
Albatross: an Efficient Cloud-enabled Task Scheduling and Execution Framework

using Distributed Message Queues

Iman Sadooghi, Geet Kumar, Ke Wang, Dongfang Zhao, Tonglin Li, Ioan Raicu

isadoogh@iit.edu, {gkumar7, kwang22, dzhao8, tli13}@hawk.iit.edu, iraicu@cs.iit.edu
Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA

Abstract— Data Analytics has become very popular on large

datasets in different organizations. It is inevitable to use

distributed resources such as Clouds for Data Analytics and

other types of data processing at larger scales. To effectively

utilize all system resources, an efficient scheduler is needed, but

the traditional resource managers and job schedulers are

centralized and designed for larger batch jobs which are fewer in

number. Frameworks such as Hadoop and Spark, which are

mainly designed for Big Data analytics, have been able to allow

for more diversity in job types to some extent. However, even

these systems have centralized architectures and will not be able

to perform well on large scales and under heavy task loads.

Modern applications generate tasks at very high rates that can

cause significant slowdowns on these frameworks. Additionally,

over-decomposition has shown to be very useful in increasing the

system utilization. In order to achieve high efficiency, scalability,

and better system utilization, it is critical for a modern scheduler

to be able to handle over-decomposition and run highly granular

tasks. Further, to achieve high performance, Albatross is written

in C/C++, which imposes a minimal overhead to the workload

process as compared to languages like Java or Python.

We propose Albatross, a task level scheduling and execution

framework that uses a Distributed Message Queue (DMQ) for

task distribution among its workers. Unlike most scheduling

systems, Albatross uses a pulling approach as opposed to the

common push approach. The former would let Albatross achieve

a good load balancing and scalability. Furthermore, the

framework has built in support for task execution dependency on

workflows. Therefore, Albatross is able to run various types of

workloads, including Data Analytics and HPC applications.

Finally, Albatross provides data locality support. This allows the

framework to achieve higher performance through minimizing

the amount of unnecessary data movement on the network. Our

evaluations show that Albatross outperforms Spark and Hadoop

at larger scales and in the case of running higher granularity

workloads.

Keywords—Data Analytics, Task Scheduling, Distributed

Systems, Spark, Hadoop, Distributed Task Execution, Distributed

Message Queue

I. INTRODUCTION

The massive growth in both scale and diversity of Big Data

has brought new challenges as industry expectations of data
processing loads continue to grow. For example, more than 2.5
exabytes of data is generated everyday ‎[1]. At various
organizations, it has become a necessity to process data at
scales of Petabytes or larger. However, processing data at such
scales is not feasible on a single node, therefore it is vital to
utilize distributed resources such as Clouds, Supercomputers,
or large clusters. Traditionally, these clusters are managed by
batch schedulers, such as Slurm ‎[2], Condor ‎[3], PBS ‎[4], and

SGE ‎[5]. However, such systems are not capable of handling
data processing at much larger scales. Another pitfall these
systems must face is processing finer granular tasks (far more
in number, much shorter run times) at larger scales. This could
only be handled with a sophisticated scheduler capable of
handling many more tasks per second.

The above mentioned systems were designed for clusters
with far fewer amounts of batch jobs that usually run for a
longer time. Those batch jobs usually have a different nature
than the data analytics jobs. Moreover, they all have
centralized designs that make them incapable of scaling up to
the‎needs‎of‎today’s‎data‎analysis.

Data analytics frameworks such as Hadoop ‎[7] and
Spark ‎[6] were proposed to particularly solve the problem of
data processing at larger scales. These frameworks distribute
the data on multiple nodes and process it with different types of
tasks. However even these frameworks have not been able to
completely solve the problem. Both of the above mentioned
systems have centralized bottlenecks that make them unable to
handle the higher rate of task and data volume. Therefore,
these frameworks are not suitable for workloads that generate
more tasks in shorter periods of times. To give an example,
simple applications, such as matrix multiplication, may be
embarrassingly parallelizable, while generating many tasks
where each task occurs in a very small amount of time ‎[28].
Our evaluations show that Spark and Hadoop are not able to
schedule and execute more than 2000 tasks per second which
could add significant overhead to those applications.

Other frameworks like Sparrow ‎[8] have tried to bypass the
issue of the centralized architecture on Spark and Hadoop.
Their solution is to primarily dedicate each job that consists of
multiple tasks to a separate scheduler. This solution raises a
few issues. First, the utilization of the whole cluster will be
lower than distributed task level scheduling solutions. Since
different jobs have different sizes, they will cause load
imbalance for the system, and since a scheduler can only
handle its own job, an idle or lightly loaded scheduler will not
be able to help any overloaded schedulers. Moreover, this
solution may not work well for the jobs that have significantly
higher number of heterogeneous tasks. Such a job could easily
saturate a single centralized task scheduler and cause
significant overheads to the system.

Nowadays, most of the data analytics of big data run on the
Cloud. Unlike HPC Clusters and Supercomputers that have
homogeneous nodes, Clouds have heterogeneous nodes with
variable node performance. Usually the underlying physical
hardware is being shared across multiple Virtual Machines
(VMs) and subsequently, these nodes may have variable
performance [27]. Our evaluations have shown that in some
cases, identical instances on AWS ‎[26] within a given region
and availability zone can exhibit variable performance results.

