and serve parallel search queries independent of

the underlying hardware infrastructure?

• What is the limit in terms of concurrent search queries that ScienceSearch

infrastructure can serve?

4.1 ScienceSearch

ScienceSearch system’s architecture features five components: user interface,

data import, metadata extraction, search engine, and a database. Users can express

their data needs in the form of a text query and receive back a list of relevant images,

papers, and proposals through the user interface. The data import component is

responsible for ingesting and storing scientific data and existing related metadata

(e.g. an image and its location in the file system) in the database. Currently, the

system supports images, papers, proposals, and calendar entries as data sources. The

metadata extraction component uses machine learning to automatically generate the

metadata tags. These tags are stored in the database. The search engine uses a model

that connects metadata generated from the metadata extraction component with the

imported images, papers and proposals.

The system utilizes Spin, a container deployment platform designed for HPC

environments, in order to gain access to HPC storage, compute and network resources

and provide users with low-latency search results. The data containing the scientific

images resides on a shared file system hosted on the supercomputer infrastructure

that is accessible from Spin. With Spin users can deploy their own container im-

ages in separate namespaces that can be located across different HPC nodes. The

platform’s orchestration layer facilitates access to local and remote (NFS) storage.
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Inter-container communication relies on underlying HPC network resources and the

encapsulation mechanisms provided by Spin’s orchestration layer.

An overview of ScienceSearch’s container-based architecture can be found in

Figure 4.1. ScienceSearch groups all data-related components (i.e. the data import,

metadata extraction and search engine) in a single container instance while the user

interface and database are deployed as separate instances. The backend and database

instances can be deployed separately and independently of the user interface guaran-

teeing portability and execution at different locations adjacent to HPC environments

(e.g. near the scientific instruments where the data is generated). Furthermore, all

data-related components can be executed separately and can be triggered by events

(e.g. creation of new data).

Figure 4.1: ScienceSearch container-based architecture and interaction with HPC

resources through Spin. Container instances are denoted with light green and inter-

container communication is represented with a dotted red line. HPC resources are in

grey (physical nodes) and blue (remote and local storage). Arrows show where each

instance is physically deployed.
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In this section, we describe the search infrastructure in detail. We describe

the search steps from when the user issues a search query until the list of matching

results is returned.

4.1.1 Search Lifecycle.

Search is conducted in three steps: user query processing, comparison with

stored metadata and finally result aggregation. The steps are depicted in Figure 4.2.

Figure 4.2: Parallel Architecture for Comparison with Stored Metadata step. A master

process slices the database index in W slices and spawns W workers respectively. Each

worker interacts with the database in order to fetch and rank intermediate results.

Once a user issues a search query, the user query processing step divides the

query into words (i.e. for queries that contain multiple terms) and the extracted

words are lemmatized (i.e. reduced to root stems). The lemmatized terms are then

passed to the next stage where the comparison with the metadata occurs. During

comparison with stored metadata, the query terms are compared against metadata
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that are stored in a database system and the results are ranked. The database lookup,

comparison and the intermediate result ranking is computationally intensive. In order

to optimize performance and reduce latency inducing bottlenecks, we opt for a parallel

environment with multiple workers that are managed by a master process.

The final step before the results are returned back to the user is result ag-

gregation. In this step, the master process combines each individual worker’s ranked

results in a list and sends that list back to the user through the user interface. Finally,

the master process terminates all worker processes.

4.1.2 Databases.

One of the main components of ScienceSearch architecture is a database which

stores information that is matched against the query string. The information stored

in the database includes searchable data entities as well as automatically generated

metadata that have been generated by the machine learning processes during the

metadata extraction phase.

ScienceSearch uses three categories of tables to organize searchable data enti-

ties and associated metadata: data entries tables, metadata entries tables and index

tables. The index tables function as indexes for one of the fields of each metadata

entry and were created as an additional optimization to reduce the time spent for

query matching against each metadata entry. Indexing is done based on text tag field

of each metadata entry containing a unique entry per tag. The text tag is a string

that semantically describes a metadata entry (e.g. Graphene).

Data entry tables are created by the data import component during data in-

gestion and contain a unique pointer to the data element itself (e.g. for an image

that is its location on the file system) along with related information (e.g. times-

tamp, dimensions for images, author list for papers etc). There is one data entry
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table per searchable category (i.e. Papers, Proposals and Images). In our evaluation,

we use the Data, Metadata and Index tables for Images. Metadata entries tables are

created by the metadata extraction component and contain the metadata in the form

of tuples which are later used by the search engine. ScienceSearch also features three

Metadata entries tables – Paper Metadata, Image Metadata and Proposal Metadata

respectively. These tables are used to store the metadata instances for each search-

able data entity category. Currently, the Images table features around 500K entries

and Metadata and Index tables contain 11M and 1M entries respectively.

4.1.3 Comparison with Stored Metadata.

During the comparison with stored metadata phase, the lemmatized list from

the user query processing stage is compared with the metadata entries that are stored

in the database. We use a two-level parallelism since this phase is compute intensive.

The first-level parallelism includes a master process that is responsible for slicing the

index table in n pieces, spawning w workers and assigning one slice per worker. The

slicing is performed in order to ensure adequate load balancing among the workers.

We now describe each worker’s actions as well as the individual interactions with

the three database tables. Each worker performs three steps a) retrieving indexed

metadata, b) recreating metadata objects, and c) ranking metadata objects.

Retrieve Indexed Metadata. Each worker queries the Index table. Each

worker retrieves unique from the slice assigned by the master process (see Figure 4.2).

The retrieval is executed as a comparison between the text tag field of each metadata

entity and the lemmatized list’s elements producing a hit score for each entity. The

hit score is calculated based on the lexicographic distance of the two entities. Once

the score is calculated, the worker keeps only the metadata entities that scored higher

(if any) than an empirically set threshold, and discards the rest. The retained results

are considered the hits.
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Recreate Metadata Objects. The goal is to recreate the metadata objects

that match the query. Each worker queries the Image Metadata table. Once the

objects are created they are grouped by text tag. Each tag has many associated

objects. The final product of this phase is a list of tuples containing the hit score,

metadata type, relevance score, text tag and pointed image for each metadata object.

Rank Metadata Objects. Each worker retrieves the results by querying

the Image table. An image might have more than one matching tuple of metadata

results. The search score of each image is calculated from the aggregation of the final

score of each tuple. The final search result is the determined from the list of images

that are sorted in descending order based on their computed score.

