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Abstract—The dragonfly network has been adopted in new
generation supercomputers, meanwhile burst buffers are also
placed in this network. Residing in the compute node network,
and using solid state drives (SSD), burst buffers are able to bring
a significant I/0 performance boost compared with traditional
external hard disk drive (HDD) storage system. Though it has
been proven that burst buffers did manage to enhance the 10
bandwidth , there are still a lot of questions remain unexplored.
Some questions are like if there are bottlenecks of fully leveraging
burst buffer bandwidth, and if there will be interference when
IO traffic and compute traffic are both present in the dragonfly
network. However, due to the very large system scale and
limited machine access time, it is usually too expensive and time-
consuming to change system setup to study these problems. So,
in this paper, we developed a simulator based on CODES/ROSS
framework, which simulates a supercomputer with this ’burst
buffer/ dragonfly network” structure and used it as the base-
stone of some further study of above problems. The highlights of
this work are: First, we developed this system simulator based
on CODES/ROSS framework and Aries network configuration of
Cray XC40 supercomputers. Second, we validated the simulator
with IOR test results of Trinity, a Cray XC40 supercomputer at
Los Alamos National Laboratory(LANL). At last, we used some
Darshan IO traces in the simulator to observe IO interference
when applications access burst buffers .

Keywords—burst buffer, dragonfly network, CODES/ROSS, bot-
tleneck, simulator, Trinity.

I. INTRODUCTION

Two important components of High-performance comput-
ing (HPC) systems are interconnect network of compute nodes
and external storage system. These two parts are naturally
separate because of huge gaps in their latency, scale and cost.
Though tons of work have been done to enhance performance
of both sides, the gaps still exist. However, as dragonfly
network topology starts to be adopted in design of new HPC
systems and the cost of solid-state storage is lower enough to
be used in large scale, placing SSD storage systems in compute
node network turns out to be a feasible solution of these gaps.

In a dragonfly network, a router has a high radix which
reduces the diameter of the network. The Cray Aries net-
work[1] used in Cray XC40 supercomputers is an example
network based on dragonfly network topology. One Aries
router can be linked up to 30 intra-group and 10 inter-group
Aries routers. Thus, the high local radix not only can provide
enough mount points for both compute nodes and storage
nodes, but also reduce the network latency by using adaptive
routing algorithm. The burst buffer nodes residing in Aries are
implemented as Datawarp nodes in Cray XC40. These burst
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buffer nodes are a storage tier that uses flash as storage media.
Since they are substantially faster than hard-disk-based parallel
file system(PFS), they can play a role of intermediate buffer
between compute node and PFS and thus fill the latency gap
between memory of compute nodes and hard disks of PFS.

In order to simulate a exascale system with both dragonfly
network and burst buffers, we have implemented our simula-
tion using CODES (Co-Design of Multilayer Exascale Storage
Architectures)[2] and ROSS (Rensselaer Optimistic Simulation
System)[3] simulation frameworks. ROSS is a parallel discrete
event driven simulator which uses time warp protocols to
simulate discrete events in parallel. ROSS has been proven to
support a simulation of 50 million-node dragonfly network and
reaches a peak rate of 1.3 billion events per second. CODES
is a highly parallel simulation framework developed by Ar-
gonne National Laboratory (ANL) and Rensselaer Polytechnic
Institute(RPI). It is built on top of ROSS and provides various
network models such as torus and dragonfly network.

Darshan is a light weight profiling tool developed that can
be used to characterize 1/0O-load at pet-scale. It can identify
and record I/O operations of an application[4]. In addition to
run-time libraries, Darshan also provides utility libraries used
to parse I/O logs generated in run time. In the newest version,
Darshan is able to recognize multiple I/O operation types such
as POSIX, MPI-IO, HDF5 and so on. In a log file, information
such as total read and write numbers, total I/O time is recorded.
Given the detailed characterization of the I/O behavior of an
application, it is possible to replay I/O traces to simulation an
applications I/O behavior.