This means some tasks can take much longer than others. It is
important for a scheduler to take this into the consideration. A
simple and effective solution would be breaking tasks into
smaller tasks and make them more granular. This technique is
called over-decomposition. If the tasks are more granular, the
workload can be better spread over the nodes and more capable
nodes (faster, less-utilized) will be able to run more tasks. This
would allow system utilization to significantly increase ‎[29].
However, this poses significant challenges to the scheduling
system, forcing it to make faster scheduling decisions. To
allow over-decomposition and handle finer granular task
scheduling, it is essential for modern schedulers to provide
distributed scheduling and execution at the task level rather
than the job level.

It is also critical for a scheduler to impose minimal
overhead to the workload execution process starting from a
single node. Tasks in utilizing a fine granular workflow could
take a few milliseconds of execution time. It is not practical to
run such workloads on a scheduler that takes seconds to
schedule and execute a single task. Some programming
languages (e.g. Java and Python) that operate at a more abstract
level could add more overhead to the scheduling process.
Therefore it is necessary to implement the scheduler in lower
level languages such as C or C++ to achieve the best
performance on a single node level.

There is an emergent need for a fully distributed scheduler
that handles the scheduling at the task level and is able to
provide efficient scheduling for high granular tasks. In order to
achieve scalability, it is important to avoid a centralized
component as it could become a bottleneck. In this paper, we

propose Albatross: A fully distributed cloud-enabled task
scheduling and execution system that utilizes a distributed
Message Queue as its building block.

The main idea of scheduling in Albatross is to use Fabriq,
which is a distributed message queue ‎[9] for delivering tasks to
the workers in a parallel and scalable fashion. Most of the
commonly used schedulers have a central scheduler or a
controller that distributes the tasks by pushing them to the
worker nodes. However, unlike the traditional schedulers,
Albatross uses a pulling approach as opposed to pushing tasks
to the servers. The benefit of this approach is to avoid the
bottleneck of having a regional or a central component for task
distribution. Albatross also uses a Distributed Hash Table
(DHT) ‎[10] for the metadata management of the workloads.
There is no difference between any of the nodes in Albatross.
Each node is a worker, a server, and possibly a client. The
DMQ and the DHT are dispersed among all of the nodes in the
system. The task submission, scheduling, and execution all
happen through the collaboration of all of the system nodes.
This feature enables Albatross to achieve a high scalability.
The communication and the routing of the tasks all happen
through hashing functions that have an O(1) routing
complexity. That makes the communications between the
servers optimal.

Albatross is able to run workflows with task execution
dependency through a built in support in the DMQ. That gives
Albatross flexibility to run HPC, and data analytics jobs. An
HPC job is usually defined as a Bag-of-Tasks ‎[11] with
dependencies between those tasks. The built-in task
dependency support will enable the application to submit jobs

to Albatross without having to provide an application level
support for task dependencies. The Directed Acyclic Graph
(DAG) support also enables Albatross to run various types of
data analytics workloads. The focus of this paper is mainly
Map-reduce workloads.

Another important feature that is required for data analytics
frameworks is data locality support. Data locality suggests that
since the movement of the data on the network between the
nodes is an expensive process, the frameworks have to
prioritize moving tasks to the data location and minimize the
data movement on the system. In Albatross this feature is
supported through load balancers of the Fabriq.

Our evaluations show that Albatross outperforms Spark and
Hadoop that are currently state-of-the-art scheduling and
execution frameworks for data analytics in many scenarios. It
particularly outperforms the other two when the task
granularity increases. Albatross is able to schedule tasks at 10K
tasks per second rate, outperforming Spark by 10x. The latency
of Albatross is almost an order of magnitude lower than Spark.
Albatross’s‎throughput on real applications has been faster than
the two other systems by 2.1x and 12.2x. Finally, it
outperforms Spark and Hadoop respectively by 46x, and 600x
in processing high granularity workloads on grep application.

In summary, the main contributions of Albatross are:

 The framework provides a comprehensive workload
management including: data placement and distribution,
task scheduling, and task execution.

 It has a fully distributed architecture, utilizing a DMQ
for task distribution and a DHT for workload metadata
management.

 It provides distributed scheduling at the task level, as
opposed to job level distributed scheduling.

 The framework provides an efficient Task execution
dependency support. It enables Albatross to run a wide
range of workloads including HPC and Data Analytics.

 It provides data locality optimization.

 It offers an optimized implementation for High
Performance Applications, using C/C++ programming
language.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III provides background
about the two building block components of Albatross. Section
IV discusses the architecture of Albatross, followed up by the
implementation details of the data locality and the task
execution dependency support. Next, in section V, we discuss
the Map-reduce programming model support in Albatross.
Section VI briefly compares the main differences of Albatross
with Spark and Hadoop as the mainstream data analytics
frameworks. Section VII evaluates the performance of the
Albatross in different metrics. Finally, section VIII concludes
the paper and discusses the future work.

II. RELATED WORK

There have been many works providing solutions for task
or job scheduling in distributed resources. Some of those
works have focused on task scheduling and execution while
some have focused on resource management on large clusters.
Condor ‎[3] tries to harness the unused CPU cycles on servers
for batch-jobs that take longer to run. Slurm ‎[2] is a resource

manager for Linux clusters that also provides a framework for
work execution and monitoring. Portable Batch System
(PBS) ‎[4] mainly focuses on HPC. It manages batch and inter-
active jobs.