4.1.4 Parallelism.

ScienceSearch uses adaptive two-level parallelism to deal with open-ended

search queries that return thousands or even million of results. At the first level,

ScienceSearch uses parallel workers to handle hits in the Index table. Based on our

experiments the optimal number of first-level workers is 16. However, in the cur-

rent version of ScienceSearch data is not shuffled, sometimes leading to an uneven

distribution of hits between workers. In order to address this issue and enable elas-

ticity for open-ended queries, a second-level of parallelism is enabled in the worker

level (sub-workers 1 to N in Figure 4.2). If the number of metadata objects in the

recreate metadata tags step exceeds a certain threshold, a new pool of sub-workers

is created and the objects are distributed among them for ranking (sub-worker box

in Figure 4.2). After each sub-worker has completed the ranking step the results

are sent back to the worker that initiated the extra parallelism step. Currently, the

threshold that triggers additional parallelism is empirically set to 150,000 metadata

objects before ranking.
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4.1.5 Understanding the Memory Footprint.

In order to identify potential latency inducing bottlenecks, we take a closer

look at the memory consumption of each search worker due to intermediate object

creation during the three search stages. We use the term memory block to capture the

amount of memory consumed by the objects. At first, a block of memory is acquired

by each worker during the retrieval of unique tags that correspond to each worker’s

index slice. The number of objects is equal to the number of tags that are stored

in that particular database slice. However, during the recreate metadata tags phase,

each worker is tasked with fetching all metadata objects that include a particular

tag (one tag can have thousands of associated objects) consuming a significantly

bigger memory block for the recreated metadata objects. Finally, after ranking each

metadata object, a block is acquired for retrieving all images that correspond to the

highest ranking metadata objects, in the retrieve image data phase. An overview of

the memory blocks with the corresponding worker actions is shown in Figure 4.3.

It is evident that after recreate metadata tags phase, the number of objects

in memory significantly increases, making individual object size a determining factor

in ScienceSearch’s memory footprint as well as its ability to process multiple objects

in parallel. Table 4.7 shows the actual object numbers for a search worker after each

search step. We present our analysis of memory footprint in subsection 4.3.2.

4.2 Evaluation Setup

This section contains a detailed explanation of the evaluation setup, that in-

cludes a description of the ScienceSearch deployment and the software used to au-

tomate the experiments. Furthermore, we outline our performance metrics, and the

characteristics of the dataset that was used during the experiments, alongside the

type of queries identified.



60

Figure 4.3: Memory consumption of each search worker for object creation during

search stages. The number of objects significantly increases after Recreate Metadata

Tags.

4.2.1 Infrastructure.

The experimental setup consists of the deployment of the ScienceSearch com-

ponents as dedicated containers in order to ensure portability and isolation. Four

container instances are deployed: a Django backend, a PostgreSQL database, an Ng-

inx web proxy which also acts as a load balancer and the corresponding frontend that

serves a web frontend. Our setup, together with the component’s interaction during

query execution, is depicted in Figure 4.4. The user is connected to ScienceSearch

through a Web-proxy container which serves as a load-balancer. Once a user issues a

search query, the query is forwarded to the backend container where the three search

steps are conducted. The backend container, which is the only one with access to the

database, fetches search results after issuing one or more database requests. Finally

the results are served back to the user through ScienceSearch’s frontend.
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Figure 4.4: ScienceSearch deployment. Grey boxes are containers located on the same

physical node to avoid network bottlenecks. White arrows represent requests between

internal components.

ScienceSearch was deployed on two testbeds for the experimental evaluation.

The first testbed is on Spin, similarly to our production deployment. Our second

testbed is a dedicated single node environment. We use the first testbed to obtain a

high level overview of ScienceSearch’s performance in an context similar to our current

deployment measuring latency and throughput. The dedicated system is used for an

in-depth analysis of identified bottlenecks and for the measurement of performance

without other application interference.

Spin based infrastructure. We deploy ScienceSearch on a container service

platform at the National Energy Research Scientific Computing (NERSC) Center,

called Spin, which provides a Docker container execution environment and auto-

mated resource management on top of supercomputer network and storage. In Spin,

containers communicate over an overlay network implemented through IPsec over a

10GB Ethernet. Communication channels between containers that are part of the

same deployment are encrypted. In order to avoid the encryption-imposed network
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overhead in inter-container communication we opt for placing the Backend and the

database on the same physical node. ScienceSearch production deployment runs on

a set of dedicated nodes at the HPC center that are reserved for the service. The

node specifications are: 2x 24 core Intel(R) Xeon(R) CPUs E5-2680 v3 @ 2.50GHz

and 256GB of RAM.

Perth. It is a dedicated single node computer system on which ScienceSearch

was deployed exclusively. The single node computer has the following specifications:

2x 3.0 GHz 12-core Intel Xeon Gold 6136, 384 GiB 2666 MHz DDR4 RAM, 2x Intel

SATA SSDs set up as a Linux software RAID1, running CentOS 7.7.1908, Linux

Kernel 3.10.

The containers deployed on the dedicated testbed (Perth) communicate through

a simple Docker bridge interface, different from the overlay network in Spin. In terms

of storage, the single node testbed uses locally mounted directories in order to pro-

vide storage capabilities to the containers, while Spin makes use of storage volumes

mounted over NFS provided by the HPC system as a highly available and fault tol-

erant storage service. ScienceSearch is currently deployed as a production service on

Spin, and it is critical to understand the scalability of the presented search platform in

a real HPC context. The Perth testbed was selected as a dedicated system on which

we could run the evaluation without interference from other applications, without

container overheads and because the node resembles a host from Spin.

4.2.2 Software.

ScienceSearch is deployed on Docker 19.03.5, running PostgreSQL 10.10 as the

database service and Django 2.0.4 with Python 3.6.9 as the backend. Throughout

all of the experiments, the queries were launched from the backend using two client

Python3 scripts that are setup to emulate user queries that would be submitted
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through a web interface. The scripts cover a) the query latency, query processing

rate and memory footprint experiments and b) the query throughput experiments.

The client scripts allow us to automate the process of submitting different queries with

varying configuration parameters and to focus our analysis on the two search-critical

services: the backend and the database. They use the Python requests standard

package in order to submit requests, both for authentication token and for the actual

queries, and the multiprocessing package for launching multiple processes during the

query throughput experiments. The client scripts measured the overall latency of

queries, while the backend logged the latency and memory footprint information of

each search phase in a log file.

The backend is deployed with caching disabled for the entire evaluation. This

ensures we showcase the actual performance of ScienceSearch, with a focus on the

search phases and interaction with the database. The number of parallel worker

processes was varied from 1 to 32 in multiples of 4 during the query latency, query

processing rate and memory footprint experiments. The number of parallel worker

processes was fixed to 4 for the query throughput experiments.

4.2.3 NCEM Dataset.

The images produced by the microscopes found in the NCEM’s electron mi-

croscopy user facility (i.e. micrographs) are the main type of data produced. Sci-

enceSearch currently stores three types of inter-correlated data to the database that

are made available through search: images (e.g. micrographs), proposals and

calendar entries.

