XSearch: Distributed Information Retrieval in
Large-Scale Storage Systems

Alexandru Iulian Orhean
Department of Computer Science
Ilinois Institute of Technology
Chicago, IL, 60616
aorhean @hwk.iit.edu

Abstract—The pervasiveness and the continuous advancement
of computer systems have determined a sudden upsurge of digital
data, in terms of volume, velocity and variety, especially in the
fields of science and engineering. This phenomena has resulted
in a widespread adoption of parallel and distributed filesystems
for efficiently storing and accessing data. As the filesystems and
quantity of information increase in size, so it becomes more
and more difficult to discover and locate particular relevant
information amongst the already accessible data. While it is
typical now for users to search for data on their personal
computer or to discover information over the Internet at the
click of a button, there is no such equivalent method for locating
data on large parallel and distributed filesystems. This project
argues the need for new methods to support information retrieval
in the context of large-scale storage systems, and proposes
the implementation of a scalable distributed indexing system.
We, initially, investigate the increasing size and complexity of
production parallel and distributed systems, in order to better
outline the scale of the challenge at hand. We, then, explore
the state-of-the-art in terms of frameworks, toolkits, libraries,
data structures and algorithms that could be used as building
blocks for an indexing and search system. Finally, we propose a
scalable solution for achieving information retrieval in large-scale
storage systems, aiming to integrate it with existing parallel and
distributed filesystems.
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information retrieval, concurrent search tree, concurrent
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I. INTRODUCTION

Information retrieval represents the process of finding and
acquiring relevant materials, that usually contains unstructured
information, from a large collection of information resources,
satisfying the information need. In the context of computer
systems, information is represented in digital form and is
hierarchically organized in directories and files. Digital files
represent the materials returned by an information retrieval
engine, the content of the files being usually unstructured, with
the exception of relational databases that store records under
the form of tables and relation between the tables. The files
representing the collection of information resources compose
the filesystem. While the filesystem, that can either be part
of the operating system or be implemented in user space, has
its own internal data structures, that keep track of every bit
of information in the computer and yield access interfaces,
it does not facilitate direct search mechanisms. Accordingly,
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different constructs and applications have been proposed, that
can deliver efficient and effective information retrieval, now
being known as indexes and search engines.

Modern personal computers have operating systems that
can install and run powerful search engines, allowing users
to quickly retrieve files with a high degree of precision. But
these are single node applications, that do not have the storage
capabilities and the dynamics of multi-node architectures.
Google has pioneered the research area of information retrieval
and search engines [1], however its area of focus is web
search over the Internet rather than filesystem search, with
significantly different data and query models. The landscape of
filesystems found in scientific computer systems is dominated
by numerical data, high resolution images and specialized file
formats, that are usually distributed across many storage nodes
and accessed in parallel.

Supercomputers or High-Performance-Computing (HPC)
systems represent a particular type of computer organization
and design used in the fields of science and engineering, that
have branched out from the fast and expensive mainframes,
exploiting parallelism on many levels and lately growing in
size in all dimensions. The storage arrangement found in
HPC systems also benefit from parallelism, data units being
split into smaller chunks that are spread throughout multiple
storage devices, assuring high throughput access to the data.
Example of filesystems that can be found in HPC systems
include the IBM Spectrum Scale [2], Lustre [3] and the Parallel
Virtual File System [4]. The quantity of information that these
systems can store, process and generate, combined with the
unstructured nature of the data, are inadvertently increasing
the complexity of the information retrieval problem, ultimately
relinquishing the awareness that the users had over scientific
data. The problem is aggravated by the rush towards exascale
systems [5], that are estimated to have exabytes of persistent
storage and probably I/O throughput of PB/s, making real-
time indexing and searching a problem that could undermine
scientific progress and technological advancement.

While large-scale storage systems and the processing of
large amounts of data have long been a focus of the HPC
community, it is not uncommon now for large scale science
to migrate to Cloud systems [6], transferring the information
retrieval problem to Cloud infrastructures. In the area of



Cloud systems, the methods of organizing computers and
the paradigm for storing and accessing data are different.
Distributed filesystems scatter and replicate data across mul-
tiple nodes, offering parallel access and high availability.
The distributed system middleware is in charge with task
dissemination and the nodes play both the role of storage and
compute units. The Hadoop Distributed File System [7] and
Ceph [8] are well known distributed filesystems commonly
used in Cloud systems, providing not only high performance
but also fault tolerance. In enterprise Cloud systems, there are
several projects and implementations that use the underlying
middleware to achieve scalable and effective indexing and
search, the most popular being: Apache Solr [9], Elastic-
search [10] and Cloudera Search [11]. While the tight inte-
gration with the middleware might hold certain advantages,
the deficiencies are however inherited, thus, combined with the
different architectural point of view of Cloud systems, it makes
an interesting case for the information retrieval problem.