The main limitation of the above mentioned works is their
centralized architecture that makes them not capable of
handling larger scales. They were all designed for longer
running batch jobs and are unable to schedule workloads in
fine granular task level.

Systems such as Mesos ‎[12], and Omega ‎[13] are resource
managers that were designed for allocating resources to
different applications. The focus of this work is on a task
scheduling and execution solution that could run different
types of workloads. Nevertheless, both of these systems have
centralized architectures and could not be the ultimate solution
for distributed processing of data analytics workloads.

Many industrial systems such as Spark & Hadoop utilize
iterative transformations and the Map-reduce model,
respectively, but still exhibit bottlenecks, particularly the
centralized task/resource managers ‎[30]. Usually a centralized
version is relatively simple to implement. However, as seen in
the performance evaluation in a later section, these centralized
components may be the downfall of the system as scale
increases. Additionally, there are systems such as Sparrow ‎[8],
which‎try‎to‎reduce‎the‎consequences‎associated‎with‎Spark’s‎
centralized job scheduler. It has a decentralized architecture
that makes it scalable. Although Sparrow provides a
distributed scheduler for the jobs, the task-level scheduler is
still centralized. Therefore since we are focusing on the task
level scheduling and not exploring the multiple-job workloads,
Sparrow would not provide any improvement in our
experiments.

Another approach that has been used for distributed
scheduling is work stealing. It is used at small scales
successfully in parallel languages such as Cilk ‎[14], to load
balance threads on shared memory parallel
machines ‎[15]‎[16]‎[17]. Scalability of work stealing has not
been proven yet. The randomized nature of it could cause poor
utilization and scalability ‎[18].

III. BACKGROUND

Before discussing Albatross, we are going to provide
information about the two building blocks of the framework.
Fabriq and ZHT are the main components of the Albatross that
make the task distribution, communication and the metadata
management possible in this framework.

A. ZHT Overview

For metadata management, Albatross uses ZHT which is a
low overhead and low latency Distributed Hash Table, and has
a constant routing time. It also supports persistence. ZHT has
a simple API with 4 major methods: insert, lookup, remove,
and append. A key look up in ZHT can take from 0 (if the key
exists in the local server) to 2 network communications. This
helps provide the fastest possible look up in a scalable DHT.
The following sections discuss main features of ZHT. ZHT
operations are highly optimized and efficient. Insert and
lookup operations take less than a millisecond on an average
instance on AWS.

1) Network Communication

ZHT supports both TCP and UDP protocols. In order to
optimize the communication speed, the TCP connections are
cached by a LRU cache. That will make TCP connections
almost as fast as UDP.

2) Consistency
ZHT supports consistency via replication. In order to

achieve high throughput ZHT follows a weak consistency
model after the first two replicas that are strongly
consistent ‎[19].

3) Fault Tolerance
ZHT supports fault tolerance by lazily tagging the servers

that are not being responsive. In case of failure, the secondary
replica will take the place of the primary replica. Since each
ZHT server operates independently from the other servers, the
failure of a single server does not affect the system
performance.

4) Persistence
ZHT is an in-memory data-structure. In order to provide

persistence, ZHT uses its own Non-Volatile Hash Table
(NoVoHT). NoVoHT uses a log based persistence mechanism
with periodic check-pointing ‎[20].

B. Fabriq Overview

Fabriq is a Distributed Message Queue that runs on top of
ZHT. It was originally designed for handling the delivery of
high message volumes on Cloud environment. Adding an
abstract layer over ZHT, Fabriq is able to provide all of the
benefits of it including persistence, consistency, and
reliability. Running on top of a DHT, Fabriq is able to scale
more than 8k-nodes.

Messages in Fabriq get distributed over all of its server
nodes. Thus, a queue could coexist on multiple servers. That
means clients can have parallel access to a queue on Fabriq,
making Fabriq a perfect fit for our framework. Albatross uses
a DMQ as a big shared pool of tasks that could provide
simultaneous access from a large number of its workers.

Fabriq guarantees exactly-once delivery of the messages.
That is an important requirement for Albatross. On our
previous work ‎[22], since CloudKon was using SQS ‎[21], and
SQS could generate duplicate messages, we had to add an
extra component to filter the duplicate messages. That adds
more overhead to the system. Using Fabriq, we will not have
that problem since we can make sure that it only delivers a
message once. Fabriq is very efficient and scalable. The
latency of pop and push operations on Fabriq over an Ethernet
network on AWS are less than a millisecond on average. That
is almost an order of magnitude better than other state-of-the-
art message queues.

IV. SYSTEM OVERVIEW

 Albatross is a distributed task scheduling and execution
framework. It is a multipurpose framework, suitable for
various types of workloads and compatible with different
types of environments, especially the Cloud environment. The
key insight behind the Albatross is that unlike other
conventional schedulers, in Albatross, a worker is the active
controller and the decision making component of the
framework. In most of the schedulers, there is a central or
regional component that is responsible for pushing tasks to the
workers and keeping them busy. That could bring a lot of

challenges in many cases. In the case of running workloads
with high task submission rates, or workloads with
heterogeneous tasks, or in the case of larger scale systems, or
heterogeneous environments like Clouds, these schedulers will
show significant slowdowns. In such schedulers, the scheduler
component needs to have live information about the workers
that are being fed. That could be a big bottleneck and a source
of long delays as the component can get saturated after a
certain scale or under a certain load. Albatross gets rid of
central or regional scheduler components by moving the
responsibility from the scheduler to the workers. In Albatross,
the workers pull tasks from a shared pool of tasks whenever
they need to run a new task. That could significantly improve
the utilization and could improve the load balancing of the
system. In order to achieve that, Albatross uses Fabriq as a big
pool of tasks. Fabriq is scalable and provides parallel access
by a large number of workers. That makes Fabriq a perfect fit
for Albatross.

