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Abstract— Data Analytics has become very popular on large 

datasets in different organizations. It is inevitable to use 

distributed resources such as Clouds for Data Analytics and 

other types of data processing at larger scales. To effectively 

utilize all system resources, an efficient scheduler is needed, but 

the traditional resource managers and job schedulers are 

centralized and designed for larger batch jobs which are fewer in 

number. Frameworks such as Hadoop and Spark, which are 

mainly designed for Big Data analytics, have been able to allow 

for more diversity in job types to some extent. However, even 

these systems have centralized architectures and will not be able 

to perform well on large scales and under heavy task loads. 

Modern applications generate tasks at very high rates that can 

cause significant slowdowns on these frameworks. Additionally, 

over-decomposition has shown to be very useful in increasing the 

system utilization. In order to achieve high efficiency, scalability, 

and better system utilization, it is critical for a modern scheduler 

to be able to handle over-decomposition and run highly granular 

tasks. Further, to achieve high performance, Albatross is written 

in C/C++, which imposes a minimal overhead to the workload 

process as compared to languages like Java or Python. 

We propose Albatross, a task level scheduling and execution 

framework that uses a Distributed Message Queue (DMQ) for 

task distribution among its workers. Unlike most scheduling 

systems, Albatross uses a pulling approach as opposed to the 

common push approach. The former would let Albatross achieve 

a good load balancing and scalability. Furthermore, the 

framework has built in support for task execution dependency on 

workflows. Therefore, Albatross is able to run various types of 

workloads, including Data Analytics and HPC applications. 

Finally, Albatross provides data locality support. This allows the 

framework to achieve higher performance through minimizing 

the amount of unnecessary data movement on the network. Our 

evaluations show that Albatross outperforms Spark and Hadoop 

at larger scales and in the case of running higher granularity 

workloads. 

Keywords—Data Analytics, Task Scheduling, Distributed 

Systems, Spark, Hadoop, Distributed Task Execution, Distributed 

Message Queue 

I. INTRODUCTION  

 
The massive growth in both scale and diversity of Big Data 

has brought new challenges as industry expectations of data 
processing loads continue to grow. For example, more than 2.5 
exabytes of data is generated everyday ‎[1]. At various 
organizations, it has become a necessity to process data at 
scales of Petabytes or larger. However, processing data at such 
scales is not feasible on a single node, therefore it is vital to 
utilize distributed resources such as Clouds, Supercomputers, 
or large clusters. Traditionally, these clusters are managed by 
batch schedulers, such as Slurm ‎[2], Condor ‎[3], PBS ‎[4], and 

SGE ‎[5]. However, such systems are not capable of handling 
data processing at much larger scales. Another pitfall these 
systems must face is processing finer granular tasks (far more 
in number, much shorter run times) at larger scales. This could 
only be handled with a sophisticated scheduler capable of 
handling many more tasks per second.  

The above mentioned systems were designed for clusters 
with far fewer amounts of batch jobs that usually run for a 
longer time. Those batch jobs usually have a different nature 
than the data analytics jobs. Moreover, they all have 
centralized designs that make them incapable of scaling up to 
the‎needs‎of‎today’s‎data‎analysis. 

Data analytics frameworks such as Hadoop ‎[7] and 
Spark ‎[6] were proposed to particularly solve the problem of 
data processing at larger scales. These frameworks distribute 
the data on multiple nodes and process it with different types of 
tasks. However even these frameworks have not been able to 
completely solve the problem. Both of the above mentioned 
systems have centralized bottlenecks that make them unable to 
handle the higher rate of task and data volume. Therefore, 
these frameworks are not suitable for workloads that generate 
more tasks in shorter periods of times. To give an example, 
simple applications, such as matrix multiplication, may be 
embarrassingly parallelizable, while generating many tasks 
where each task occurs in a very small amount of time ‎[28]. 
Our evaluations show that Spark and Hadoop are not able to 
schedule and execute more than 2000 tasks per second which 
could add significant overhead to those applications. 

Other frameworks like Sparrow ‎[8] have tried to bypass the 
issue of the centralized architecture on Spark and Hadoop. 
Their solution is to primarily dedicate each job that consists of 
multiple tasks to a separate scheduler. This solution raises a 
few issues. First, the utilization of the whole cluster will be 
lower than distributed task level scheduling solutions. Since 
different jobs have different sizes, they will cause load 
imbalance for the system, and since a scheduler can only 
handle its own job, an idle or lightly loaded scheduler will not 
be able to help any overloaded schedulers. Moreover, this 
solution may not work well for the jobs that have significantly 
higher number of heterogeneous tasks. Such a job could easily 
saturate a single centralized task scheduler and cause 
significant overheads to the system. 

Nowadays, most of the data analytics of big data run on the 
Cloud. Unlike HPC Clusters and Supercomputers that have 
homogeneous nodes, Clouds have heterogeneous nodes with 
variable node performance. Usually the underlying physical 
hardware is being shared across multiple Virtual Machines 
(VMs) and subsequently, these nodes may have variable 
performance [27]. Our evaluations have shown that in some 
cases, identical instances on AWS ‎[26] within a given region 
and availability zone can exhibit variable performance results. 