One of the most significant burdens faced by scientific
communities is the lack of efficient tools that enable tar-
geted search and exploration of large-scale filesystems. Some
dedicated scientific communities have developed specialized
catalogs and tools to aid discovery operations, while others
have adopted standardized portable scientific data formats,
such as HDF5 [12], but such approaches are limited in terms
of generalizability and they are often cumbersome to use due
to imposed schemes and the need for manual data wrangling.
In the absence of better options, scientists and engineers
fall back to the state-of-the-art methods for finding data in
single, centralized systems. Linux traditional tools: Is, cat and
grep, or find; are examples of methods of searching through
single nodes systems, however in the context of a large-scale
storage systems, the same tools can take days, months and ever
years to return results. Preliminary work [13], [14] shows that
building indexes and then searching them yields substantial
performance gains, being able to search a 10GB file in mere
milliseconds, while traditional tools have search latencies in
the order of tens of seconds, for the same file. A filesystem
that has a capacity of 10PB would imply search latencies in
the order of years, clearly articulating need for newer indexing
and search tools.

This project argues the need for a distributed search system,
as a solution for the problem of efficiently and effectively
retrieving information from parallel and distributed filesystems
containing large mounts of data. The paper is organized as fol-
lows: In section II we analyze several production filesystems
to determine typical requirements for indexing data in large
filesystems. Section III continues with a general definition
of the information retrieval problem in large-scale storage
systems, taking into account the ascertained requirements and
the potential implications of a distributed solution, all in the
context of the scientific data space. The proposed solutions
and research steps taken so far are presented in section IV.
Experimental analysis and initial findings are discussed in
section V. In section VI we review related work being done
towards the same field, comparing it to this project’s definition

of the information retrieval problem. Lastly, we conclude in
section VII, with a short description of future work and a
synopsis of current discoveries and implications.

II. QUANTITATIVE ANALYSIS

Before embarking on this work, several large scale projects
and institutional file systems, were analyzed. Specifically,
file system dumps from several production file systems were
obtained and the resulting information of their investigation
characterizes usage across several dimensions. The resulting
analysis aims to obtain both representative usage information
as well as outer bounds from which distributed indexing and
search system development can be guided. Table I highlights
the size and complexity of a five very different storage
systems. This table includes the data shared publicly on the
Globus distributed storage cloud; Petrel: a data sharing service
hosted at Argonne National Laboratory; a research computing
scratch file system; a supercomputing center’s file system; and
an entire user file system from a large research institution.

These results highlight the magnitude of the challenge when
indexing data. Table I shows that even modest storage systems
may have millions to tens of millions of files, cumulatively to-
taling hundreds of terabytes of data. The file systems surveyed
range in size from several terabytes through to more than 6
petabytes and from 4.5 million files through to more than
one billion. The number of users who own data on these file
systems also ranges significantly. In several cases the number
of users is small, however this means that the data likely
to be searched upon by an individual user is large. For the
supercomputing center and institution file system the number
of users is much larger. Modification times on average are
several hours, which means that crawling and re-indexing will
need to occur regularly. Finally, directory sizes, on average are
varied (between 20 and 212) which may limit our ability to
optimize the index based on paths.

A more in depth analysis, depicted in figure 1, gives more
insight in the daily dynamics of the large-scale filesystem
found in the supercomputing center. Plot 1a shows the average
I/O operations per second, or number of files per second, that
were added, modified and removed throughout the period of a
day, for a duration of 35 consecutive days. The IOPS are highly
optimistic, since the filesystem dumps have a granularity of
one day, meaning that the measured operations on any file
accounts only for the last operation on the respective file.
Nevertheless, the results show that at the end of one day
there are more files added than modified, implying that index
update due to file creation needs to be faster than the index
update caused by file modification. With the exception of the
occasional spikes, the average usage maintains at an average
20 IOPS, representing the metadata throughput that needs to
be maintained in order to achieve real-time indexing.

Figure 1b captures the dynamics of the filesystem during
the same 35 consecutive days, at the same one day granularity,
but in terms of IO throughput. The analysis shows that there is
more information added than modified, holding the claim that
fast index update upon file creation is crucial, and it introduces



TABLE I
FILE SYSTEM CHARACTERISTICS.