A. Architecture

In order to achieve scalability, it is inevitable to move the
control from centralized or regional components to the
workers in the framework. In such architecture, the
scheduling, routing, and task execution take place by the
collaboration of all of the nodes in the system. Each worker
has the same part in the workload execution procedure and
there is not a single node with an extra component or
responsibility.

Figure 1. Albatross Components shows the components of
Albatross. The system is comprised of two major components,
along with the worker and client driver programs. Fabriq is
responsible for the delivery of the tasks to the workers. ZHT is
responsible for keeping the metadata information and updates
about the workload. This information could include the data
location, and the workload DAG. Depending on the setup
configurations, an Albatross node could run a worker driver, a
client driver, a ZHT server instance, a Fabriq server instance,
or a combination of those components. Since ZHT and Fabriq
are both fully distributed and do not have a centralized
component, they can be distributed over all of the nodes of the
system. Therefore, each worker driver program has local
access to an instance of Fabriq server, and an instance of ZHT
server.

Figure 1. Albatross Components

The process starts from the Client driver. The user
provides the job information, and the input dataset to the client

program. Based on the provided job information, the Client
program generates the tasks and the workload DAG. Then it
distributes the dataset over all of the worker nodes in the
system. Finally it submits the tasks to Fabriq. The task
submission on Fabriq is performed via a uniform hashing
function that distributes the tasks among all the servers,
leading to a good system load balance. The data placement
and the task submission could also be performed through
multiple parallel clients.

The Worker driver starts with pulling tasks from Fabriq.
Depending on the type of the task and the workload, a Worker
might access, or write into ZHT to either get metadata
information about the input data location, or dependencies, or
to update the metadata. The worker also fetches the input data
either locally or from a remote Worker. We discuss the
procedure of data locality support on Albatross in the
following sections. The output of each task is written locally.

B. Task Execution Dependency

Both HPC and data analytics workloads enforce a certain
execution order among their tasks. In order to be able to
natively run those workloads, Albatross needs to provide
support for workload DAGs. HPC tasks propose the concept
the Bag-of-Tasks. Each HPC job could have some tasks that
could be internally dependent on each other. Data analytics
workloads often propose similar concepts. Programming
models such as Dryad ‎[23], and Map-reduce that are often
used in data analytics have similar requirements. In Map-
reduce, reduce tasks could only run after all of their
corresponding map tasks have been executed.

The implementation of the task execution dependency
support should not disrupt the distributed architecture of the
system. Our goal was to keep the dependency support
seamless in the design and avoid adding a central component
for keeping the DAG information. Task execution dependency
is supported through the implementation of priority queues in
Fabriq. Each task in Albatross has two fields that hold
information about its execution dependencies. ParentCount
(pcount) field shows the number of unsatisfied dependencies
for each task. In order to be executed, a task needs to have its
ParentCount as 0. ChildrenList field keeps the list of the
taskIDs‎of‎the‎current‎task’s‎dependent‎tasks.

Figure 2 shows the process of running a sample DAG on
Albatross. The priority inside Fabriq has two levels of
priorities: 0 or more than 0. The priority queue inside each
Fabriq server holds onto the tasks with non-zero pcounts. A
worker can only pop tasks with 0 pcounts. Unlike
conventional DMQs, Fabriq provides the ability to directly
access a task via its taskID. That feature is used for Albatross
task dependency support. Once a task is executed, the worker
updates its ChildrenList tasks, decreasing their dependencies
by‎1.‎Inside‎the‎priority‎queue,‎once‎a‎task’s pcount becomes
0, the queue automatically moves it to the available queue and
the task could be popped by a worker.

C. Data Locality

Data locality aims to minimize the distance between data
location and respective task placements. Since moving the
data is significantly more expensive than moving the process,
it is more efficient to move the tasks to where the data is
located. Data locality support is a requirement for data-

Client
Fabriq

Worker

tsk-13 tsk-14 tsk-2

tsk-12 tsk-16 tsk-17

tsk-15 tsk-7 tsk-9

tsk-6

tsk-11

readynot-ready

1 1* *

...

Value

...
...

Key

ZHT

push
tasks

pop
tasks

write
metadata

read
metadata

intensive‎workloads.‎Albatross’s‎goal is to minimize the data
movement during the workload execution while maintaining
high utilization.

Figure 2. Task Execution Dependency Support

Data locality could be applied on different stages of the
workload execution process. The common approach is to
dictate the decisions on the scheduling and task placement
stage. On this approach, the scheduler tries to send the tasks to
their corresponding data location. This approach minimizes
the number of task placements before a task gets executed.
However, there are some issues with this approach that is
going to hurt the overall performance of the system at larger
scales. In order to send the tasks to the right location, the
scheduler needs to have extensive information about the
workers, and the data locations. That could slow down the
process at larger scales. Moreover, this approach could lead
into load imbalance and reduce the utilization as there could
be some nodes with many tasks and some left idle because
their corresponding tasks are dependent on the current running
tasks on the workload. Also, this method is associated with the
pushing approach which is not desirable at larger scales.