In our evaluation, we conduct search over the images dataset, which occupies

5TB of storage space. During data ingest, ScienceSearch crawls the supercomputer

file system hierarchy that contains the images, extracting file system metadata and
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experimental metadata added by scientists. The extracted metadata is stored in the

Image table in the database. Only the file system metadata and the experimental

metadata annotated by scientists are stored in the Image table and not the actual

images. This is the search space over which ScienceSearch executes search queries.

The Django framework transforms the database records to Python 3 objects.

Table 4.1 shows the total number of objects and size (in the database) of the tables.

Database table number of records total size

MetadataIndex 1,184,851 115 MB

Metadata 1,1261,844 791 MB

Image 557,195 11 GB

Table 4.1: Total number of objects/records found and amount of storage used by each

table, for the evaluation search space.

4.2.4 Evaluation Metrics.

In order to evaluate the scalability of the ScienceSearch and identify per-

formance bottlenecks we focus on the following four metrics: query latency, query

processing rate, memory footprint, and query throughput. The main focus of our

evaluation is on ScienceSearch’s infrastructure, hence we do not include quality of

search results in our evaluation metrics set.

Query Latency. We measure overall query latency as the amount of time

spent by the client program to prepare the request and to receive the response, as

well as the amount of time of ScienceSearch to process the query. While, we include

the time it took to perform token-based authentication, we exclude the time it took

to acquire the token. We measure the minimum, average and maximum of average

query latency for each query from a given workload.

In each experiment, we also measure the latency of each phase of the search
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algorithm (as presented in 4.1.3). For a detailed breakdown analysis, we combine the

time to prepare the request, the time to receive the response and the time to aggregate

the final results (as depicted in Figure 4.2) into other latency, which summed together

with the execution time of each search phase, constitutes the overall search time.

Memory footprint. When evaluating the memory footprint of each search

phase, we calculate the number and the size of all intermediate objects and data

structures as well as the size of the final result objects. In the case of an image, the

final result object consists of the image itself along with associated metadata (e.g.

image location in the filesystem, instrument name and the date on which the image

was acquired, etc 4.1.2).

Latency and memory footprint were measured in separate sets of experiments

in order to separate the overhead of the memory footprint measurements from the

latency of the actual query process.

Query Processing Rate & Throughput. Overall query processing rate

is calculated as the total number of objects divided by the overall latency. For the

query processing breakdown of each search phase we divide the total number of ob-

jects corresponding to a search phase with the maximum latency registered at that

particular phase between all worker processes used. Since each worker process runs

in parallel and the entire search program needs to wait for the last worker to finish in

order to complete the query execution, we select the latency of the slowest worker pro-

cess when calculating the query processing rate. Finally, we measure ScienceSearch’s

throughput in terms of concurrent queries served per minute.

4.2.5 Queries.

We have identified two types of terms that when included in a query exhibit

different behavior. For the evaluation of ScienceSearch, we consider two different
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query sets that highlight that difference in performance, and suitable terms for each

query set were selected as a result of a short examination of the metadata tags found

in the database.

Query Set 1: Our first query set is meant to capture queries that are com-

monly executed in practice over the NCEM dataset. They typically return on average

under 200 results. We refer to these queries as targeted queries, they have a limited

set of matching metadata tags, hence limited number of associated objects are gen-

erated during the recreate metadata tags search step (Figure 4.2). Targeted queries

represent searches from users that have domain specific knowledge and that are famil-

iar with the underlying datasets and look for specific terms. The majority of queries

executed on ScienceSearch are targeted queries.

Query Set 2: For the current data set in consideration, we pick queries

that are more general or open-ended and would return a large number of results.

Specifically, we pick queries that return over one thousand results. General queries

match almost every stored metadata tag and allow us to thoroughly test the limits

of ScienceSearch’s infrastructure by maximizing both the computational load and

memory footprint of each search step. Furthermore, the high number of associated

objects allows us to identify performance bottlenecks.

For targeted queries, we randomly select 76 tags that have less than 200

matches on average in the entire search space of our dataset. For general queries

we select 6 tags that have at least 1,000 matches. Example of both query categories

and the number of results returned are listed in Table 4.2.

4.3 Experimental Results

This section covers the results of the experimental evaluation performed on

ScienceSearch. We exclude measurements from search queries that return zero results
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Query Type Term Number of Returned Results

Targeted lattice 37

Targeted 50images.dm3 159

General vortices 3,008

General Frame 1001

Table 4.2: Example terms of targeted and open-ended queries along with the number

of final results returned to the user.

since they exhibit very low latency. The query sets and obtained results depend on the

size and number of entries in the dataset and therefore can change if the evaluation

process is conducted on a different dataset.

The experimental evaluation covers the performance of the proposed search

platform from the perspective of: a) the query processing rate metric (Subsection 4.3.1),

b) memory footprint (Subsection 4.3.2), c) query latency metric (Subsection 4.3.3), d)

the breakdown analysis of the search phases (Subsection 4.3.4), e) the query through-

put metric (Subsection 4.3.5), and f) a comparative evaluation of ScienceSearch on

the two testbeds (Subsection 4.3.6).

4.3.1 Query Processing Rate.

Query processing rate, (i.e. how many objects per second or how much data

gets processed per second with increasing number of parallel workers) is very use-

ful when trying to understand the performance of a system such as ScienceSearch.

Figure 4.5a depicts the overall query processing rate of ScienceSearch for both query

sets. In the context of Query Set 1 (i.e. targeted queries), ScienceSearch shows a good

scalability trend and exhibits a processing rate of approximately 87 kObjects/second

and 518 kObjects/second, when increasing the number of parallel worker processes

from 1 to 32, resulting in an almost 6x speedup. As for Query Set 2 (i.e. open-ended
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queries) the processing rate increases slightly from roughly 50 kObjects/second to

99 kObjects/second, when varying the number of workers from 1 to 32, achieving a

speedup of 2x. It can be noted that query processing rate for Query Set 2 has a slower

acceleration than Query Set 1.

(a) Combined processing rate.

(b) Processing rate Query Set 1. (c) Processing rate Query Set 2.

Figure 4.5: Average processing rate, measured in objects per second, with increas-

ing number of parallel worker processes. (a) Comparison between Query Set 1 and

Query Set 2, combining the average processing rate of all search phase. (b) Average

processing rate of each search phase for Query Set 1. (c) Average processing rate of

each search phase for Query Set 2.