This means some tasks can take much longer than others. It is 
important for a scheduler to take this into the consideration. A 
simple and effective solution would be breaking tasks into 
smaller tasks and make them more granular. This technique is 
called over-decomposition. If the tasks are more granular, the 
workload can be better spread over the nodes and more capable 
nodes (faster, less-utilized) will be able to run more tasks. This 
would allow system utilization to significantly increase ‎[29]. 
However, this poses significant challenges to the scheduling 
system, forcing it to make faster scheduling decisions. To 
allow over-decomposition and handle finer granular task 
scheduling, it is essential for modern schedulers to provide 
distributed scheduling and execution at the task level rather 
than the job level.  

It is also critical for a scheduler to impose minimal 
overhead to the workload execution process starting from a 
single node. Tasks in utilizing a fine granular workflow could 
take a few milliseconds of execution time. It is not practical to 
run such workloads on a scheduler that takes seconds to 
schedule and execute a single task. Some programming 
languages (e.g. Java and Python) that operate at a more abstract 
level could add more overhead to the scheduling process. 
Therefore it is necessary to implement the scheduler in lower 
level languages such as C or C++ to achieve the best 
performance on a single node level. 

There is an emergent need for a fully distributed scheduler 
that handles the scheduling at the task level and is able to 
provide efficient scheduling for high granular tasks. In order to 
achieve scalability, it is important to avoid a centralized 
component as it could become a bottleneck. In this paper, we 

propose Albatross: A fully distributed cloud-enabled task 
scheduling and execution system that utilizes a distributed 
Message Queue as its building block.  

The main idea of scheduling in Albatross is to use Fabriq, 
which is a distributed message queue ‎[9] for delivering tasks to 
the workers in a parallel and scalable fashion. Most of the 
commonly used schedulers have a central scheduler or a 
controller that distributes the tasks by pushing them to the 
worker nodes. However, unlike the traditional schedulers, 
Albatross uses a pulling approach as opposed to pushing tasks 
to the servers. The benefit of this approach is to avoid the 
bottleneck of having a regional or a central component for task 
distribution. Albatross also uses a Distributed Hash Table 
(DHT) ‎[10] for the metadata management of the workloads. 
There is no difference between any of the nodes in Albatross. 
Each node is a worker, a server, and possibly a client. The 
DMQ and the DHT are dispersed among all of the nodes in the 
system. The task submission, scheduling, and execution all 
happen through the collaboration of all of the system nodes. 
This feature enables Albatross to achieve a high scalability. 
The communication and the routing of the tasks all happen 
through hashing functions that have an O(1) routing 
complexity. That makes the communications between the 
servers optimal.  

Albatross is able to run workflows with task execution 
dependency through a built in support in the DMQ. That gives 
Albatross flexibility to run HPC, and data analytics jobs. An 
HPC job is usually defined as a Bag-of-Tasks ‎[11] with 
dependencies between those tasks. The built-in task 
dependency support will enable the application to submit jobs 

to Albatross without having to provide an application level 
support for task dependencies. The Directed Acyclic Graph 
(DAG) support also enables Albatross to run various types of 
data analytics workloads. The focus of this paper is mainly 
Map-reduce workloads. 

Another important feature that is required for data analytics 
frameworks is data locality support. Data locality suggests that 
since the movement of the data on the network between the 
nodes is an expensive process, the frameworks have to 
prioritize moving tasks to the data location and minimize the 
data movement on the system. In Albatross this feature is 
supported through load balancers of the Fabriq. 

Our evaluations show that Albatross outperforms Spark and 
Hadoop that are currently state-of-the-art scheduling and 
execution frameworks for data analytics in many scenarios. It 
particularly outperforms the other two when the task 
granularity increases. Albatross is able to schedule tasks at 10K 
tasks per second rate, outperforming Spark by 10x. The latency 
of Albatross is almost an order of magnitude lower than Spark. 
Albatross’s‎throughput on real applications has been faster than 
the two other systems by 2.1x and 12.2x. Finally, it 
outperforms Spark and Hadoop respectively by 46x, and 600x 
in processing high granularity workloads on grep application. 

In summary, the main contributions of Albatross are: 

 The framework provides a comprehensive workload 
management including: data placement and distribution, 
task scheduling, and task execution.  

 It has a fully distributed architecture, utilizing a DMQ 
for task distribution and a DHT for workload metadata 
management. 

 It provides distributed scheduling at the task level, as 
opposed to job level distributed scheduling.   

 The framework provides an efficient Task execution 
dependency support. It enables Albatross to run a wide 
range of workloads including HPC and Data Analytics. 

 It provides data locality optimization. 

 It offers an optimized implementation for High 
Performance Applications, using C/C++ programming 
language. 

The rest of the paper is organized as follows. Section II 
discusses the related work. Section III provides background 
about the two building block components of Albatross. Section 
IV discusses the architecture of Albatross, followed up by the 
implementation details of the data locality and the task 
execution dependency support. Next, in section V, we discuss 
the Map-reduce programming model support in Albatross. 
Section VI briefly compares the main differences of Albatross 
with Spark and Hadoop as the mainstream data analytics 
frameworks. Section VII evaluates the performance of the 
Albatross in different metrics. Finally, section VIII concludes 
the paper and discusses the future work. 