Albatross does not dictate any logic regarding data locality
at task submission stage. It uses a uniform hashing function to
distribute them evenly among servers. That means the task
placement is going to be random. The data locality is achieved
after the tasks are submitted to the Fabriq servers. Depending
on the location of their corresponding data, some of the tasks
might be moved again. Even though that adds extra task
movement to the system process, it lets the workers handle the
locality between themselves without going through a single
centralized scheduler. Figure 3 shows the data locality process
and its corresponding components. There are two types of
queues and a locality engine on each Albatross server. The
main queue belongs to the Fabriq. It is where the tasks first
land once they are submitted by the client. The locality engine
is an independent thread that goes through the tasks on main
queue and moves the local tasks to the local queue. If a task is
remote (i.e. the corresponding data is located on another
server), the engine sends the task to the local queue of its
corresponding‎server‎via‎that‎server’s‎locality‎engine.

Strict dictation of data locality could not always be
beneficial to the system. Workloads usually have different
task distribution on their input data. A system with strict data
locality always runs the tasks on their data local nodes. In
many cases where the underlying infrastructure is
heterogeneous, or when the workload has many processing

stages, a system with strict locality rules could have a poorly
balanced system where some of the servers are overloaded
with tasks and the rest are idle with no tasks to run. In order to
avoid that, we incorporate a simple logic in the locality
engine.

Figure 3. Data Locality Support Components

Figure 4 portrays the‎ locality‎ engine’s‎ decision‎ making‎
process. When the engine finds a remote task, it tries to send it
to the remote server. If the remote server is overloaded, it
rejects the task. In that case, the engine saves the task to the
end of local queue regardless of being remote. The worker is
going to pop tasks from the local queue one by one. Once it
wants to pop the remote task, the locality engine tries to send
the task to its own server one more time. If the remote server
is still overloaded, the locality engine transfers the
corresponding data from the remote server. This technique is
similar to the late-binding technique that is used in other
scheduling frameworks ‎[8].

Figure 4. Locality Engine's Decision Making

V. MAP-REDUCE ON ALBATROSS

This section discusses the implementation of the Map-
reduce programming model in Albatross. Figure 5 shows the
Map-Reduce execution process. Like any other Map-reduce
framework, the process starts with the task submission. A task
could be either map or reduce. Map tasks have their pcount as
0. They usually have a reduce task in ChildrenList. Reduce
tasks have their pcount as more than 0 and will be locked in
the queues until their parent map tasks are executed.

Pcount=0Pcount>0

3

Pcount: 1
ChildList: {-}

2

Pcount: 1
ChildList: {-}

Worker

...
...

Key
ZHT

Value

..

.
...

Key
ZHT

Value

1

Pcount: 0
ChildList: {2,3}

1

1

2

3

Workload DAG

Client

1 pop task

2 run task

3 update children

tsk-19 tsk-16 tsk-11 tsk-9

tsk-19 tsk-17

tsk-6

tsk-6tsk-9

Load
Balancerlocal

push/pop task

tsk-13 tsk-12 tsk-5 tsk-2

tsk-12

tsk-1

tsk-1tsk-2

Load
Balancer

local

Local
Queue

Main
Queue

Client

. . .
locallocal

tsk-16

Send remote tasks to owner

local local

remoteremote

remote

Worker

Worker

send task

Local
Queue

Main
Queue

Client

Client

Fabriq

readynot-ready

1*

. . .

pop
taskspush

tasks

2- Map

68

4

1416

18 10

1- read input
2- write result
3- write metadata
4- update children

File system

..

.
..
.

Key

ZHT
Value

Worker
Engine

6 Inputs

Intermed.
(1)

(2)

(3)

(4)

1416

3- Reduce

.

..
.
..

Key
ZHT

Value

Worker
Engine

14

(1)

(2)

(3) File system

. . .
1- get data location
2- get data
3- write results

Fabriq

1-Submission

. . .

Final
results

ready

Figure 5. Map-reduce process in Albatross

Once a map task is popped by a worker, it loads its input
data from the local (or remote) file system. The map function
is included inside the map task. Mapper loads the function and
runs it. Unless the size of the output exceeds the available
memory limit, the worker writes the intermediate results to the
memory. For applications like sort that have larger
intermediate data, the worker always writes the output on disk.
Once the task is executed, the worker adds the location of the
intermediate data for this map task to the ZHT. Finally, the
pcount for its dependent reduce task will be reduced by 1.

Once all of the parent map tasks of a reduce task are
executed, the reduce task becomes available and gets popped
by a worker. The worker gets the location of all of the
intermediate data required by this task. Then the worker gets
the intermediate data from those locations. Then it loads the
reduce function from the task and writes the final results to its
local disk. It also adds its final results location to the ZHT.

Many Map-reduce frameworks including Hadoop and
Spark have many centralized points in their process. The
mappers and the reducers have to go through a single
component to get or update information such as the
intermediate data location, the logging information and the
final output location. Albatross has no centralized point of
process in its Map-reduce model. The tasks are delivered
through Fabriq and the other information is propagated
through ZHT. Since ZHT resides on all of the nodes, mappers
or reducers could all access ZHT at the same time without
causing a system slow down.