[ File system [ Files | Size | AvgDepth [ Users | Avg Mod Time | Avg Files per Dir ]
[ Globus Public [ 45M [ 30TB | 8.9 [ 39 [ 677hours | 77 |
Research Computing Center | 55M 80 TB 6.0 543 5.8 hours 26
Petrel 39M | 370 TB 7.6 46 4.5 hours 212
Supercomputing Center 861M | 6.3 PB 12 16506 - 20
Institution 264M | 1.2 PB - 691 - -
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Fig. 1. (a) Average IOPS throughout a day, consumed by a supercomputing center’s filesystem, for a span of 35 consecutive days, in terms of average added,
modified and removed files per second. (b) Average 10 throughput throughout a day, consumed by a supercomputing center’s filesystem, for a span of 35

consecutive days.

the idea of completely re-indexing a file when it is modified.
Excluding the occasional spikes, the filesystem dumps show
that the usage concentrates around a modest 200MB/s, which
is far from the capabilities of a supercomputer, however
implying that IO is done in bursts as is not uniform. Still, it sets
the lower bounds for real-time indexing requirements. Given
the number of files and the amount of data added, modified
and removed, and the specific architecture of a supercomputer,
it might be desirable to achieve full indexing of the filesystem
at higher granularities, such as daily indexes, instead of real-
time indexing. The same analysis results are going to aid in
determining how efficient such a search engine should be.

III. PROBLEM STATEMENT

This project resides at the intersection of two well es-
tablished domains of computer science, namely: information
retrieval and parallel and distributed systems. Information
retrieval is the field that studies the processes and mechanisms
involved with the discovery, location and retrieval of relevant
materials from a collection of information resources, with the
purpose of satisfying the information need. In the context
of computer systems, the materials are represented by files,
while the collection of information resources is comprised by
the filesystem. Searching for some files by knowing some
terms or some information contained in those files depicts
the process of doing search in a computer, the application
that implements this process being called a search engine.
Research and engineering projects revolving around this area,
focus on specific metrics for evaluating potential solutions

and techniques, most of the metrics being concentrated on
the quality of the search result. Precision represents one such
metric, that captures how many of the returned documents
are relevant to the entity that submitted the search query.
Recall is another metric, that shows how many of the relevant
documents are successfully retrieved after a search. F-score,
R-precision and Discounted Cumulative Gain are examples
of other performance metrics that construct evaluation tests
for solutions to the information retrieval problem. Recent
work in this area [15], [16], shows that probabilistic methods,
natural language processing and inference techniques start
becoming more popular, as they increase the quality and thus
performance of search engines.

In the fields of compute clusters, supercomputers, grids and
clouds, performance is appreciated through different lenses.
Metrics that describe throughput, latency, scalability, availabil-
ity, reliability and economics are significant in determining
the efficiency and efficacy of such system. The inherent
parallelism and distributed traits found in these architectures
and configurations extend even to applications, single node
implementations not having the theoretical computing power
and storage capacity to deal with problems of large proportions
that parallel and distributed systems specialize on solving.
Thus, simple information retrieval is not enough and dis-
tributed strategies are needed. Due to the magnitude of the
information resource space, shown in the previous section,
metrics such as indexing latency, throughput and scalability,
index size and distribution, search latency and throughput,
become essential performance evaluation factors, contributing



the definition of the problem that this project undertakes:
Distributed information retrieval deals with the problem of
creating and coordinating processes and applications that dis-
cover, locate and retrieve relevant files, residing in parallel
or distributed large-scale filesystems, either closely connected
or distributed across the Internet, in a timely manner, while
satisfying the information need.

In the context of the distributed information retrieval prob-
lem, the data resource collection space is different from the one
found in single node personal computers or across the Internet.
Numerical data, mathematical models and images form a
higher proportion of the searchable collection of information,
in supercomputer centers or research institutes, than text data,
and while text data does still exist, it is usually organized in
abstract formats, that make it easier for computer programs
to interact with but does not extend the same convenience to
human users. As result of this observation, the problem stated
by this project inherits the challenges of achieving efficient
and effective distributed indexing and search over large-scale
storage systems, that are highly populated by non-uniformly
structured numerical and/or image data.

The last part of the contextualization of the distributed infor-
mation retrieval problem that this project undertakes, has to do
with the environments where implementations of indexing and
search solutions would run in. Parallel and distributed systems
are composed of multiple inter-connected nodes, that appear
as a single coherent system to the users, in which multiple
users can deploy multiple, massive and scalable applications.
In the case of supercomputers, physical computer resources are
allocated to users and project for a specific amount of time,
while in clouds the serviced resources are usually virtual and
can reside on the same physical machines. An ideal solution
for the distributed information retrieval problem, would take
into account the possible application interference and network
contention caused by the processes of data crawling, index
update and search. The search engine needs to be aware of
the existence of other applications running on the same system
and must be able to accommodate to different resource access
and movement patterns, while preserving the efficiency and
efficacy made possible by the underlying architecture, over a
landscape of data dominated by numerical and scientific for-
mats, and maintaining scalability and fault tolerance qualities.