II. RELATED WORK 

There have been many works providing solutions for task 
or job scheduling in distributed resources. Some of those 
works have focused on task scheduling and execution while 
some have focused on resource management on large clusters. 
Condor ‎[3] tries to harness the unused CPU cycles on servers 
for batch-jobs that take longer to run. Slurm ‎[2] is a resource 



manager for Linux clusters that also provides a framework for 
work execution and monitoring. Portable Batch System 
(PBS) ‎[4] mainly focuses on HPC. It manages batch and inter-
active jobs.  

The main limitation of the above mentioned works is their 
centralized architecture that makes them not capable of 
handling larger scales. They were all designed for longer 
running batch jobs and are unable to schedule workloads in 
fine granular task level.  

Systems such as Mesos ‎[12], and Omega ‎[13] are resource 
managers that were designed for allocating resources to 
different applications. The focus of this work is on a task 
scheduling and execution solution that could run different 
types of workloads. Nevertheless, both of these systems have 
centralized architectures and could not be the ultimate solution 
for distributed processing of data analytics workloads. 

Many industrial systems such as Spark & Hadoop utilize 
iterative transformations and the Map-reduce model, 
respectively, but still exhibit bottlenecks, particularly the 
centralized task/resource managers ‎[30]. Usually a centralized 
version is relatively simple to implement. However, as seen in 
the performance evaluation in a later section, these centralized 
components may be the downfall of the system as scale 
increases. Additionally, there are systems such as Sparrow ‎[8], 
which‎try‎to‎reduce‎the‎consequences‎associated‎with‎Spark’s‎
centralized job scheduler. It has a decentralized architecture 
that makes it scalable. Although Sparrow provides a 
distributed scheduler for the jobs, the task-level scheduler is 
still centralized. Therefore since we are focusing on the task 
level scheduling and not exploring the multiple-job workloads, 
Sparrow would not provide any improvement in our 
experiments. 

Another approach that has been used for distributed 
scheduling is work stealing. It is used at small scales 
successfully in parallel languages such as Cilk ‎[14], to load 
balance threads on shared memory parallel 
machines ‎[15]‎[16]‎[17]. Scalability of work stealing has not 
been proven yet. The randomized nature of it could cause poor 
utilization and scalability ‎[18]. 

III. BACKGROUND 

Before discussing Albatross, we are going to provide 
information about the two building blocks of the framework. 
Fabriq and ZHT are the main components of the Albatross that 
make the task distribution, communication and the metadata 
management possible in this framework. 

A. ZHT Overview 

For metadata management, Albatross uses ZHT which is a 
low overhead and low latency Distributed Hash Table, and has 
a constant routing time. It also supports persistence. ZHT has 
a simple API with 4 major methods:  insert, lookup, remove, 
and append. A key look up in ZHT can take from 0 (if the key 
exists in the local server) to 2 network communications. This 
helps provide the fastest possible look up in a scalable DHT. 
The following sections discuss main features of ZHT. ZHT 
operations are highly optimized and efficient. Insert and 
lookup operations take less than a millisecond on an average 
instance on AWS. 

1) Network Communication 

ZHT supports both TCP and UDP protocols. In order to 
optimize the communication speed, the TCP connections are 
cached by a LRU cache. That will make TCP connections 
almost as fast as UDP. 

2) Consistency 
ZHT supports consistency via replication. In order to 

achieve high throughput ZHT follows a weak consistency 
model after the first two replicas that are strongly 
consistent ‎[19].  

3) Fault Tolerance 
ZHT supports fault tolerance by lazily tagging the servers 

that are not being responsive. In case of failure, the secondary 
replica will take the place of the primary replica. Since each 
ZHT server operates independently from the other servers, the 
failure of a single server does not affect the system 
performance.  

4) Persistence 
ZHT is an in-memory data-structure. In order to provide 

persistence, ZHT uses its own Non-Volatile Hash Table 
(NoVoHT). NoVoHT uses a log based persistence mechanism 
with periodic check-pointing ‎[20]. 

B. Fabriq Overview 

Fabriq is a Distributed Message Queue that runs on top of 
ZHT. It was originally designed for handling the delivery of 
high message volumes on Cloud environment. Adding an 
abstract layer over ZHT, Fabriq is able to provide all of the 
benefits of it including persistence, consistency, and 
reliability. Running on top of a DHT, Fabriq is able to scale 
more than 8k-nodes. 

Messages in Fabriq get distributed over all of its server 
nodes. Thus, a queue could coexist on multiple servers. That 
means clients can have parallel access to a queue on Fabriq, 
making Fabriq a perfect fit for our framework. Albatross uses 
a DMQ as a big shared pool of tasks that could provide 
simultaneous access from a large number of its workers. 