VI. PERFORMANCE EVALUATION

This section analyzes the performance of Albatross. We
compare the performance of Albatross using different metrics
with Spark and Hadoop which are both commonly used for
data analytics. First, we briefly compare the major differences
of the three systems in design and architecture. Then, we
compare the performance of those frameworks while running
microbenchmarks as well as real applications. We measure the
efficiency, throughput, and latency of the three systems while
varying the granularity of the workloads.

A. Hadoop and Spark

1) Hadoop
Hadoop is a data analytics framework that adopted its

architecture from‎ Google’s‎ Map-reduce implementation. It
consists of two main components which are the distributed file
system (HDFS) and the Map-reduce programming paradigm.
The two main centralized components of Hadoop are the

NameNode and the JobTracker. The JobTracker is in charge
of tracking any disk reads/writes to HDFS. As the job tracker
must be notified by the task trackers, similarly the namenode
must be notified of block updates executed by the data nodes.
In the newer version of Hadoop, instead of the job tracker as
seen in Hadoop 1.x, there is a resource manager. The resource
manager (similar to the job tracker) is in charge of allocating
resources to a specific job ‎[25]. Although the Yarn ‎[24]
version tries to provide higher availability, the centralized
bottlenecks are still existent.

2) Spark
Spark, like many other state-of-the-art systems, utilizes a
master-slave architecture. The flexible transformations enable
Spark to manipulate and process a workload in a more
efficient manner than Hadoop. One of the vital components of
the‎Spark’s‎cluster‎configuration‎is‎the‎cluster‎manager‎which‎
consists of a centralized job-level scheduler for any jobs
submitted to the cluster via the SparkContext. The cluster
manager allocates a set of available executors for the current
job and then the SparkContext is in charge of scheduling the
tasks on these allocated executors. Therefore, similar to
Hadoop, centralized bottlenecks are still present even though
the capability of iterative workloads is better handled in Spark
than‎ in‎ Hadoop.‎ The‎ primary‎ bottlenecks‎ in‎ Spark’s‎ cluster‎
mode are the task level scheduler present in the SparkContext
and the job-level scheduler present in the provided cluster
manager. Other than these pitfalls, Spark provides a novel idea
of resilient distributed datasets or RDDs which allows it to
provide support for iterative workloads. RDDs are analogous
to a plan or a series of transformations which need to be done
on a set of data. Each RDD is a step and a list of these steps
form a lineage.

B. Testbed and Configurations

The experiments were done on m3.large instances which
have 7.5 GB of memory, 32 GB local SSD storage, and Intel
Xeon E5-2670 v2 (Ivy Bridge) Processor (2 vCores). Since the
amount of vCores available were two, the number of reduce
tasks for Hadoop was limited to only two concurrently
running tasks.
For the overall execution time experiments (block size fixed at
128 MB), the workload was weakly scaled by 5 GB per added
node. For the varied partition/block size experiments, since the
runtimes for Hadoop and Spark were very long for very short
blocks, the workload was chosen to be 0.5 GB per added node.

There were two main reasons as to why the same 5GB per
node workload was not used for the varied partition/block size
experiments. Spark and Hadoop started seeing a very long
execution time (~4 hours for a single node experiment) and
Spark which uses the Akka messaging framework uses a
framesize (pool) in which the completed tasks were being
stored. As the HDFS block size decreased, the number of total
tasks (total number of tasks = total workload / block size)
increased to amounts which the default framesize
configuration could not handle. Finally, regarding the
microbenchmarks, instead of focusing on the size of the input
data, we focused on the amount of tasks which should be run
per node. As can be seen below, a total of 1000 tasks were run
per node.

C. Microbenchmarks

This section compares the scheduling performance of the
Albatross and Spark while running synthetic benchmarks.
These benchmarks are able to reflect the performance of the
systems without being affected by the workloads or
applications. We measure latency and throughput while
scheduling null tasks. We did not include Hadoop in this
section,‎as‎Hadoop’s‎tasks are written to disk. That makes the
scheduling significantly slower than the other two systems.

1) Latency
In order to assess the scheduling overhead of a framework,

we need to measure overall latency of processing null tasks. In
this experiment, we submit 1,000 null tasks per node and
calculate the total time for each task. The total time could be
defined as the time it takes to submit and execute a task, plus
the time for saving the results on disk or memory. There is no
disk access in this experiment.
Figure 6 shows the average latency of running empty tasks on
the three frameworks, scaling from 1 to 64 nodes. Ideally, on a
system that scales perfectly, the average latency should stay
the same.

Figure 6. Average latency of in-memory null tasks

In order to fully reflect the scheduling overhead of three

frameworks, we need to measure metrics like minimum,
median, and maximum latency. Figure 7 shows the cumulate
distribution function (cdf) of the three systems while running
empty tasks. The cdf is able to show the possible long tail
behavior of a system. Compared to Spark, Albatross has a

much shorter range in scheduling tasks. The slowest task took
60 milliseconds to schedule. That is 33x faster than the
slowest task in Spark which took more than 2 seconds. This
long tail behavior could significantly slow down certain
workloads. The median scheduling latency in Albatross is 5
ms as compared to 50 ms latency in Spark. More than 90% of
the tasks in Albatross took less than 12 ms which is an order
of magnitude faster than the Spark at 90 percentile.