IV. APPROACHES, METHODS AND DESIGN

The complexity of the challenge at hand deems for a sys-
tematic approach to designing, implementing and evaluating
solutions. Deep knowledge of how information retrieval sys-
tem works, from the theoretical foundations to best practices,
is vital to the successful outcome and operation of a scalable,
fault-tolerant and efficient distributed information retrieval sys-
tem, thus this project follows a bottom-up approach. Achieving
high performance implies the necessity of looking into the
building blocks of information retrieval systems, such as data
structures, algorithms and existing software libraries. The
magnitude of the problem was emphasized in the quantitative
analysis, giving us an idea on the requirements of the final

product. An early prototype of a distributed search engine
called FusionDex [14], that was integrated in FusionFS [17],
a user-level, completely decentralized distributed filesystems,
showed the benefits of share-nothing distributed indexing and
search, surpassing in performance industry-level solutions.
FusionDex was built using an open-source library used for
implementing local indexing and search, and was comple-
mented with a custom communication mechanism, but was
tightly integrated with the underlying filesystem. In order to
squeeze all the performance of a distributed indexing system,
the building blocks need to be investigated, in the hopes of
discovering latent parallel or distributed characteristics that
would eventually contribute to the communication mechanism.
This investigation represents the first part of the project, with
the detail that this time we are aiming for a solution that is
independent from the filesystem.

The second part of the project takes a look at the properties
of the search space and the formats that the information is
presented. Natural language modeling techniques and infer-
ence engines work well with text data, as text data presented
in documents usually reflects an ordering of ideas and mean-
ings, making information retrieval more precise, but in the
case of numerical data, different interpretation are needed.
Mathematical representations, like matrices and vectors, and
images, often hold intrinsic meaning and information, such
as eigenvalues and distances, respectively, making the process
of exploring numerical index representation a valuable and
transformative research path. The higher understandings of
such data is the subject of future work. In this project we
focus in efficient numerical data indexing, efficient in term of
throughput, latency and concurrency.

The third part of the project deals with concepts regarding
parallelism and distributed architectures. There are multiple
way to organize the steps of crawling, indexing and search,
in order to achieve high throughput and low latencies, but
the efficiency of the methods are dependent on the underlying
hardware and multi-node organization. How indexes should
be distributed, how nodes should communicate with each
other and how updates can be achieved without degrading
system-wide performance, are all challenges considered by
this project. We define a general architecture of the distributed
information retrieval problem and then emphasize the advan-
tages and disadvantages of specialized version that work well
on particular topologies.

A. Building blocks of search engines

Figure 2 presents the anatomy of a basic search engine.
The search engine has three main components in terms of
functional units, and commonly multiple index data structures.
The analyzer’s job, also know as a ’stemmer’ in literature, is to
parse and deduce syntactic and semantic equivalence between
the terms that compose the content of a document. Modern
analyzers use language specific dictionaries and language
modeling techniques in order to obtain a high degree of
term comprehension. The simplest analyzer would just parse
words out of a text document, or in the case of this project’s
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Fig. 2. Anatomy of an information retrieval engine.

search space, terms composed of alphanumeric characters.
The analyzer provides constructs and methods to indexers
and searchers. An indexer deals with the indexing process
of the information retrieval engine. More precisely it opens
a document for the analyzer, which in turn returns terms, that
the indexer is able to process and add them to an index. The
searcher also interacts with the parser, but it passes requests,
that get transformed into sets of terms by the analyzer, and
then used by the searcher to return index information. Another
function of the searcher is to combine the result gathered from
multiple indexes and return a cohesive answer to the user.
Some search engines, who learn the relevance of returned files
through the help of the user, might provide different interfaces
through the searcher, that the user can use to interact with
the system. The data structures known as indexes, transform
the set of information organized in the form of documents
and directories to a set of terms, defining the specification of
access as a bijective function. Indexes are varied in design
and purpose, and can be stored in main memory and/or on
storage space, and were initially developed to speed up lookup
in relational databases.

Anyone who wants to build an information retrieval appli-
cation, doesn’t actually have to implement all the components
from scratch, because there exists several open-source libraries
and toolkits that supply the building blocks for indexing
and search. In our previous work, we used CLucene [18] to
build the distributed information retrieval system, since it was
written in C++ and represented a port of the popular Apache
Lucene [19]. Since this project aims for high performance in-
dexing and search, we searched for other information retrieval
libraries that could be leveraged for building the distributed
version of the solution. Benchmarking them incrementally,
from single node to multi-node configurations, has the advan-
tage of showing the performance of each alternative and also
aids in understanding their handling, and thus we selected the
following libraries for evaluation: Apache Lucene, CLucene,

LucenePlusPlus [20], and Xapian. For the performance eval-
uation to be complete, we also provided two simple custom
implementations in order to understand the overheads that the
popular libraries add, when extended features are used. The
custom implementation are based on variants of Tries and
Hashmaps, and are discussed in detail in the following section.