Fabriq guarantees exactly-once delivery of the messages. 
That is an important requirement for Albatross. On our 
previous work ‎[22],  since CloudKon was using SQS ‎[21], and 
SQS could generate duplicate messages, we had to add an 
extra component to filter the duplicate messages. That adds 
more overhead to the system. Using Fabriq, we will not have 
that problem since we can make sure that it only delivers a 
message once. Fabriq is very efficient and scalable. The 
latency of pop and push operations on Fabriq over an Ethernet 
network on AWS are less than a millisecond on average. That 
is almost an order of magnitude better than other state-of-the-
art message queues. 

IV. SYSTEM OVERVIEW 

 Albatross is a distributed task scheduling and execution 
framework. It is a multipurpose framework, suitable for 
various types of workloads and compatible with different 
types of environments, especially the Cloud environment. The 
key insight behind the Albatross is that unlike other 
conventional schedulers, in Albatross, a worker is the active 
controller and the decision making component of the 
framework. In most of the schedulers, there is a central or 
regional component that is responsible for pushing tasks to the 
workers and keeping them busy. That could bring a lot of 



challenges in many cases. In the case of running workloads 
with high task submission rates, or workloads with 
heterogeneous tasks, or in the case of larger scale systems, or 
heterogeneous environments like Clouds, these schedulers will 
show significant slowdowns. In such schedulers, the scheduler 
component needs to have live information about the workers 
that are being fed. That could be a big bottleneck and a source 
of long delays as the component can get saturated after a 
certain scale or under a certain load. Albatross gets rid of 
central or regional scheduler components by moving the 
responsibility from the scheduler to the workers. In Albatross, 
the workers pull tasks from a shared pool of tasks whenever 
they need to run a new task.  That could significantly improve 
the utilization and could improve the load balancing of the 
system. In order to achieve that, Albatross uses Fabriq as a big 
pool of tasks. Fabriq is scalable and provides parallel access 
by a large number of workers. That makes Fabriq a perfect fit 
for Albatross. 

A. Architecture 

In order to achieve scalability, it is inevitable to move the 
control from centralized or regional components to the 
workers in the framework. In such architecture, the 
scheduling, routing, and task execution take place by the 
collaboration of all of the nodes in the system. Each worker 
has the same part in the workload execution procedure and 
there is not a single node with an extra component or 
responsibility.  

Figure 1. Albatross Components  shows the components of 
Albatross. The system is comprised of two major components, 
along with the worker and client driver programs. Fabriq is 
responsible for the delivery of the tasks to the workers. ZHT is 
responsible for keeping the metadata information and updates 
about the workload. This information could include the data 
location, and the workload DAG. Depending on the setup 
configurations, an Albatross node could run a worker driver, a 
client driver, a ZHT server instance, a Fabriq server instance, 
or a combination of those components. Since ZHT and Fabriq 
are both fully distributed and do not have a centralized 
component, they can be distributed over all of the nodes of the 
system. Therefore, each worker driver program has local 
access to an instance of Fabriq server, and an instance of ZHT 
server. 

 
Figure 1. Albatross Components 

The process starts from the Client driver. The user 
provides the job information, and the input dataset to the client 

program. Based on the provided job information, the Client 
program generates the tasks and the workload DAG. Then it 
distributes the dataset over all of the worker nodes in the 
system. Finally it submits the tasks to Fabriq. The task 
submission on Fabriq is performed via a uniform hashing 
function that distributes the tasks among all the servers, 
leading to a good system load balance. The data placement 
and the task submission could also be performed through 
multiple parallel clients.  

The Worker driver starts with pulling tasks from Fabriq. 
Depending on the type of the task and the workload, a Worker 
might access, or write into ZHT to either get metadata 
information about the input data location, or dependencies, or 
to update the metadata. The worker also fetches the input data 
either locally or from a remote Worker. We discuss the 
procedure of data locality support on Albatross in the 
following sections. The output of each task is written locally. 

B. Task Execution Dependency 

Both HPC and data analytics workloads enforce a certain 
execution order among their tasks. In order to be able to 
natively run those workloads, Albatross needs to provide 
support for workload DAGs. HPC tasks propose the concept 
the Bag-of-Tasks. Each HPC job could have some tasks that 
could be internally dependent on each other. Data analytics 
workloads often propose similar concepts. Programming 
models such as Dryad ‎[23], and Map-reduce that are often 
used in data analytics have similar requirements. In Map-
reduce, reduce tasks could only run after all of their 
corresponding map tasks have been executed. 

The implementation of the task execution dependency 
support should not disrupt the distributed architecture of the 
system. Our goal was to keep the dependency support 
seamless in the design and avoid adding a central component 
for keeping the DAG information. Task execution dependency 
is supported through the implementation of priority queues in 
Fabriq. Each task in Albatross has two fields that hold 
information about its execution dependencies. ParentCount 
(pcount) field shows the number of unsatisfied dependencies 
for each task.  In order to be executed, a task needs to have its 
ParentCount as 0. ChildrenList field keeps the list of the 
taskIDs‎of‎the‎current‎task’s‎dependent‎tasks. 