Figures 4.5b and 4.5c show that the metadata index retrieval and metadata

index filter phases exhibit higher data processing rates than the recreate metadata

tags and the image objects ranking phases. The ranking phase seems to cap at 1622
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Objects/second for Query Set 1 and at 210 Objects/second for Query Set 2. The

difference in the processing rate can be attributed to differing loads (more analyses

in Section 4.3.2).

4.3.2 Memory Footprint.

This evaluation offers valuable insight on the nature of two query types, by

looking at the total number of objects processed and generated by each search phase.

number of objects min average max

metadata indexes 1,184,850 1,184,850 1,184,850

filtered indexes 1 11 64

metadata tags 19 214 1,589

Image objects 19 190 1,414

Table 4.3: Memory footprint measured as the minimum, mean and maximum number

of objects processed when executing Query Set 1 queries, grouped by search phase.

number of objects min average max

metadata indexes 1,184,850 1,184,850 1,184,850

filtered indexes 1 6 25

metadata tags 265,837 497,031 651,684

Image objects 505 1,586 3,008

Table 4.4: Memory footprint measured as the minimum, mean and maximum number

of objects processed when executing Query Set 2 queries, grouped by search phase.

Table 4.3 shows the memory footprint at each search phase for Query Set

1. The index retrieval phase looks up approximately 1.2 million objects (number of

unique tags in the index table) from the database, while only 11 objects on average

are filtered after the index filter phase. The objects expand to 214 objects ( 20x

increase) on average at the metadata recreation stage. Finally, around 190 objects on

average are returned in the end, after performing ranking on them during the ranking
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phase. In the case of Query Set 2 (Table 4.4), an average of 6 objects are transferred

after index filtering. In the next stage (recreate metadata), 497K objects on average

match of which 1,586 of get returned as results, which is a significantly larger than

what we see in Query Set 1.

total size (bytes) min average max

metadata indexes (with Python) 661 MB 802 MB 813 MB

filtered indexes (with Python) 2.8 KB 8.6 KB 36 KB

metadata tags (with Python) 15.6 KB 168.5 KB 1.2 MB

Image objects (with Python) 204 KB 6.5 MB 48.7 MB

metadata indexes 74 MB 74 MB 74 MB

filtered indexes 26 B 356 B 2 KB

metadata tags 608 B 7.6 KB 65.5 KB

Image objects 38.8 KB 2.3 MB 17.3 MB

Table 4.5: Memory footprint measured as the minimum, mean and maximum size of

processed objects when executing Query Set 1 queries, grouped by search phase.

total size min average max

metadata indexes (with Python) 661 MB 762 MB 813 MB

filtered indexes (with Python) 2.8 KB 5.8 KB 16 KB

metadata tags (with Python) 209 MB 376 MB 524 MB

Image objects (with Python) 27.4 MB 85.2 MB 163.9 MB

metadata indexes 74 MB 74 MB 74 MB

filtered indexes 20 B 227 B 932 B

metadata tags 9.8 MB 17.9 MB 31.9 MB

Image objects 10.4 MB 32.1 MB 62.1 MB

Table 4.6: Memory footprint measured as the minimum, mean and maximum size of

processed objects when executing Query Set 2 queries, grouped by search phase.

Tables 4.5 and 4.6 contain the values at each search phase for targeted and

general queries, respectively. The amount of data measured is proportional with the
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number of objects recorded at each phase, showing the size of the data with and

without Python 3 overhead. The overhead is a direct result of the data structures

selected by Django for storing the database records requested during each phase.

Optimization. We have implemented two optimizations that are the result

of the memory footprint analyses. First, the second-level of parallelization of workers

was introduced to alleviate the challenges encountered if a user were to issue an

open-ended query (rare in our current use case, but possible).

Figure 4.6: Reduced query latency for both targeted and open-ended queries after

object size reduction.

In addition, we perform an object-level optimization in order to reduce the

amount of data moved from the database to the search workers during the final

image retrieval stage. Specifically, we move each object’s file metadata field (currently

stored in JSON format) from the database to disk. Reducing each object’s size

subsequently reduces the time spent to recreate final search results (retrieve image

data step in interaction with the database 4.1.2) and improves overall search latency.

The optimization effect on search latency for both query sets for 16 parallel workers is

shown in Figure 4.6. For general queries the object-level optimization reduces search

latency by 2.2 seconds while for targeted queries the reduction is 0.2 seconds. The
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search latency reduction is between 7 and 12%.

4.3.3 Query Latency.

Figure 4.7 contains the measured latency of ScienceSearch and the average

maximum latency of each search phase for Query Set 1. Figure 4.7a shows that

on average for targeted queries it takes ScienceSearch 13.72 seconds (1 worker) and

2.44 seconds (24 workers) to execute a query. For Query Set 2, Figure 4.7c shows a

similar trend, but with significantly higher latency when compared to the Query Set

1. Without query processing parallelism, running a general query takes 34.19 seconds

and drops to 18 seconds with 32 parallel workers.

Figure 4.7b shows that metadata index filtering is the most demanding search

phase and that query processing parallelism increases the performance of each phase

by reducing the latency significantly for metadata index retrieval and filtering. Sci-

enceSearch scales reasonably well, optimizing the most costly phases of search and

therefore improving the overall search latency. In the case of Query Set 2, the most

demanding phase is not the index filtering anymore and further analysis showed that

there is an emerging load balance issues caused by the way indexes are partitioned

between the workers. This analysis is discussed in the following section.

4.3.4 Analysis of Queries with Large Results.

Figure 4.8 shows the latency of each search phase with 16 parallel worker

processes. We can see that the metadata index retrieval phase takes up to 0.48 seconds

and the metadata index filtering phase takes up to 0.56 seconds for all workers, and

that each worker spends a similar amount of time in these two phases. When we

look at the latency of the recreate metadata tags and the final image object ranking

phases, we can see that workers do not spend the same amount of time. Some worker

processes end up spending approximately 7.93 seconds, as is with worker 3, while
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(a) Lantecy Query Set 1. (b) Latency each search phase.

(c) Latency Query Set 2.

Figure 4.7: (a) Overall average query latency and min-max variation with increasing

number of parallel workers (Query Set 1). (b) Average query latency grouped by

search phase, with increasing number of parallel workers (Query Set 1). (c) Over-

all average query latency and min-max variation with increasing number of parallel

workers (Query Set 2).

other spend under 0.01 seconds. Worker 3 also takes 11.8 seconds to perform the

ranking on the image objects, while other workers spend again under 0.01 seconds in

the same phase.