Apache Lucene is a popular open source information re-
trieval library, written 100% in Java, that provides the building
blocks for an indexing engine. It provides different analyzers
or parser constructs that specialize in extracting terms from
files that contain text, numbers or custom organized infor-
mation (3D object descriptions). The analyzer usually gets
plugged into a threaded index writer and reader, used for
building the indexes and the latter for searching the indexes.
The index writers can be tuned to be faster or more interactive,
by specifying the merge policy and merge scheduler. During
the benchmarks, the index writer has been tuned to build the
index fast. The terms are grouped in segments, than can be
build independently and merged, when a certain size is met,
according to the set buffer limit of the index writer. Lucene
contains fields for terms according to the information that
they represent: text, number and custom formats. Overall the
implementation of a search engine is fairly simple, but more
importantly it removes the trouble of optimizing the process
from the user through auto-thread management. This feature
is pretty interesting, offering out-of-the-box high performance,
in contrast to other solutions that require direct programmer
involvement, and was discovered during single node single
thread evaluations.

CLucene is a C++ port of Apache Lucene, presenting
the same interfaces and programming constructs. Though the
library itself is outdated and there are no signs of poten-
tial updates to the software. LucenePlusPlus is the spiritual
successor of CLucene, being an up-to-date port of Apache
Lucene, written in C++. It follows the same structure, having
threads built in from the boost library [21]. In contrast to
its Java counterpart, Luceneplusplus does not provide thread
auto-tuning, and leaves the option of fine tuning to the user.
Initial development was cumbersome, since it required mod-
ifying some base classes in order to provide multithreaded
optimizations. While the index build classes and methods
are very well optimized, in accordance to the provided filed
data structures for the terms, the parsing component was
performing slowly and proved to be the main bottleneck of the
entire indexing engine. Thus the reading of the contents of the
files have been done in parallel, boosting the performance of
the LucenePlusPlus implementation easily, since the provided
constructs are thread-safe by default.

B. Indexing data structures and the nature of information

The design of the index data structure is strongly linked to
the nature of the information that needs to be indexed. In the
space of text information, Tries are a popular data structure,
since it has the advantage of naturally representing terms and
it also compresses the stored information. A Trie is a search
tree in which each node represents a symbol from the alphabet,



and a path in the Trie represents a term. This construct has
the distinct advantage of allowing prefix and suffix searches
to be performed on the index, the results in such cases being
represented by all the terms included in a sub-tree. In the initial
benchmarks the custom implementation was a naive C++ Trie
implementation that did not take into account space utilization
and had not thread-safety built in. In search for a better
candidate for a custom index data structure we approached
a special variant of Tries, namely a CTrie. A CTrie [22]-[24]
is a minimal concurrent lock-free hash mapped Trie, that was
build as a way to attain high performance Tries in functional
programming languages. While there are efficient implementa-
tions in Scala, Haskell and Rust, the C or C++ implementation
proved to be challenging. The CTrie abstract data structure
makes use of an atomic compare and swap operation and
assumes no memory control. For languages that have a garbage
collector, there is no problem in implementing such a data
structure. On C/C++ on the other hand, memory management
becomes problematic, due to many possible memory leaks, and
performance penalties, that has determined the non-existence
of a universally accepted implementation.

The first iteration of the data structure contains per node
locks, that would allow concurrent update of the Trie, at
the tree level, and sequential update at the node level. The
compare and swap was also achieved through the locking
mechanism, provided by the POSIX Threads library, under
the form of Mutex data structures. Also memory management
was done by the implemented function that would interact with
the Trie. The performance penalties were observed after the
first iteration of experiments done on text data sets. Another
solution was required.

The second attempt to implement a CTrie envisioned the
usage of atomic intrinsics provided by the GCC compiler. The
GCC provides an atomic compare and swap operation at the
pointer level, allowing for concurrent access and update of
nodes in the Trie. The problem of managing memory would
be solved through the use of a conservative garbage collector
for C/C++, namely the Boehm-Demers-Weiser conservative
garbage collector [25]. The design of the data structure proved
to be a challenge, especially from the point of view, of efficient
update operations. Thus the CTrie implementation has been
postponed in favor of a Hashmap-based solution.