Figure 2 shows the process of running a sample DAG on 
Albatross. The priority inside Fabriq has two levels of 
priorities: 0 or more than 0. The priority queue inside each 
Fabriq server holds onto the tasks with non-zero pcounts. A 
worker can only pop tasks with 0 pcounts. Unlike 
conventional DMQs, Fabriq provides the ability to directly 
access a task via its taskID. That feature is used for Albatross 
task dependency support. Once a task is executed, the worker 
updates its ChildrenList tasks, decreasing their dependencies 
by‎1.‎Inside‎the‎priority‎queue,‎once‎a‎task’s pcount becomes 
0, the queue automatically moves it to the available queue and 
the task could be popped by a worker.  

C. Data Locality 

Data locality aims to minimize the distance between data 
location and respective task placements. Since moving the 
data is significantly more expensive than moving the process, 
it is more efficient to move the tasks to where the data is 
located. Data locality support is a requirement for data-
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intensive‎workloads.‎Albatross’s‎goal is to minimize the data 
movement during the workload execution while maintaining 
high utilization. 

 
Figure 2. Task Execution Dependency Support 

Data locality could be applied on different stages of the 
workload execution process. The common approach is to 
dictate the decisions on the scheduling and task placement 
stage. On this approach, the scheduler tries to send the tasks to 
their corresponding data location. This approach minimizes 
the number of task placements before a task gets executed. 
However, there are some issues with this approach that is 
going to hurt the overall performance of the system at larger 
scales. In order to send the tasks to the right location, the 
scheduler needs to have extensive information about the 
workers, and the data locations. That could slow down the 
process at larger scales. Moreover, this approach could lead 
into load imbalance and reduce the utilization as there could 
be some nodes with many tasks and some left idle because 
their corresponding tasks are dependent on the current running 
tasks on the workload. Also, this method is associated with the 
pushing approach which is not desirable at larger scales. 

Albatross does not dictate any logic regarding data locality 
at task submission stage. It uses a uniform hashing function to 
distribute them evenly among servers. That means the task 
placement is going to be random. The data locality is achieved 
after the tasks are submitted to the Fabriq servers. Depending 
on the location of their corresponding data, some of the tasks 
might be moved again. Even though that adds extra task 
movement to the system process, it lets the workers handle the 
locality between themselves without going through a single 
centralized scheduler. Figure 3 shows the data locality process 
and its corresponding components. There are two types of 
queues and a locality engine on each Albatross server. The 
main queue belongs to the Fabriq. It is where the tasks first 
land once they are submitted by the client. The locality engine 
is an independent thread that goes through the tasks on main 
queue and moves the local tasks to the local queue. If a task is 
remote (i.e. the corresponding data is located on another 
server), the engine sends the task to the local queue of its 
corresponding‎server‎via‎that‎server’s‎locality‎engine. 

Strict dictation of data locality could not always be 
beneficial to the system. Workloads usually have different 
task distribution on their input data. A system with strict data 
locality always runs the tasks on their data local nodes. In 
many cases where the underlying infrastructure is 
heterogeneous, or when the workload has many processing 

stages, a system with strict locality rules could have a poorly 
balanced system where some of the servers are overloaded 
with tasks and the rest are idle with no tasks to run. In order to 
avoid that, we incorporate a simple logic in the locality 
engine. 

 
Figure 3. Data Locality Support Components  

Figure 4 portrays the‎ locality‎ engine’s‎ decision‎ making‎
process. When the engine finds a remote task, it tries to send it 
to the remote server. If the remote server is overloaded, it 
rejects the task. In that case, the engine saves the task to the 
end of local queue regardless of being remote. The worker is 
going to pop tasks from the local queue one by one. Once it 
wants to pop the remote task, the locality engine tries to send 
the task to its own server one more time. If the remote server 
is still overloaded, the locality engine transfers the 
corresponding data from the remote server. This technique is 
similar to the late-binding technique that is used in other 
scheduling frameworks ‎[8].  

 

Figure 4. Locality Engine's Decision Making 

V. MAP-REDUCE ON ALBATROSS 

This section discusses the implementation of the Map-
reduce programming model in Albatross. Figure 5 shows the 
Map-Reduce execution process. Like any other Map-reduce 
framework, the process starts with the task submission. A task 
could be either map or reduce. Map tasks have their pcount as 
0. They usually have a reduce task in ChildrenList. Reduce 
tasks have their pcount as more than 0 and will be locked in 
the queues until their parent map tasks are executed. 
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Figure 5. Map-reduce process in Albatross 

Once a map task is popped by a worker, it loads its input 
data from the local (or remote) file system. The map function 
is included inside the map task. Mapper loads the function and 
runs it. Unless the size of the output exceeds the available 
memory limit, the worker writes the intermediate results to the 
memory. For applications like sort that have larger 
intermediate data, the worker always writes the output on disk. 
Once the task is executed, the worker adds the location of the 
intermediate data for this map task to the ZHT. Finally, the 
pcount for its dependent reduce task will be reduced by 1. 

Once all of the parent map tasks of a reduce task are 
executed, the reduce task becomes available and gets popped 
by a worker. The worker gets the location of all of the 
intermediate data required by this task. Then the worker gets 
the intermediate data from those locations. Then it loads the 
reduce function from the task and writes the final results to its 
local disk. It also adds its final results location to the ZHT. 