Trinity[5] is a Cray XC40 architecture supercomputer that
is installed at Los Alamos National Laboratory (LANL). In
2016, Trinity ranked the 7th most powerful supercomputer
in the world. In the year of 2017, Trinity has gone through
Stage II. By the time of this paper is written, Trinity just
finished the merge, which combines two halves of the system
together. One half contains 9,384 compute nodes with Intel
Haswell processors and the other has 9,984 Intel Knights
Landing (KNL) processors. After the merge, Trinity now has
>1,900 compute nodes, 576 burst buffer (Datawarp) nodes,
which will probably let Trinity get a higher rank in TOP500[6]
supercomputer ranking.

The contributions of this paper are as follows:

e We added burst buffer simulation to the CODES
dragonfly network model. The current dragonfly net-
work simulation in CODES only models two entities:
compute node and router. Since burst buffer nodes



are placed inside the same dragonfly network with
compute nodes and routers, we must add this new
entity into the model. The reason that we are not
able to reuse a compute node to represent a burst
buffer node is a burst buffer node has different param-
eters and behaviors from a compute node. To ensure
the simulation accuracy, the burst buffer node model
should be distinguished from the existing compute
node model.

e  We validated our simulator with IOR test results of
Trinity at LANL. Before we can carry on further stud-
ies with our simulator, we must validate the simulator
to make sure of its accuracy. The validation process is
usually hard and time-consuming. So is the validation
in our work. We developed an IOR workload generator
and validated our simulator with IOR benchmarking
results collected from Trinity after the merge. The
simulation error rate we got is less than 15

e At the end, we used some Darshan IO traces to show
IO interference when burst buffers are shared across
applications. On Trinity at LANL, researchers have
observed a strong network congestion when more than
one applications access burst buffer nodes. In order to
further study the issue, we need to generate a similar
situation in our simulator. Therefore, we modified the
Darshan IO workload generator in CODES to support
Darshan 10 logs above version 3.0. Then we fed the
simulator with Darshan IO traces collected from Cori,
a supercomputer with similar architecture at NERSC.
From the results, we can observe an obvious IO
interference between applications.

The rest of this paper is organized as follows: In Section II,
some background information and motivation of this work are
given. In Section III, we present our modeling and simulation
details. Experiment results and conclusions are given in Sec-
tion IV. Section V is related work and our future work. Section
VI is related work.

II. BACKGROUND & MOTIVATION

This section provides some background knowledge and our
motivation of this work. The background information is mostly
related to Trinity.

A. Trinity system overview

In this paper, our simulating target is Trinity, a Cray XC40
architecture supercomputer at LANL. The overview of whole
system is shown in Figure. 1. Trinity uses dragonfly network
to connect all compute nodes.The most significant feature of
Dragonfly network is the all-to-all pattern interconnections
among routers. In order to connect all routers manageably
and efficiently, links among routers are grouped into 3 levels:
system level (group level), cabinet level and chassis level. On
system level, 57 two-cabinet groups are connected with optical
links. This optical link is called inter-group link. On cabinet
level, each cabinet contains 6 chassis. All chassis in the same
cabinet are connected with backplane electrical links which can
be called inter-chassis link. The same type of interconnection
is also used to connect 16 Aries routers in a chassis on the
Chassis level, which is called intra-chassis link. Each Aries
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Fig. 1: Trinity system overview

router device and different kinds of nodes are placed onto one
blade. One the Blade level, PCle 3.0 connections are used to
link Aries router and nodes. This on-blade link is called intra-
blade link.

B. Cray Aries router

Aries router is a key component in CrayXC40’s inter-
connection network. The inside layout of an Aries router is
modeled in Figure. 2. In an Aries router, there are totally 48
tiles or ports used to switch flits. These 48 tiles are categorized
to 4 groups. 10 tiles are used for inter-group optical links,
which are colored as blue. Maximum bidirectional speed of
each these tiles is 4.7GB/s. Another 15 green tiles are used to
provide intra-chassis connection ports for the rest 15 routers
in the same chassis. . The maximum bandwidth is 5.25GB/s in
both directions. Another 15 black tiles link the rest 5 chassis
inside the same cabinet. To achieve a higher bandwidth, each
inter-chassis link occupies 3 this kind of tiles which sums up
15.75GB/s in each direction. The rest 10 tiles are used for
connection with nodes on the same blade with the router.