The Trie offers the advantage of space economy and al-
lows for prefix and suffix search queries to be run on the
indexing engine. In this project, the main concern was to
provide boolean search capabilities, making the Trie loose its
main advantages. A Hashmap would be the perfect candidate,
allowing relative constant lookup operations, and through the
use of atomic compare and swap operations, together with a
garbage collector, it would achieve great performance, which
it did. The pitfall of this data structure represented the case of
many unique terms that were added in the case of metadata
indexing, in which it achieved extremely low performance,
mainly caused by small key size. Due to hardware restrains,
the hash key size was of 16 bits, this accounting for many
collision, especially in the case of many unique values.

The mentioned implementations did not take into account
fundamental aspects of the data that is to be indexed. In
the case of many number, as found in metadata information,
such as file size, UNIX timestamps and IDs, using Tries or
Hashmaps do not offer real advantages, since the numbers
are big and unique. The third iteration of implementation has
envisioned the use of Search Trees, more specifically of self-
balancing search trees, such B+trees, for storing numbers. Of
course with the lessons learned from implementing lock-free
compare-and-swap-based data structures, the same techniques
could yield substantial performance benefits. Another addition
would be represented by the implementation of a uniform
search tree for the absolute paths of the documents. The
compression of information is implicit and advanced accessing
methods are practicable. But these last concepts are the subject
of future work.

C. Distributed information retrieval models

The project initially started with a top-down approach to the
distributed information retrieval problem, trying to formulate
the challenges of such an endeavour, before completely under-
standing the limitations of the building blocks. The challenges
are expressed in parallel and distributed application terms,
since the problem of distributed indexing and search gets trans-
formed in such an application. Communication becomes more
relevant, as it impacts performance directly, and in the context
of shared access across computers, it also interferes with other
applications. Fast placement of indexes on local nodes does
not always guarantee long term search performance, since the
search queries need to be dispersed always. In the following
paragraphs, several architectures are presented, coning at the
end the general view of the information retrieval system and
the underlying storage system.

Network ]

Tl

Node 1

Node 2 Node 3

. @ ©

Client
Fig. 3. Local indexing and distributed search approach.

Figure 3 shows an example of an architecture in which
the indexes are stored on the same nodes with the actual
data. In this scenario, the initial crawling and indexing step is
done locally, in a system-wide parallel fashion. High indexing
performance is expected, but the drawback come from the lack
of a global ranking across the system. Thus any query needs to
be forwarded to all the nodes, followed by a response from all
the nodes, additional computation for building the global state
and a final merges of results. There is a network component in



the search process, that has a one to all communication pattern,
that might interfere with other applications for an increased
query throughput.
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Fig. 4. Distributed indexing and confined search approach.

Figure 4 gives an alternative to the previous model. The
indexes are build in a distributed fashion, using the network
while building the indexes, but being able to achieve less
network contention when searching. Global ranking and in-
dex information is kept in precise locations, being possibly
implemented using a Zero-Hop Distributed Hash Table [26].
Search operations are being done in a confined area, knowing
exactly where the indexes are and where to find the response.
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Fig. 5. Hybrid approach. Local indexing, index distribution and confined
search.

Both of the previous cases present two opposite extremes to
the design of an architecture for a distributed information re-
trieval system. Drawing from the pool of engineering wisdom,
extremes are to be avoided, the balanced approach usually sat-
isfying the common cases. Figure 5 shows a hybrid approach
to indexing, distributing indexes and search. It combines the
advantage of the first method, by quickly indexing files locally
and the advantages of doing confined search. The intermediary
step has to do with index rearrangement for cohesion purposes.
On the short term, the advantages might not be clear, since the
extra step is going to add its own performance penalties, but
on the long term, the lack of network contention while doing
search might prove more attractive. The difference between
the distributed indexing and this approach is pointed out
by contrast between organized dissemination of indexes and
uncontrolled index dispersion.

All the three approaches assume that indexes are stored
on the same nodes with storage nodes, and while this is the
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Fig. 6. General architecture of the distributed information retrieval system.

case, it does not illustrate the scenario in which this is not
true. Computer clusters, such as Supercomputers, might have
dedicated storage areas for indexes, thus all of the components
from figure 6 depict the relation between information retrieval
engines, storage area, index storage and network. If any two
components reside on the same node, the network component
becomes negligible. This representation gives a more general
view over the architecture of a distributed information retrieval
system, probably being able to formulate mathematical models
for describing indexing and search performance.

V. EXPERIMENTAL ANALYSIS

The experimental analysis was comprised of information
retrieval applications built using the libraries and data struc-
tures discussed in the previous sections. In this paper we only
have results for single node single-threaded and multi-threaded
environments, multi-node experiments being scheduled for
the future. All of the indexing and search applications were
implemented in the same style. They would initially index a
number of files at the beginning, doing batch indexing (in
the case of metadata information retrieval the metadata was
indexed). Afterwards they would read the terms and then
execute search operations. These processes, along with the size
of the indexes, are measured and printed to output. Several
Bash scripts are used to iterate through the combinations of
file sizes and storage sources.