Many Map-reduce frameworks including Hadoop and 
Spark have many centralized points in their process. The 
mappers and the reducers have to go through a single 
component to get or update information such as the 
intermediate data location, the logging information and the 
final output location. Albatross has no centralized point of 
process in its Map-reduce model. The tasks are delivered 
through Fabriq and the other information is propagated 
through ZHT. Since ZHT resides on all of the nodes, mappers 
or reducers could all access ZHT at the same time without 
causing a system slow down.  

VI. PERFORMANCE EVALUATION 

This section analyzes the performance of Albatross. We 
compare the performance of Albatross using different metrics 
with Spark and Hadoop which are both commonly used for 
data analytics. First, we briefly compare the major differences 
of the three systems in design and architecture. Then, we 
compare the performance of those frameworks while running 
microbenchmarks as well as real applications. We measure the 
efficiency, throughput, and latency of the three systems while 
varying the granularity of the workloads.     

A. Hadoop and Spark 

1) Hadoop 
Hadoop is a data analytics framework that adopted its 

architecture from‎ Google’s‎ Map-reduce implementation. It 
consists of two main components which are the distributed file 
system (HDFS) and the Map-reduce programming paradigm. 
The two main centralized components of Hadoop are the 

NameNode and the JobTracker. The JobTracker is in charge 
of tracking any disk reads/writes to HDFS. As the job tracker 
must be notified by the task trackers, similarly the namenode 
must be notified of block updates executed by the data nodes. 
In the newer version of Hadoop, instead of the job tracker as 
seen in Hadoop 1.x, there is a resource manager. The resource 
manager (similar to the job tracker) is in charge of allocating 
resources to a specific job ‎[25]. Although the Yarn ‎[24] 
version tries to provide higher availability, the centralized 
bottlenecks are still existent. 

2) Spark 
Spark, like many other state-of-the-art systems, utilizes a 
master-slave architecture. The flexible transformations enable 
Spark to manipulate and process a workload in a more 
efficient manner than Hadoop.  One of the vital components of 
the‎Spark’s‎cluster‎configuration‎is‎the‎cluster‎manager‎which‎
consists of a centralized job-level scheduler for any jobs 
submitted to the cluster via the SparkContext. The cluster 
manager allocates a set of available executors for the current 
job and then the SparkContext is in charge of scheduling the 
tasks on these allocated executors. Therefore, similar to 
Hadoop, centralized bottlenecks are still present even though 
the capability of iterative workloads is better handled in Spark 
than‎ in‎ Hadoop.‎ The‎ primary‎ bottlenecks‎ in‎ Spark’s‎ cluster‎
mode are the task level scheduler present in the SparkContext 
and the job-level scheduler present in the provided cluster 
manager. Other than these pitfalls, Spark provides a novel idea 
of resilient distributed datasets or RDDs which allows it to 
provide support for iterative workloads. RDDs are analogous 
to a plan or a series of transformations which need to be done 
on a set of data. Each RDD is a step and a list of these steps 
form a lineage.  

B. Testbed and Configurations 

The experiments were done on m3.large instances which 
have 7.5 GB of memory, 32 GB local SSD storage, and Intel 
Xeon E5-2670 v2 (Ivy Bridge) Processor (2 vCores). Since the 
amount of vCores available were two, the number of reduce 
tasks for Hadoop was limited to only two concurrently 
running tasks. 
For the overall execution time experiments (block size fixed at 
128 MB), the workload was weakly scaled by 5 GB per added 
node. For the varied partition/block size experiments, since the 
runtimes for Hadoop and Spark were very long for very short 
blocks, the workload was chosen to be 0.5 GB per added node. 



There were two main reasons as to why the same 5GB per 
node workload was not used for the varied partition/block size 
experiments. Spark and Hadoop started seeing a very long 
execution time (~4 hours for a single node experiment) and 
Spark which uses the Akka messaging framework uses a 
framesize (pool) in which the completed tasks were being 
stored. As the HDFS block size decreased, the number of total 
tasks (total number of tasks = total workload / block size) 
increased to amounts which the default framesize 
configuration could not handle. Finally, regarding the 
microbenchmarks, instead of focusing on the size of the input 
data, we focused on the amount of tasks which should be run 
per node. As can be seen below, a total of 1000 tasks were run 
per node. 

C. Microbenchmarks 

This section compares the scheduling performance of the 
Albatross and Spark while running synthetic benchmarks. 
These benchmarks are able to reflect the performance of the 
systems without being affected by the workloads or 
applications. We measure latency and throughput while 
scheduling null tasks. We did not include Hadoop in this 
section,‎as‎Hadoop’s‎tasks are written to disk. That makes the 
scheduling significantly slower than the other two systems.  

1) Latency 
In order to assess the scheduling overhead of a framework, 

we need to measure overall latency of processing null tasks. In 
this experiment, we submit 1,000 null tasks per node and 
calculate the total time for each task. The total time could be 
defined as the time it takes to submit and execute a task, plus 
the time for saving the results on disk or memory. There is no 
disk access in this experiment. 
Figure 6 shows the average latency of running empty tasks on 
the three frameworks, scaling from 1 to 64 nodes. Ideally, on a 
system that scales perfectly, the average latency should stay 
the same.  