The imbalance in the worker processing time is caused by data that is not

distributed evenly across worker processes. (Table 4.7) This causes the remaining

phases in the query processing pipeline to suffer from a similar imbalance, and for

some phases it can be much worse. For example, the recreate metadata phase does
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Figure 4.8: Average latency of each search phase for each worker for a query (Frame)

from Query Set 2 with 16 parallel workers.

not convert the metadata index objects to metadata tag objects on a one-to-one basis,

but follows a one-to-many structure, generating in the best case scenario 410x more

objects while in the worst case scenario 14,000x objects (Tables 4.3 and 4.4).

worker

ID

metadata

indexes

filtered

indexes

metadata

tags

Image

objects

0-2 74,053 0 0 0

3 74,053 2 549,226 1,000

4 74,053 1 1 0

5-15 74,053 0 0 0

Table 4.7: Number of objects processed, filtered or generated at each search phase

for each worker for an query (Frame) from Query Set 2 with 16 parallel workers.

4.3.5 Query Throughput.

Figure 4.9a shows the average query throughput while running concurrent

targeted queries. Query throughput increases significantly with increasing number of

concurrent queries being issued during the same experiment. When only one query
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is issued at one moment of time ScienceSearch achieves a throughput of roughly 12

queries/minute. When running 8 queries at the same time, each query using 4 par-

allel worker processes, there are a total of 32 concurrent processes that access the

database and process the queries, but the resulting throughput is approximately 65

queries/minute, which is even faster than using 32 parallel worker processes while

executing only one query at a time, which achieves a throughput of roughly 25

queries/minute. When we executed 32 queries concurrently, that means 128 concur-

rent processes in total, the throughput increases to 88 queries/minute, even though

the system was over-provisioned. For Query Set 2, as depicted in Figure 4.9b, Sci-

enceSearch shows similar trends in terms of scalability, experiences reduced perfor-

mance degradation when running concurrent queries, even when over-provisioned, but

achieves a lower query throughput when compared to the Query Set 1 performance,

which is in concordance with the difference in latency between the two datasets.

(a) Throughput for Query Set 1. (b) Throughput for Query Set 2.

Figure 4.9: (a) Average query throughput and min-max variation for Query Set 1

with increasing number of concurrent queries. (b) Average query throughput and

min-max variation for Query Set 2 with increasing number of concurrent queries.

The key takeaway from these results is that ScienceSearch can serve multiple

clients at the same time minimizing the side effects of workload imbalance.



76

4.3.6 Spin Infrastructure vs Dedicated Testbed.

This subsection covers the latency and throughput experiments that were run

on the single node system called Perth, on which ScienceSearch was deployed exclu-

sively. ScienceSearch performs better by a small degree on Perth than on Spin, and

that could be attributed to different factors, including hardware specification, infras-

tructure particularities and the lack of interference caused by other applications.

Figure 4.11a shows that for Query Set 1, the system can end up achieving a

latency of under 2 seconds, when configured with at least 20 parallel worker processes.

For Query Set 2 (Figure 4.11b), the latency can go as low as approximately 11.5

seconds when using 32 parallel worker processes. In terms of throughput, the lack of

overhead from the storage system and the lack of interference allows ScienceSearch

to reach up to 134 queries/minute while running 32 concurrent targeted queries and

roughly 42 queries/minute while running 32 concurrent Query Set 2 queries. As seen

in Figure 4.10, the dip in throughput while running 20 concurrent Query Set 2 queries

is caused by the fact that we ran 96 queries which does not divide exactly to 20.

(a) Query throughput for Query Set 1. (b) Query throughput for Query Set 2.

Figure 4.10: (a) Average query throughput for Query Set 1 on Spin and Perth. (b)

Average query throughput for Query Set 2 on Spin and Perth
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(a) Average latency for Query Set 1. (b) Average latency for Query Set 2.

Figure 4.11: (a) Average query latency for Query Set 1 on Spin and Perth. (b)

Average query latency for Query Set 2 on Spin and Perth.

It can be observed from the latency and throughput experiments, that the

performance of ScienceSearch plateaus halfway through the number of available cores

on all testbeds. From Figures 4.11, we can see that latency does not seem to decrease

at the same speed after 12 cores when running on Spin and Perth. This can be

attributed to the fact that in each experiment, the number of processes created is

in practice double the amount of configured parallel workers processes. The above

results in reaching the limit of available cores for both testbeds, while in fact only half

of them belong to ScienceSearch’s backend. The other half belong to the database,

that spawns a process for each parallel work process. The same effect can be observed

in Figures 4.10 that encompasses the throughput experiments. After 12 cores for Spin

and Perth, throughput does not increase as fast as before the number of cores get

over-provisioned with processes.

4.4 Discussion

In this section, we discuss key insights from our experiences and results. We

focus our analysis on six key elements of ScienceSearch: a) Spin and it’s underlying
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mechanisms that export HPC resources to ScienceSearch’s deployment, b) internal

load balancing and c) adaptive resource scaling that are necessary for dealing with

open-ended queries, d) the effect of structures used in data representation and size in

Python3, e) the strengths of ScienceSearch as a solution for performing search over

scientific data and f) finally a discussion about how future hardware could further

improve the performance of ScienceSearch.

4.4.1 Spin.

HPC facilities ingest data at increasingly rapid rates (in some cases exceed-

ing petabytes) increasing the demand for solutions that will enable scientific search.

Supercomputing facilities are providing platforms such as Spin that enable atypical

software stack deployment on HPC resources while benefiting from the resources at

the center. Deploying our infrastructure on Spin allows us to access HPC network,

storage, and compute resources.

Spin has been critical to enable the ScienceSearch infrastructure at the HPC

facility. ScienceSearch is designed to be deployed as a service that is available all

the time, without the need to re-compute indexes and re-learn metadata tags every

time a user issues a search. This is different from existing search solutions that are

implemented as a library or a program that runs ephemerally either on the logins

nodes or on the actual supercomputer, and that usually requires at least the index to

be reloaded in memory.

We observe from Figures 4.11a and 4.11b that between Spin, a shared multi-

user supercomputer infrastructure, and the single node testbeds, ScienceSearch ex-

hibits similar performance trends, albeit at slightly different latency. The latency

discrepancy can be explained by the underlying hardware, (faster CPU, memory)

but also by the inherent latency of the two different infrastructures. We know that
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ScienceSearch is latency-sensitive, thus the remote storage volume that Spin provides

and which the search platform uses, will induce a certain, latency penalty when con-

trasted to local storage (remote storage has the added latency of both network and

storage). On the other hand, ScienceSearch was designed to run on Spin and can

exploit the inherent benefits that come with it: mobility, fault tolerance and scalabil-

ity. The database has its data stored over the network, and can easily be moved to

another compute host, enabling ScienceSearch to achieve mobility.