The single node single-threaded experiments were run on
a bare-metal storage node allocated in the Chameleon private
cloud. The storage dedicated node had 2 Intel Xeon, each
with 10 core (20 threads), 64GB of RAM, one 2TB HDD,
that could perform 135 MB/s sequential read throughput, and
one SATA 400GB SSD, with a sequential read throughput of
483 MB/s. Throughout the experiments the system page cache
has been flushed and cleared before each run, simulating direct
I/O access.

The single node multi-threaded experiments were run on a
local setup with one computer, since Chameleon was being
revamped and thus not completely functional. The computer
had an AMD CPU with 8 cores, 16GB of RAM, one 1TB
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HDD, that could perform 112 MB/s sequential read throughput
and 207 MB/s aggregated read throughput with 8 threads
reading 8MB blocks, and one PCI 100GB SSD, that could
perform 608 MB/s sequential read throughput and 876 MB/s
aggregated read throughput with 8 threads reading 8MB
blocks. Throughout the experiments the system page cache
has been flushed and cleared before each run, simulating direct
I/O access. The single node multi-threaded experiments were
designed only for the case of indexes being stored in main
memory and not to persistent storage area.

A. Single node single-threaded text data (the base line)

Figure 7 shows the indexing throughput, measured as
megabytes per second, of the simple single node single-
threaded implementations, that indexed text data. As seen
in the plots Apache Lucene holds the highest throughput,
followed by the custom Trie. Later investigation revealed
that Lucene is self-threading itself, being able to build and
merge indexes in parallel, while the other libraries did not
have these features. If the custom Trie had a throughput
close to Lucene, without any improvements, it means that
Lucene’s overhead is truly affecting performance. Looking
at the read throughput supported by the underlying storage,
the best implementation is achieving between 20% and 25%
of capable read performance, combining this with the finding

from the quantitative analysis, further optimizations are needed
to reach the required throughput.

In terms of index size, compared to the amount of text
data indexed, all the libraries perform very good, compressing
the information over 4 times. The custom Trie was naively
implemented, creating the entire list of pointer to children
for each non-leaf node, even if the path was not used. This
determined in a close to exponential growth in size of the
search tree, especially in the first five to six layers, causing the
lack of data compression. This can be observed in figure 8. The
interesting case of Xapian, which creates an artificial database,
shows that with large enough data sets, it can compress
information very efficiently.

Evaluation of search latency over the build indexes of the
selected implementation in the same scenarios as the above
are shown in figure 9. The search tests were consisting of
100 search queries of randomly predefined words from the
text data. The more lightweight the library the faster the
search operations are. Apache Lucene has a complex query
builder object that can create and work with widely complex
search models, including numerical ranges. The experiments
consisted only of boolean type search queries, in which the
full term was given to the program, no other prefix or suffix
queries being made.
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B. Single node single-threaded metadata (the base line)

The experiments that reflect indexing and search perfor-
mance on file metadata data sets, show distinctively different
results for the same implementation strategies. Figure 10
depicts the indexing throughput, measured as thousands of
metadata entries processed per second, which would be equiv-
alent to IOPS, and the drawbacks of a naive Trie. Taking into
account the results from the quantitative analysis, the selected
popular libraries, with the exception of Xapian, can sustain the
required IOPS. This implies that metadata search and indexing

can easily be achieved in a single node, which is the case with
most parallel and distributed file systems.

Index size shows even more interesting results. While the
popular indexing libraries can handle well the quantity of
metadata indexed and can store it efficiently, Xapian and
the custom Trie, are having a hard time compressing the
information. The indexed are actually bigger than the data
that was indexed. In the case of the custom Trie, on of the
reasons was the naive implementation that determined a close
to exponential growth in size of the search tree, especially
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since now the terms were composed of large unique numbers
and paths. This can be seen in figure 11.

Finally, search performance of the implementations shows
that current libraries encounter losses in efficiency when
searching metadata information-based indexes. Figure 12
shows the almost linear increase in search time, that is
executed on the stored indexes. The only implementation that
showed the desired performance when doing search, was,
despite the performance losses regarding indexing and index
size, the custom Trie implementation.

C. Single node multi-threaded text data
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Fig. 13. Indexing throughput for text data.

Figure 13 shows the evolution of the indexing throughput of
Lucene, LucenePlusPlus and the Hashmap implementation for
the text data set. While the Hashmap has a great advantage at
the beginning, but due to many collisions and the fact that the
data structure is being updated concurrently its throughput de-
creases significantly. Lucene achieves its performance through
auto-tuning of the thread capabilities, while LucenePlusPlus
does manage to get a stable throughput but still lower than
Lucene.