 

Figure 6. Average latency of in-memory null tasks 

 
In order to fully reflect the scheduling overhead of three 

frameworks, we need to measure metrics like minimum, 
median, and maximum latency. Figure 7 shows the cumulate 
distribution function (cdf) of the three systems while running 
empty tasks. The cdf is able to show the possible long tail 
behavior of a system. Compared to Spark, Albatross has a 

much shorter range in scheduling tasks. The slowest task took 
60 milliseconds to schedule. That is 33x faster than the 
slowest task in Spark which took more than 2 seconds. This 
long tail behavior could significantly slow down certain 
workloads. The median scheduling latency in Albatross is 5 
ms as compared to 50 ms latency in Spark. More than 90% of 
the tasks in Albatross took less than 12 ms which is an order 
of magnitude faster than the Spark at 90 percentile. 

 
Figure 7. Cumulative distribution null tasks latency 

2) Scheduling Throughput 
In order to analyze the task submission and scheduling 

performance of the frameworks, we measured the total 
timespan for running 10,000 null tasks per node.  The 
throughput is defined as the number of tasks processed per 
second (tasks per second). 

Figure 8 shows the throughput of Albatross and Spark. 
Spark is almost an order of magnitude slower than Albatross, 
due to having a centralized scheduler, and being written in 
Java. Also, unlike Albatross the performance of Spark 
scheduling does not linearly increase with the scale. Spark’s‎
centralized scheduler gets almost saturated on 64 nodes with a 
throughput of 1235 tasks per second. We expect to see the 
Spark scheduler saturating at 2000 tasks per seconds. 
Albatross was able to linearly scale, reaching to 10666 tasks 
per second at 64 nodes scale. 

 
Figure 8. Throughput of null task scheduling 

D. Application performance 

In order to provide a comprehensive comparison, we 
compare the performance of the three frameworks while 



running different Map-reduce applications. Applications were 
chosen to reflect weaknesses and advantages of frameworks in 
different aspects. We have measured the performance for sort, -
word-count, and grep applications.  

1) Sort: The sort application sorts the input dataset lines 
according to the ascii representation of their keys. The 
algorithm and the logic of the sort application is based on the 
Terasort benchmark that was originally written for 
Hadoop ‎[25]. Unlike the other two applications, intermediate 
data in sort is large and will not always fit in memory ‎[31]. The 
application performance reflects the file system performance 
and the efficiency of the memory management on each 
framework. Also, the network communication is significantly 
longer in this application. As portrayed in Figure 9, Spark 
utilizes a lazy evaluation for its lineage of transformations. 
Only when an action such as saveAsHadoopFile is received is 
when the entire lineage of transformations is executed and data 
is loaded into memory for processing. Therefore, sortByKey, 
which is the only transformation in this scenario has a 
relatively quick‎“execution‎time.”‎On the other hand, the action 
phases require loading the data in memory, actually performing 
the sort, and writing back to disk. 

 
Figure 9. Spark's task breakdown (32 nodes) 

As shown in Figure 10,‎Hadoop’s‎sort has two phases for 
the Map-reduce model. The reduce phase is relatively longer 
since it includes transferring data and the sorting after 
receiving the data. To allow for Hadoop to utilize a similar 
“range‎ partitioner”‎ as‎ Spark,‎ we‎ implemented‎ Hadoop’s‎ sort‎
using a TotalOrderPartitioner. 

 
Figure 10. Hadoop's task breakdown (32 nodes) 

Figure 11 portrays the map and reduce runtimes for sort 
application. Similar to Hadoop, Albatross has two phases for 
sort application. The runtime variation of tasks on Albatross is 
significantly lower than the Hadoop and Spark. This is a result 

of the pulling approach of Albatross that leads to a far better 
load balancing on the workers.   

 

Figure 11. Task breakdown for Albatross (32 nodes) 

2) Word-count: The word-count application calculates the 
count of each word in the dataset. Unlike sort, the proportion of 
intermediate data to input data is very low. Each map task 
generates a hash-map of intermediate counts that is not bigger 
than a few kilobytes. The intermediate results will get spread 
over all of reducers based on their key-ranges. Similar to 
Hadoop’s‎ word-count,‎ Spark’s‎ word-count uses map tasks 
which output (word, 1) pairs and a reducer which aggregates 
all the (word, 1) pairs by key. The final action is a 
saveAsHadoopFile which saves the resulting pairs to a file on 
HDFS 

3) Grep: The grep application searches for the occurrences 
of a certain phrase within the input dataset. The workflow 
process is similar to the behavior of Map-reduce. However, in 
Albatross, unlike Map-reduce, the intermediate result of each 
map task only moves to a certain reducer. That leads to far 
fewer data transfers over the network. In order to send read-
only data along with a task to the executors, Spark 
encapsulates the read-only data in a closure along with the 
task function. This is a simple, but very inefficient way to pass 
the data since all workers will have duplicate values of the 
data (even though the variable values are the same). Since the 
grep implementation needs each map task to have access to 
the search pattern, a broadcast variable which stored the four 
byte search pattern was used.  