Fault tolerance and scalability are accomplished through the use of multiple

instances, either for the front-end or the back-end, but as well as for the database, that

can easily be deployed on multiple hosts, while data can be protected against faults

and scaled up independently. Of course upgrading the hardware to faster counterparts

and increasing the number of compute units, while fixing the load balance issue, could

easily lead to better performance. However, the benefits of running ScienceSearch in

the current infrastructure far outweigh the cost.

Our extensive performance evaluation has unveiled some key challenges that

will make scalability difficult as data sizes increase. Achieving network performance

across the containers is still hard and impedes our ability to deploy database instances

across multiple nodes and scale. Currently, Spin encrypts communication between

containers that are located in different physical nodes by default. The encryption

significantly reduces available throughput and the ability to transfer data from the

database instance to the back-end container executing search. Meeting security re-

quirements while achieving performance will be critical for future scaling.

4.4.2 Search Engine Internal Load Balancing.

Our evaluation results have demonstrated that the root cause of increased

latency for open-ended queries, is the uneven distribution of results between workers
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before ranking (see Figure 4.8). In order to ensure low query latency for large scientific

datasets, a scalable search infrastructure needs to achieve adequate load balancing

of query matches between search workers. In the context of a master-worker search

model, load balancing can be achieved by placing intermediate matches in a common

queue and coordinating redistribution between idle workers. The common queue

operations might introduce some overheads that will need to be considered.

Currently, in-node parallelism reduces query latency ( Figure 4.7) by a factor

of 3. However, enabling search over a significantly larger dataset would require across-

node parallelism. To address this issue a master-worker deployment can be utilized

where multiple search and database instances are spawned by a master search process.

4.4.3 Adaptive Resource Scaling.

During the initial deployment phase of ScienceSearch open-ended queries were

unable to complete, causing system wide exceptions and memory leaks. The un-

derlying exceptions were attributed to the high number of metadata instances that

workers had to manage after the initial load distribution phase, i.e., the rank meta-

data tags step. We addressed this issue by introducing a second level of adaptive

parallelism. Adaptive parallelism is necessary for serving open-ended queries hence

enabling scalable exploration of the scientific search space.

In order to be scale dynamically depending on the query, adaptive resource

scaling is necessary. Search architectures need to be able to elastically provision HPC

resources for serving computationally demanding searches and release those resources

when they are no longer needed. While this is a common resource usage model for

cloud computing, is difficult or impossible to do in most current HPC systems. It is

critical for HPC facilities to provide abstractions to enable adaptive resources scaling

while keeping utilization high.
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4.4.4 Data Representation & Sizes.

During the recreate metadata tags step 4.1.3 the metadata instances are gen-

erated from the filtered indexed metadata tags in a one-to many fashion (one filtered

indexed metadata tag can have many associated metadata instances), which results

in a large number of objects that need to be processed by each worker. Introducing

an intermediate ranking step would reduce the objects number and thus the overall

latency for all queries, especially the open-ended queries.

One of the key findings in our evaluation process is that the total size of each

metadata instance (and subsequent memory footprint of the parallel search worker) is

greatly increased (sometimes by 9x) due to the object representation in Python3 by

Django (Tables 4.5, 4.6). As we use these frameworks in HPC environments, we will

need to investigate appropriate optimizations. One solution that partially mitigates

the memory overhead issue (especially for Python dictionaries) is the use of alternate

data structures such as slots or namedtuples.

4.4.5 ScienceSearch Performance.

ScienceSearch provides specific advantages to the the problem of implementing

search engines over domain specific scientific data found in HPC systems. Science-

Search’s novelty is its mechanism for combining and correlating information from data

with other data sources, such as research papers, images, proposals, calendar entries.

This is accomplished through a set of deep learning and natural language processing

algorithms employed by ScienceSearch, that are used to generate metadata tags. The

majority of classical search engines designs and architectures [17] assume the input

data to be a collection of data sources that area flat domain of input data where the

collection of data sources are homogeneous in structure and semantics, and Science-

Search innovates in this area by providing a mechanism for combining structurally
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and semantically different data sources.

Vertical scalability is an inherent property of the ScienceSearch design and

architecture, while horizontal scalability is achieved through container platforms that

can make use of HPC hardware, such as Spin. In this work, we emphasize on the

vertical scalability of ScienceSearch and pinpoint techniques used for achieving good

scalability and performance, such as the adaptive two-level parallelism technique. Sci-

enceSearch can also achieve horizontal scalability, due to its decomposition of com-

pute, storage and interface components into containers. ScienceSearch can decide

how many containers of each type can run in a deployment.

For targeted queries ScienceSearch can achieve query latency as low as 2.5 sec-

onds, which is satisfactory, given that the current users had no search engine solution

available and thus no means to search over their data. Existing solutions, such as

Apache Lucene advertise to achieve sub-second query latency, but when comparing

ScienceSearch to existing solutions, we have to keep in mind the different indexing and

query pipelines and the differences in the inverted index structure that ScienceSearch

employs that adds additional overhead but provides a richer and more meaningful

user experience for scientific data.

4.4.6 Impact of Future Hardware.

While the performance of the ScienceSearch platform does not solely depend

on a set of hardware properties, as shown by the experiments across different testbeds,

ScienceSearch can still benefit from the performance improvements of computer hard-

ware (CPU, memory, storage and network). Some immediate improvements in per-

formance stem from, as mentioned in subsection 4.4.1, from better inter-container

communication through a network that maintains a certain degree of security and iso-

lation without significantly sacrificing performance. Using hardware solutions such
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as VLANs could alleviate many performance bottlenecks either from the network

devices, the operating systems or the container hypervisor, while still retaining the

similar security properties to IPsec without the need for encryption.

Other more system-wide improvements could come from the development and

adoption of exotic hardware. For example NVIDIA’s emerging [37] (DPU) could be

used to improve the performance and scalability of HPC applications by providing the

means to overlap communication with computation [38]. UPMEM have been working

on Processing-in-Memory PIM [39] devices that could be used to accelerate database

query processing [40] by moving computation to where data resides (i.e. memory

DIMMS) and by avoiding bringing the data to where computation is performed (i.e.

the CPU). These are just two examples of future technologies that ScienceSearch

could exploit in order to achieve even higher performance and scalability.

4.5 Conclusion

We present a detailed evaluation of ScienceSearch’s underlying infrastructure.

Our results have shown that ScienceSearch can serve up to 130 queries per minute

while keeping latency around 2.5 seconds for typical user queries (where results are in

the hundreds). In order to deal with the increased number of results from open-ended

queries, we have introduced an additional level of parallelism that load balances both

object recreation and ranking.

Our work also provides considerations and insights in the design and support

of search systems on HPC systems. While a container-based infrastructure at an

HPC infrastructure lets us leverage the high-performance filesystem, it provides other

challenges with performance that need to be considered by applications. We also

highlight the need and opportunity for adaptive resource scaling, considerations of

data representation in memory.
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CHAPTER 5

RELATED WORK

In this chapter, we talk about existing work in the areas of data retrieval and

date indexing. We cover exiting work in information retrieval, inverted index design

and search engine design, including a few domain specific search solutions from various

scientific research projects.