Figure 14 shows the data versus index sizes ratio, values
larger than one meaning high compression of information,
while values lower than one denote poor information index
capabilities. The Hashmap behaves the poorest, while a Trie
would have inherently compressed the information indexed.
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Figure 15 shows that search on a Hashmap is faster, due
to the fact that it is more lightweight than a Trie or segment.
Lucene and LucenePlusPlus perform relatively better. Search
in this scenario was performed as queries of exact terms
picked randomly from the data set. The number of queries
per iteration was 1000, and the terms existed in the searched
space.

D. Single node multi-threaded metadata

On the metadata sets LucenePlusPlus outperforms Lucene
significantly, as shown in Figure 16. Here the Hashmap
obtained really poor execution times, from 24 minutes with
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50 KME, to 4.5 hours with 100 kKME, to 12 hours with 150
kME. This is caused by the short hash key and the fact that
the Hashmap encounters many unique terms, as found in the
meta information of files, that generate many collisions, that
get stored in a dynamic array, making the lookup operation
more costly.
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Figure 17 shows that metadata has more unique values,
thus the size of the index increases almost linearly. It can
be observed that with metadata search time increases with
more metadata entries significantly, as seen in Figure 18. The
increase in latency is staggering, since the number of metadata
entries is just a fraction of the 1 billion files storage system,

showing the lack in capability to satisfy the requirement of
large-scale file systems.

VI. RELATED WORK

Elasticsearch [10] is the most commonly deployed system
for indexing text-based documents in a distributed system.
The search engine is built on Apache’s Lucene, and therefore
provides flexible free-text search capabilities. It is designed to
be scalable via a sharded model in which the search index can
be split across many nodes for performance and availablity. As
data sizes increase, additional nodes can be added to the cluster
and the management layer will adjust the shards accordingly.
This system is also very versatile, offering out of the box
monitoring features, a pluggable architecture for integration
with different environments and an API for custom front-
end applications. While Elasticsearch has been well adopted,
its primarily aimed at indexing arbitrary documents (e.g.,
products on an e-commerce site) it is not optimized for the
types of data or queries commonly seen on a parallel file
system. Furthermore, it is designed to be operated as a stand
alone cluster, rather than integrated with the nodes of a file
system.

Another solution that integrates a database in the architec-
ture of an existing parallel file system is Lustre’s Robinhood
Policy Engine [27]. Its initial purpose was to simplify common
administrative tasks on a large Lustre [3] deployment, and
also increase performance, from the perspective of managing
file lifetime, scheduling data copies and generating overall
file system statistics. But the success of this application has
allowed it to be extended to support other POSIX file systems
and to offer many search possibilities through a mirrored
database of collected system information. Different criteria can
be used to explore the entries of the database and the solution
allows custom statistics to be extracted at fast speed and high
effectiveness.

Integrated databases offer a flexible platform for storing
and querying metadata and data from distributed file systems.
However, they require user-management to define schemas
and map metadata to these schemas. Furthermore, they are
designed for structured (rather than free-text) queries and
they cannot be easily integrated into a file system model.
However, there is much we can learn from decades of database
research for example using search trees to distribute and
parallelize the queries [28]. Evaluated in a large scale un-
sharded distributed system, the performance of this approach
to do indexes search has surpassed classical methods and
modern centralized models, obtaining even better scalability.

VII. CONCLUSION

Modern large-scale parallel and distributed file systems,
specifically in scientific communities and engineering projects,
do not present any means to accomplish efficient and effective
information retrieval. Users can explicitly read and write
specific data by using file names, but when file systems contain
millions to billions of files in a complex and deep directory
hierarchy, finding data is analogous to looking for a needle in



a hay stack. Our work has shown the extent of the dynamics
of such systems and deficiencies of the state-of-the-art search
engine building blocks. Indexing on large amounts of text
data has been shown not to achieve the required through-
put in order to sustain real-time indexing and even daily
indexing. While text data indexes are efficient and compress
the information stored, indexes built with the same common
index data structures show deficiencies when dealing with file
metadata. Search latency over metadata indexes also show
fast decreasing performance for increasing amount of data.
Lastly, it is intriguing that modern tools, even when multi-
threaded can achieve between 20% - 25% of the persistent
storage throughput, indicating that indexing becomes more
a computing problem than storage related problem. Future
work consists of further development of the single node multi-
threaded solutions, the aim being the optimization of the
custom data structures so that close to optimal performance
can be achieved. Subsequently, we will mode the proposed
solution to a multi-node architecture, continuing research on
the communication aspect and scalability of the distributed
information retrieval system. The potential impacts of our
work are likely to be transformative as it will make vast storage
systems implicitly searchable, departing from traditional brute
force data searching or the explicit (a priori) creation of
specialized catalogs.
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