Figure 7. Cumulative distribution null tasks latency

2) Scheduling Throughput
In order to analyze the task submission and scheduling

performance of the frameworks, we measured the total
timespan for running 10,000 null tasks per node. The
throughput is defined as the number of tasks processed per
second (tasks per second).

Figure 8 shows the throughput of Albatross and Spark.
Spark is almost an order of magnitude slower than Albatross,
due to having a centralized scheduler, and being written in
Java. Also, unlike Albatross the performance of Spark
scheduling does not linearly increase with the scale. Spark’s‎
centralized scheduler gets almost saturated on 64 nodes with a
throughput of 1235 tasks per second. We expect to see the
Spark scheduler saturating at 2000 tasks per seconds.
Albatross was able to linearly scale, reaching to 10666 tasks
per second at 64 nodes scale.

Figure 8. Throughput of null task scheduling

D. Application performance

In order to provide a comprehensive comparison, we
compare the performance of the three frameworks while

running different Map-reduce applications. Applications were
chosen to reflect weaknesses and advantages of frameworks in
different aspects. We have measured the performance for sort, -
word-count, and grep applications.

1) Sort: The sort application sorts the input dataset lines
according to the ascii representation of their keys. The
algorithm and the logic of the sort application is based on the
Terasort benchmark that was originally written for
Hadoop ‎[25]. Unlike the other two applications, intermediate
data in sort is large and will not always fit in memory ‎[31]. The
application performance reflects the file system performance
and the efficiency of the memory management on each
framework. Also, the network communication is significantly
longer in this application. As portrayed in Figure 9, Spark
utilizes a lazy evaluation for its lineage of transformations.
Only when an action such as saveAsHadoopFile is received is
when the entire lineage of transformations is executed and data
is loaded into memory for processing. Therefore, sortByKey,
which is the only transformation in this scenario has a
relatively quick‎“execution‎time.”‎On the other hand, the action
phases require loading the data in memory, actually performing
the sort, and writing back to disk.

Figure 9. Spark's task breakdown (32 nodes)

As shown in Figure 10,‎Hadoop’s‎sort has two phases for
the Map-reduce model. The reduce phase is relatively longer
since it includes transferring data and the sorting after
receiving the data. To allow for Hadoop to utilize a similar
“range‎ partitioner”‎ as‎ Spark,‎ we‎ implemented‎ Hadoop’s‎ sort‎
using a TotalOrderPartitioner.

Figure 10. Hadoop's task breakdown (32 nodes)

Figure 11 portrays the map and reduce runtimes for sort
application. Similar to Hadoop, Albatross has two phases for
sort application. The runtime variation of tasks on Albatross is
significantly lower than the Hadoop and Spark. This is a result

of the pulling approach of Albatross that leads to a far better
load balancing on the workers.

Figure 11. Task breakdown for Albatross (32 nodes)

2) Word-count: The word-count application calculates the
count of each word in the dataset. Unlike sort, the proportion of
intermediate data to input data is very low. Each map task
generates a hash-map of intermediate counts that is not bigger
than a few kilobytes. The intermediate results will get spread
over all of reducers based on their key-ranges. Similar to
Hadoop’s‎ word-count,‎ Spark’s‎ word-count uses map tasks
which output (word, 1) pairs and a reducer which aggregates
all the (word, 1) pairs by key. The final action is a
saveAsHadoopFile which saves the resulting pairs to a file on
HDFS

3) Grep: The grep application searches for the occurrences
of a certain phrase within the input dataset. The workflow
process is similar to the behavior of Map-reduce. However, in
Albatross, unlike Map-reduce, the intermediate result of each
map task only moves to a certain reducer. That leads to far
fewer data transfers over the network. In order to send read-
only data along with a task to the executors, Spark
encapsulates the read-only data in a closure along with the
task function. This is a simple, but very inefficient way to pass
the data since all workers will have duplicate values of the
data (even though the variable values are the same). Since the
grep implementation needs each map task to have access to
the search pattern, a broadcast variable which stored the four
byte search pattern was used.

We compare the throughput of the frameworks while
running the applications. We measure the total throughput
based on the ideal block size for each Framework. We also
analyze the performance of the frameworks while increasing
granularity of the workloads. Figure 12 shows the performance
of sort, scaling from 1 to 64 nodes. Albatross and Spark show
similar performances up to 16 nodes. However, Spark was not
able to complete the workload as there were too many
processes getting killed, due to running out of memory. As we
mentioned earlier, intermediate results in sort are as big as the
input. Using Java, both Spark and Hadoop were not able to
handle processing inputs as they were generating large
intermediate results. There were too many task restarts on
larger scales for Hadoop and Spark. The dotted lines are
showing the predicted performance of the two systems if there
were not running out of memory and processes were not
getting killed by the Operating System. In order to avoid this

problem, Albatross writes the intermediate results to disk when
it gets larger than a certain threshold.

Figure 12. Throughput of sort application

Figure 13 shows the throughput of sort with different
partition sizes on 64 nodes. The throughput of Spark is 57% of
Albatross using 100MB partitions. However, this gap becomes
more significant on smaller partitions. The throughput of Spark
is less 20% of Albatross using 1MB partitions. This clearly
shows the incapability of Spark on handling high granularity.
On the other hand, Albatross proves to be able to handle over-
decomposition of data very well. Albatross provided a
relatively stable throughput over different partition sizes. The
Albatross scheduling is very efficient and scalable and could
handle higher task submission rate of the workload. The only
exception was for the 100KB partitions. At 100KB, opening
and reading files takes the majority of the time and becomes
the major bottleneck on the processing of each task. Hadoop
and Spark cannot use partitions smaller than 1MB due to the
limitation of HDFS.