5.1 Data Indexing and Retrieval

Indexing has been long studied in database systems [41]. In such systems

data is organized according to a pre-determined model. Adapting this approach to

the context of unstructured data that is dispersed amongst multiple nodes, suddenly

becomes more challenging. In the following paragraphs, we review different solutions

and research projects that tackle the problem of indexing in distributed systems.

One study follows the implementation of a B+-tree-based indexing scheme [42],

in which a structured overlay is constructed over the nodes. The overlay is kept up

to date by local indexes in accordance with the data on each node. Clients are able

to query the overlay using an adaptive selection algorithm. This solution is based on

previous work on distributed b-trees [43], with modifications to address the needs of

cloud computing environments.

Another study, uses the same model of building an overlay over the nodes

found in a cluster, using R-trees and a custom routing protocol [44]. This approach

leverages a query-conscious cost model, that selects beneficial local R-tree nodes for

publishing to the overlay. This scheme was designed to work well in power-aware

cloud computing environments (e.g., epiC [45]).

A different approach, named GLIMPSE [46], employs partial inverted indexes

that consume smaller disk space than a full-text-inverted index. Geometric partition-
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ing [47] also manipulates inverted indexes by splitting it according to updating time

so to reduce the update overhead. Similarly, query-based partitioning [48] categorizes

inverted indexes based on access and query frequency.

Recent prior work [49] have also looked at orthogonal issues in optimizing

search performance, by reducing the network load in large-scale distributed systems

in one-to-many and many-to-one communication patterns, commonly found in dis-

tributed search. We found that spanning trees are more efficient than direct one-

to-many communication, allowing search queries to propagate to many distributed

indexes much faster with lower costs.

5.2 Search Engine Design

Other research focuses on the high-level indexing pipeline and the integration

of indexing and search in existing parallel and distributed file systems. TagIt is

one such project [50, 8, 51], that implements a scalable data management service

framework for scientific datasets, that is integrated with the underlying distributed

file systems that house the scientific datasets. The framework relies on a scalable

and distributed metadata indexing framework, that can index file system related

metadata as well as custom metadata created by the users, under the form of tags,

that can aid data discovery. The authors aim at making the indexing framework not

reside on external hardware, the same way catalog solutions do, but tightly integrate

it with the distributed components of the file system and making use of file extended

attributes. But ultimately the proposed indexing framework is implemented as a

collection of distributed databases, making this solution appropriate for structured

and semi-structured data, but more difficult to use for unstructured free-text data,

where inverted indexes are a better choice. TagIt was integrated with and evaluated

on GlusterFS and CephFS, and while the overall service was able to achieve good

performance with minimal overhead, due to optimizations such as data and index
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co-location and asynchronous processing and communication, we suggest that there

is still room for improvement at the low level design of the indexing framework at

that single-node level, which could accelerate high-level solutions even more beyond

what they can currently achieve. Other existing works from the HPC domain (e.g.

GUFI [7, 52]) has also aimed to tackle the indexing and search problem focusing on

metadata as opposed to the scientific data itself. We believe both the metadata and

data are both critical components to better accessibility of scientific data.

One of the more important parts of an information retrieval solution or search

engine, that can directly influence the performance of the index and search processes,

is the design and implementation of the inverted index. The inverted index uses

one or more search data structures as its constituent components in addition to the

other data structures used to store any kind of information related to the entries in

the inverted index. There are researchers who actively look at how to design and

implement the inverted index for a specific dataset or application. MIQS [53] is a

solution that aims to efficiently index self-describing data formats, such as HDF5

and netCDF, through the use of a custom in-memory index implementation. MIQS

provides a portable and schema-free solution that is aligned with the paradigm of

self-describing data, and it uses a combination of search trees to build the index.

Cavast [54] is a another project that aims to improve the performance of

in-memory key-value stores, through a re-design of hash table implementation, in

order to better exploit the CPU caches and memory subsystem. Cavast achieves this

through a combination of methods and techniques: the separation of key and value

placement in memory, laying out the hash table elements in memory so that they

can better benefit from cache locality and exposing the kernel cache coloring scheme,

to name a few. While we acknowledge the importance of the search data structure,

we emphasize that the search data structure alone cannot guarantee high indexing
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performance and that the inverted index needs to be designed and implemented as a

scalable and tightly coupled combination of search data structure and inverted index.

Numerous works evaluate the scalability of search infrastructures mainly fo-

cusing on the indexing and query processing parts. ElasticSearch [55] provides a set of

dedicated metrics that measure query processing time, latency and throughput while

indexing performance is measured using indexing and flush latency. Solr [56] features

built in timers for query latency and indexing performance. Apache Lucene [57] has

been used as a core building block for scientific search engines and information re-

trieval tools. The authors in [58] evaluate the scalability of Anserini, a Lucene-based

information retrieval tool, by creating custom benchmarks for indexing and ranking.

The presented solutions are limited in providing only horizontal scaling and do not

comprehensively evaluate all scalability aspects.

5.3 Search in Science

Indexing and search in large high-performance file systems is not a problem

that is solely specific to search engine applications, but other domain specific applica-

tions could also benefit from having an efficient indexing and search service that runs

well on HPC systems. Genomics research is a field that could benefit from efficient

indexing methods, and there is work that looks, for example, at ways to improve the

performance of DNA k-mer sequence counting using indexing techniques [59]. In the

mentioned work, the authors propose two distributed parallel hash table techniques.

These two techniques are optimized to use cache friendly algorithms for hashing,

to overlap computation with communication in order to hide latency and to use a

vector-based computation technique to compute the hashes of many k-mer indices.

Their solutions can process 1TB over 4096 cores in 11.8 and 5.8 seconds, demonstrat-

ing high improvements over the state-of-the-art. We argue that an efficient indexing

framework, with an exposed indexing pipeline, should be able to achieve, after tuning
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of course, similar if not better performance to the two proposed solutions, while still

maintaining enough generality to be easily used in other scenarios.

Numerous research efforts have tried to address the issue of scientific search

capabilities. The Materials Project [60] enables search over an individual material’s

characteristics, while KBase [61] provides search capabilities over systems biology

data. LODAtlas [62] enables users to discover datasets of interest by facilitating

content and metadata based search. Finally, Thalia [63] is a search infrastructure that

enables semantic search in biomedical literature based on named entity recognition.

However, none of the proposed solutions provide scalable search environments that

can host vastly growing amounts of data and provide low latency search results and

can’t be used to compare our infrastructure.