Cray Aries Blade

Blue Links (10x1)
To Other Groups,
10 Global Links
(4.7 GB/s per link)

Black Links (5x3
To 5 Other
Chassis in Group,

3 Tiles Each Link
(15.75 GB/s per link)

Green Links (15x1)
To 15 Other
Blades in Chassis,
1 Tile Each Link
(5.25 GB/s per link)
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Fig. 2: Aries router layout



C. Cray Datawarp node

Datawarp[7] is Cray’s implementation of burst buffers in
CrayXC series supercomputers. Burst buffers, as well as Par-
allel file system IO nodes, are integrated into Datawarp nodes.
Datawarp architecture can be presented in Figure. 3. Before
launching a job on compute nodes, the workload manager or
scheduler on a server node configures both compute nodes
and Datawarp nodes. When an application issues 1O requests,
requests are forwarded to DVS server process on a Datawarp
node. DVS, aka. data virtualization service is Cray’s IO pro-
cessing software. After receiving IO requests from DVS server,
Datawarp service process checks Datawarp configuration of
the job. Then Datawarp service process decides if the requests
should be forwarded to parallel filesystem or to local burst
buffers.

Figure 2. DataWarp software architecture component diagram.

Fig. 3: Aries router layout

D. CODES/ROSS simulation framework

CODES is a network simulation framework developed by
Argonne National Laboratory (ANL) based on ROSS. ROSS
is a massive parallel event driven simulator developed by
Rensselaer Polytechnic Institute (RPI). In CODES, multiple
network typologies are modeled in model-net layer. Network
routing algorithms are also implemented in the model-net
layer. Each node in a network is modeled by a logical
process (LP). Messages between LPs are passed in form
of events with MPI. All LPs and events are managed by
ROSS’s optimistic scheduler. In addition to simulation frame
implementation, CODES provides some different workload
generators. For example, network traffic workload generator
could parse DUMPI traces to generate workload simulating
applications’ MPI traffic. A Darshan 10 workload generator
is also implemented which can read applications’ 1O traces
generated by Darshan instrumentation.

E. Motivation

Though burst buffer architecture has been already adopted
in production systems, how to achieve best performance from
burst buffers still remains a critical issue. One problem ob-
served on Trinity is interference between applications when
accessing Datawarp nodes. In order to better understand and
solve the issue, we propose burst buffer simulation in dragonfly

network. After validating the simulator, we can use applica-
tions’ Darshan IO traces to replay this issue and try to find
solutions.

III. SIMULATION DESIGN

In this section, we present our simulation design from
following aspects: group modeling, network configurations and
CODES application layer.

A. Trinity group modeling

A group is defined as a 2-cabinet rack in Trinity which
can be modeled as Figure.4. There are 4 types of entities
in a Trinity node group. LN nodes represent Lustre Network
Routers. These routers are connected to the compute network
with Aries router as well as to the external Lustre parallel
filesystem. LN nodes play the role of forwarding compute
nodes’ IO requests to PFS. 2 LN nodes are connected to
one Aries device. SN nodes are service nodes which provide
management service, like workload manager and meta server.
CN nodes are compute nodes. In Trinity final phase, there
are 2 types of compute nodes. Intel Xeon (Haswell) nodes
and Intel Xeon Phi (Knights Landing- KNL) nodes. In our
simulation, we do not differentiate Haswell nodes and KNL
nodes because currently we only focus on the burst buffer
and network performance. DW nodes are Datawarp nodes.
Datawarp nodes are Cray’s implementation of burst buffers
in Cray XC40. 2 Intel DC P3608 SSDs are installed to each
Datawarp node. For different nodes, the numbers of nodes
attached to an Aries router are different. The ratios between
nodes and an Aries router are: 4: 1 for compute nodes, 2: 1
for Datawarp nodes and 2:1 for LNET nodes.