We compare the throughput of the frameworks while 
running the applications. We measure the total throughput 
based on the ideal block size for each Framework. We also 
analyze the performance of the frameworks while increasing 
granularity of the workloads. Figure 12 shows the performance 
of sort, scaling from 1 to 64 nodes. Albatross and Spark show 
similar performances up to 16 nodes. However, Spark was not 
able to complete the workload as there were too many 
processes getting killed, due to running out of memory. As we 
mentioned earlier, intermediate results in sort are as big as the 
input. Using Java, both Spark and Hadoop were not able to 
handle processing inputs as they were generating large 
intermediate results. There were too many task restarts on 
larger scales for Hadoop and Spark. The dotted lines are 
showing the predicted performance of the two systems if there 
were not running out of memory and processes were not 
getting killed by the Operating System. In order to avoid this 



problem, Albatross writes the intermediate results to disk when 
it gets larger than a certain threshold. 

 
Figure 12. Throughput of sort application 

Figure 13 shows the throughput of sort with different 
partition sizes on 64 nodes. The throughput of Spark is 57% of 
Albatross using 100MB partitions. However, this gap becomes 
more significant on smaller partitions. The throughput of Spark 
is less 20% of Albatross using 1MB partitions. This clearly 
shows the incapability of Spark on handling high granularity. 
On the other hand, Albatross proves to be able to handle over-
decomposition of data very well. Albatross provided a 
relatively stable throughput over different partition sizes. The 
Albatross scheduling is very efficient and scalable and could 
handle higher task submission rate of the workload. The only 
exception was for the 100KB partitions. At 100KB, opening 
and reading files takes the majority of the time and becomes 
the major bottleneck on the processing of each task. Hadoop 
and Spark cannot use partitions smaller than 1MB due to the 
limitation of HDFS. 

 
Figure 13. Sort application throughput (varied partition sizes) 

Figure 14 shows the throughput for word-count using large 
data partitions. Spark was able to achieve a better throughput 
than the other two systems. Even though they have provided 
different throughputs, all the three systems linearly scaled up to 
the largest scale of the experiment. 

 
Figure 14. Word-count application Throughput 

Figure 15 shows the throughput of word-count using 
different partition sizes on 64 nodes. Spark outperforms 
Albatross on 100MB partitions. However, it could not keep a 
steady performance at smaller partition sizes. Albatross goes 
from being slightly slower at the largest partition size to 
outperforming Spark by 3.8x. Spark is not able to schedule 
tasks at higher task rates. Hence the throughput drops on 
smaller scales. 

 
Figure 15. Word-count throughput (varied partition sizes) 

Figure 16 compares the performance of grep application on 
the three systems using large partitions. Albatross outperforms 
the Spark and Hadoop by 2.13x and 12.2x respectively.  

 
Figure 16. Throughput of grep application 

Figure 17 shows the throughput of grep using different 
partition sizes on 64 nodes. As the partition size gets smaller, 



the gap between the throughput of Albatross and the other two 
systems becomes more significant. Similar to the other 
applications, the throughput of Albatross is stable on different 
partition sizes. 

 
Figure 17. Grep application throughput (varied partition sizes) 

VII. CONCLUSION AND FUTURE WORK 

Over the past few years, Data analytics frameworks such 
as Spark and Hadoop have gained a great deal of attraction. 
With the growth of Big Data and the transition of workloads 
and applications to high granularity tasks with shorter run 
time, the requirements for the data analytics has changed. 
Centralized frameworks will no longer be able to schedule and 
process the big datasets. There is need for distributed task 
scheduling and execution systems. This paper proposes 
Albatross, a distributed task scheduling and execution 
framework that is able to handle tasks with very high 
granularities. Albatross uses a task pulling approach as 
opposed to the traditional scheduling systems. Instead of 
pushing the tasks to the workers by a central or regional 
scheduler, in Albatross, workers pull tasks from a distributed 
message queue system. That leads to a scalable system that 
could achieve good load balancing and high utilization. 
Albatross avoids any centralized components in its design. 
Each node could be a worker, a server, or a client at the same 
time. The DMQ and the DHT are distributed among all of the 
nodes in the system. The task submission, scheduling, and the 
execution are taken place through the collaboration of all of 
the system nodes. 

Our evaluations prove that Albatross outperforms Spark 
and Hadoop in scheduling microbenchmarks and real 
applications. As can be seen, both Spark and Hadoop have 
centralized bottlenecks which become detrimental to their 
overall performance and system utilization as the task 
granularity decreases. Although failover options are available 
for both Spark and Hadoop, this will not be sufficient as even 
the failover node will not be able to keep up-to-date with the 
surplus of quick tasks waiting in its queue. Therefore, a 
tradeoff between task heterogeneity and performance is 
prevalent in these systems, but Albatross provides the user 
with the ability to both have heterogeneous tasks (by type and 
execution time) and consistently good performance. Albatross 
outperforms Spark and Hadoop in case of running high 
granular workloads with small data partitions and tasks. The 
task scheduling rate on Albatross is almost an order of 
magnitude higher than what Spark could achieve. Albatross 

was able to provide a high and stable throughput and latency 
on partition sizes as low as 100KB. 
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