Data Search [64] provides a scalable solution for metadata management but the

system does not automatically infer or create metadata from the ingested datasets.

The ability to reliably handle parallel job execution led to the adoption of MapRe-

duce/Hadoop [35, 36] for large parallel searches by different projects [65, 66].

Recent research efforts have tried to enable scalable search capabilities for sci-

entific portals. Varsome [67] created a a search engine for human genomics variants

that provides search over 500 million variant records. However, the deployed solution

does not scale since Varsome stores every record in a massive database. In [68] the

authors present a scalable search engine for geospatial data that utilizes indexing

shards in order to provide low-latency search results. CellAtlasSearch [69] enable

search over thousands of cell profiles. Their approach relies on specific hardware

(GPUs) to achieve low latency results for queries. The authors of [70] built Visi-

biome, a scalable search architecture for microbiomes. Their solution is a distributed

web application that only scales horizontally when dealing with increased number of

parallel queries.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

The ubiquitous nature of big data has resulted in the development of highly

scalable parallel and distributed file systems. As such, researchers and engineers can

now efficiently store and manage petabytes of data. However, while much research

effort has focused on the methods to efficiently store and process data, there has

been little focus on data indexing and discovery. Thus, users of large file systems are

increasingly frustrated at their inability to easily locate data. In order to address the

general problem of efficient and effective data exploration and search in large-scale

storage systems, we initially defined the problem space, through an analysis and char-

acterization of several scientific production file systems. The analysis highlighted the

magnitude of the challenge when indexing large quantities of data. We then explored

the prospect of using existing search engine building blocks, such as CLucene, to build

and integrate search capabilities into a distributed file system over unstructured data.

The resulting solution, called FusionDex, achieved better search latency than existing

cloud solutions, but hinted towards data indexing becoming a potential bottleneck

for increasing data volumes.

In order to solve the problem of data indexing, we proposed SCANNS, a index-

ing and search framework that uses a novel tokenization method and a novel inverted

index design, and that exposes the indexing pipeline allowing the user to saturate

compute, memory and storage resources of single-node high-end systems, charac-

terized by many cores, multiple NUMA nodes and multiple NVMe storage devices.

When then switched focus to ScienceSearch, a search platform used in production

at NERSC, that uses machine learning and natural language processing to gener-

ate metadata tags for data provided from various sources, such as published papers,

proposals, images and file system structure. We conducted a performane evaluation
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of the ScienceSearch infrastructure in order to better understand the implications

and performance considerations of searching over an index that is build from learned

metadata tags.

Drawing from the insights gained from SCANNS and the performance evalua-

tion of ScienceSearch, we plan to explore the problems of building persistent indexes

and further investigate the performance implications of advanced query models over

the persistent index. We will explore methods for distributing indexing and search to

scale to some of the largest HPC storage systems available. Specifically, we will in-

vestigate integration of the distributed SCANNS system into parallel and distributed

storage systems to enable automatic metadata and data indexing and search.

With respect to the problem at hand, future work will consider proposing

a scalable, free-text search mechanism that can be leveraged by parallel and dis-

tributed file systems to provide efficient search capabilities. Our model is based upon

the SCANNS framework, and the proposed system will be called XSearch. XSearch

will be able to facilitate fast and expressive search (e.g., equivalent to grep and find)

utilities to users. We intend to exploit characteristics of the metadata—that is usually

structured and often separated from the storage system—by placing the distributed

indexes close to metadata or management nodes. The initial population of the dis-

tributed indexing tables will be achieved through active exploration of the file system.

Where possible we will make use of the capabilities provided by such sys-

tems, for example by directly accessing metadata servers rather than crawling the file

system. Our goal here is to index metadata without saturating the network and com-

puting resources. In an ideal world the active exploration is executed only once, at the

start of the search system, but in reality, hardware is subjected to failure, especially

in cloud based system, thus our implementation needs to be able to respond to failing

nodes, both in the cases when the indexing nodes crash but also when the storage
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nodes encounter errors. Since the indexes are situated close to the storage nodes, the

active exploration can be run in a distributed fashion, recovering lost knowledge only

from partial search spaces, and aggregating it in the distributed search system.

After indexing, we require a separate monitoring subsystem to update the state

of the index every time a file is created, removed, moved or modified. As observed

in the previous section, the passive indexing system needs to be fast and lightweight,

responding to updates quickly and taking care of them without encumbering the

entire system. The XSearch system will store the indexed information on multiple

nodes, therefore scattering queries across the distributed indexes.

We have identified three main challenges in developing a distributed search

system for large scale storage systems: 1) how indexes should be distributed, given

the structure of an existing file system; 2) how nodes should communicate when a

client searches for specific information; and 3) how update events can be efficiently

propagated without degrading performance. To properly tackle these challenges we

intend to analyze the different data organization patterns based on analysis of pro-

duction parallel file systems. We will use this information to determine how that

placement affects the efficiency and effectiveness of the XSearch system.

For very large files the problem of index spatial disposition raises multiple

questions: where should it be placed? Should it be split into smaller parts? If so,

how would the parts be distributed for optimal search performance? In order to

developed an informed solution, we will deploy and test our implementation on the

Mystic storage system – a 0.5 PB storage system. Before doing so, we will conduct

extensive emulations on a commodity cloud-based cluster, using several reconstructed

file system hierarchies, built from the real-world file system dumps described above.

Having dealt with the challenges of indexing data, the next challenges relate
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to support for querying that data. Given the heterogeneous data stored on file sys-

tems queries are likely to be equally diverse. For example, users require not only

exact matches, but advanced free-text searches, range-queries, and potentially even

similarity searches (e.g., for images). To support such a complex model, we must

first design the index to be extensible and flexible, such that it can represent an in-

creasingly diverse set of data. We must then implement a flexible query model to

support the wide range of queries likely to be expressed by users. We aim to review

the query semantics supported in centralized systems, scientific metadata catalogs,

and web-based search engines. By adopting best-practices and standard models, we

hope to provide an intuitive and powerful interface for uses.

We also aim to develop an efficient solution to the search problem. In this

regard we are developing a flexible, cloud-hosted testbed that can be used to modify

the environment such that we can deploy several file system technologies simultane-

ously to better asses the performance of our approach. The testbed will allow us

to compare our proposed XSearch system with other existing solutions, in order to

appraise the actual usefulness and benefits. We plan to perform experiments, using

the various real-world file system dumps described earlier. Finally, the testbed will

enable us to develop the proposed system and optimize it for different situations.

We intend to make our final search system publicly available such that users

can leverage it in their parallel and distributed file systems. We will subsequently

explore how our model can be customized for different scientific domains and storage

technologies to provide the greatest benefit to users.
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