Our simulation models 3 entities in each group: compute
node, router and burst buffer node. The reason of ignoring
LNET node and PFS is that currently we are studying the
I/0O inside the dragonfly network that only involves with burst
buffer nodes. Since services nodes only provide some services,
their I/O traffic is neglectable . According to the configuration
of Trinity, there are 96 routers and 384 nodes in each group.
Based on the ratios between routers and different nodes, we
simulate 360 compute nodes, 10 Datawarp nodes and 4 LNET
nodes. We leave 10 nodes unused because of the unclear
number of service nodes. For Trinity final phase, we simulate
57 groups which sum up to 20,520 compute nodes and 570
Datawarp nodes.

B. Trinity network configurations

1) Network bandwidths: In this section, bandwidth num-
bers of each type of links are given and explained. For the
inter-group link, the bidirectional bandwidth is 18.75GB/s. As
shown in Figure.2, there are 10 tiles used for global link. If
all 10 tiles are used for inter-group links with 1-to-1 ratio, it
means a router can be connected to up to 960 other groups.
The number is far more larger than current need, therefore 2
routers are combined together to share 5 optical connectors so
that each inter-group link bandwidth is crease by 4 times of
4.7GB/s. For intra-chassis links, since only 1 tile is used for
each intra-chassis link, the bandwidth is 5.25GB/s. For inter-
chassis links, 3 tiles are combined to be used by 1 inter-chassis
link, thus inter-chassis link bandwidth is 3 times of 5.25GB/s,
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Fig. 4: Trinity group overview

which is 15.75GB/s. For intra-blade links, the bandwidth is
fixed by the bandwidth of PCle 3.0 interface which is 8GB/s.

2) Inter-group link arrangement: Generally, there are two
issues regarding the arrangement. The first is which two groups
should be connected. The second is which two routers in these
two groups should be connected. To solve these two issues,
we found a paper [11] focusing on global link arrangement in
Dragonfly network. There are mainly 3 arrangement patterns,
shown in Figure 6: Absolute, Relative and Circulant-based.
The detailed mapping algorithms can be found in the paper
mentioned above.

Currently, we are using the Absolute pattern. CODES
is using the same pattern but it is not easy to understand
and somehow buggy with my code, so we re-implemented
it. The question is what kind of group cabling pattern is
Trinity is using in reality? Because in the paper, the authors
benchmarked these three patterns and conclude that there are
differences under different application situation, and group link
arrangement is a critical part of the dragonfly network.

Fig. 5: Direct inter-group link arrangement pattern

3) CODES application layer design: The basic working
mechanism of our simulator is shown in Figure. 6. There
are mainly 2 layers: Application Layer and Model-net Layer.
The application layer processes (ALP) provide different user
defined functions such as generating workload on compute
nodes, simulating IO operations on burst buffer nodes. The
model-net layer processes (MLP) compose the dragonfly net-
work infrastructure which is fixed and cannot be modified by

Application Layer behaviors. Network packets are simulated
with messages between processes. An ALP generates messages
and sends it to a corresponding MLP, and then the messages
are converted to model-net network packets. After being routed
through the network, packets are delivered to the destination
MLP and sent to the corresponding destination ALP. The time
between ALP sends a message and receives an ACK from the
message receiver is recorded to calculate the throughput.

We also implemented an IOR benchmark workload genera-
tor. IOR benchmark is designed to test system IO performance.
By setting up parameters like N-to-N flag, xfer size and
Read/Write flag to, a user can collect IO performance data
under different scenarios. The benchmark workload generator
is also implemented in the application layer. By accepting
parameters, the synthetic workload generator instructs ALPs
representing computing nodes to send events to Datawarp
node ALPs. Additionally, we modified the default Darshan
10 workload generator in CODES. The current Darshan 10
workload generator of CODES only supports Darshan 2.6
version traces. After some modifications, our Darshan IO
workload generator now support most recent Darshan 3.x
traces.
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8B_MN_LP
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Fig. 6: CODES application layer
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IV. EXPERIMENTS AND RESULTS

In this section, first we give details of our testbed. Then
we show the validation results against IOR benchmark[8] data,
validation against Darshan IO traces.



A. Experiment environment

All experiments are conducted on 8 Chameleon baremetal
compute node instances. Chameleon[10] is a cluster setup in
both TACC and University of Chicago. The processor model
is Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz.

B. IOR validation

The IOR data validation includes two parts. One is Trinity
Phase II results. The other is latest data collected on Trinity
form the merge. For all following experiments, the xfer size
is IMB and sequential I10.

1) Trinity Phase 1I: We validated our simulator against the
IOR test result of Trinity Phase II. Figure.7 shows the N-N
write test results of IOR and our simulation. Since there are
two sets of IOR result collected on different dates, we put both
of them into the figure. The result can be divided into 3 stages:

e 1-256 nodes: In this stage, each compute node can
keep a 2.0 GB write bandwidth. The bandwidth is
limited by compute node injection rat.

e 256-512 nodes: When compute nodes are all in one
group and write to burst buffers, the bottleneck will
be the local links, both intra-chassis and inter-chassis
links. Because all nodes are sending traffic towards
the routers that have global links. The congestion on
the local side of these routers limits full utilization of
global links.

e 512-8192: In this stage, IO bandwidth is capped by
burst buffers maximum IO bandwidth. Totally, 230
burst buffers can reach 1200GB/s bandwidth.

N-1 simulation result is not matching either set of IOR result.
But from another point of view, the figure can tell that the
Datawarp software is still not consistent in Trinity Phase II
and Cray is still updating it. In the N-N read test, we had a
problem that when the experiment scales up to 1K nodes the
simulation crashes. So we cannot get further results beyond
that point.

2) Trinity from the merge: On 17th July 2017, Trinity
finished the merge, which combines two halves of the system
together. One half contains 9,384 compute nodes with Intel
Haswell processors and the other has 9,984 Intel Knights
Landing (KNL) processors. After the merge, Trinity now has
>1,900 compute nodes, 576 burst buffer (Datawarp) nodes.
We also got some IOR data from the merge and we validated
it with the simulator. N-N write result is given in Figure
10: Some clarification needs to be given. Now Trinity has
more than 19,000 compute nodes and 576 burst buffers. Our
simulation is modeling about 20,000 compute nodes and 570
burst buffer nodes. The reason why the test is still using 8K
as the maximum scale is that the test was conducted on the
8K Hasewell node half and on the other 8K Knights Landing
node half in each time. We used the higher one on different
node scales as the contrast bandwidth. As shown in the Fig 14,
there is a gap in 4K and 8K experiments, but before that, the
accuracy is fine. Accuracy of N-1 write simulation is similar
to N-N write. But another gap appears when the simulation
scales from 256 to 512 nodes which is also from one group
to two groups. Though we solve the crash problem that exists
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in Trinity Phase II simulation, read still remains a problem.
There are two issues in N-N read in Figure. 12: First, the
error rate is bigger than 15% in 2K and 4K test. Second, in
real IOR benchmark, the bandwidth is still increase at 8K scale
while our simulation reaches a cap. The issue still remains to
be confirmed. In Figure.13, the N-1 read result. The accuracy
problem is still obvious at 2K and 4K scale.

3) Darshan 10 trace validation: We are using Darshan
3.10 I/O logs collected on Cori[9] at NERSC to validate our
simulator. Figure. 15 is a sample validation result. We use
Darshan 1/O trace logs with different rank counts (x-axis) to
generate workloads, and compare the average throughput (y-
axis MB/s) calculated from simulation with that from original
log files. The result shows a 50% error rate. Though the error
rate is too high to validate the simulator, it does show some
similar trend. Afterwards, we realized that the traces we used
were all Lustre 1O traces rather than burst buffer IO traces.
Since burst buffers provide higher bandwidth than Lustre does,
it accounts for the high error rates we got. In fact, only 2 out
of more than 30,000 traces are burst buffer IO traces. One
has 60 ranks and the other has 160 ranks either of which is
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enough for validation. Besides, they were collected on Cori
whose configuration is quite different from Trinity. So we just
cannot use them for application validation. So far we have not
got any application’s Darshan traces from Trinity, so we have
to suspend the application validation at this time.
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V. FUTURE WORK

There are three parts of our next step work:

More simulation tuning, especially in the Read part.

After validating the fidelity, we will run experiments
with different configurations to see the bottleneck so
that we can have enough data to put in the IPDPS

paper.

Then we can use applications Darshan IO traces
to further study topics like job placement, network
isolation and different modes of burst buffers.
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