Figure 13. Sort application throughput (varied partition sizes)

Figure 14 shows the throughput for word-count using large
data partitions. Spark was able to achieve a better throughput
than the other two systems. Even though they have provided
different throughputs, all the three systems linearly scaled up to
the largest scale of the experiment.

Figure 14. Word-count application Throughput

Figure 15 shows the throughput of word-count using
different partition sizes on 64 nodes. Spark outperforms
Albatross on 100MB partitions. However, it could not keep a
steady performance at smaller partition sizes. Albatross goes
from being slightly slower at the largest partition size to
outperforming Spark by 3.8x. Spark is not able to schedule
tasks at higher task rates. Hence the throughput drops on
smaller scales.

Figure 15. Word-count throughput (varied partition sizes)

Figure 16 compares the performance of grep application on
the three systems using large partitions. Albatross outperforms
the Spark and Hadoop by 2.13x and 12.2x respectively.

Figure 16. Throughput of grep application

Figure 17 shows the throughput of grep using different
partition sizes on 64 nodes. As the partition size gets smaller,

the gap between the throughput of Albatross and the other two
systems becomes more significant. Similar to the other
applications, the throughput of Albatross is stable on different
partition sizes.

Figure 17. Grep application throughput (varied partition sizes)

VII. CONCLUSION AND FUTURE WORK

Over the past few years, Data analytics frameworks such
as Spark and Hadoop have gained a great deal of attraction.
With the growth of Big Data and the transition of workloads
and applications to high granularity tasks with shorter run
time, the requirements for the data analytics has changed.
Centralized frameworks will no longer be able to schedule and
process the big datasets. There is need for distributed task
scheduling and execution systems. This paper proposes
Albatross, a distributed task scheduling and execution
framework that is able to handle tasks with very high
granularities. Albatross uses a task pulling approach as
opposed to the traditional scheduling systems. Instead of
pushing the tasks to the workers by a central or regional
scheduler, in Albatross, workers pull tasks from a distributed
message queue system. That leads to a scalable system that
could achieve good load balancing and high utilization.
Albatross avoids any centralized components in its design.
Each node could be a worker, a server, or a client at the same
time. The DMQ and the DHT are distributed among all of the
nodes in the system. The task submission, scheduling, and the
execution are taken place through the collaboration of all of
the system nodes.

Our evaluations prove that Albatross outperforms Spark
and Hadoop in scheduling microbenchmarks and real
applications. As can be seen, both Spark and Hadoop have
centralized bottlenecks which become detrimental to their
overall performance and system utilization as the task
granularity decreases. Although failover options are available
for both Spark and Hadoop, this will not be sufficient as even
the failover node will not be able to keep up-to-date with the
surplus of quick tasks waiting in its queue. Therefore, a
tradeoff between task heterogeneity and performance is
prevalent in these systems, but Albatross provides the user
with the ability to both have heterogeneous tasks (by type and
execution time) and consistently good performance. Albatross
outperforms Spark and Hadoop in case of running high
granular workloads with small data partitions and tasks. The
task scheduling rate on Albatross is almost an order of
magnitude higher than what Spark could achieve. Albatross

was able to provide a high and stable throughput and latency
on partition sizes as low as 100KB.

REFERENCES
[1] M.‎Wall,‎“Big‎Data:‎Are‎you‎ready‎for‎blast-off”,‎BBC‎Business,‎March‎

2014.
[2] M.‎ A.‎ Jette‎ et.‎ al,‎ “Slurm:‎ Simple‎ linux‎ utility‎ for‎ resource‎

management”.‎ In‎ Lecture‎Notes‎ in‎ Computer‎ Sicence: Proceedings of
JSSPP 2003 (2002), Springer-Verlag, pp. 44-60.

[3] J.‎Frey,‎ T.‎Tannenbaum,‎ I.‎ Foster,‎M.‎Frey,‎S.‎Tuecke.‎ “Condor-G: A
Computation Management Agent for Multi-Institutional‎Grids,”‎Cluster‎
Computing, 2002.

[4] B.‎Bode‎et.‎al.‎“The‎Portable‎Batch Scheduler and the Maui Scheduler
on‎Linux‎Clusters,”‎Usenix,‎4th‎Annual‎Linux‎Showcase‎&‎Conference,‎
2000.

[5] W.‎Gentzsch,‎ et.‎ al.‎ “Sun‎Grid‎ Engine:‎ Towards‎ Creating‎ a‎ Compute‎
Power‎ Grid,”‎ 1st‎ International‎ Symposium‎ on‎Cluster‎ Computing‎ and‎
the Grid (CCGRID’01),‎2001.

[6] M.‎ Zaharia,‎ et‎ al.‎ “Spark:‎ Cluster‎ Computing‎ with‎ Working‎ Sets”,‎
HotCloud’10.

[7] T.‎White,‎“Hadoop:‎The‎Definitive‎Guide.”‎O’Reilly‎Media,‎Inc.,‎2009
[8] K.‎ Ousterhout,‎ P.‎ Wendell,‎ M.‎ Zaharia,‎ and‎ I.‎ Stoica.‎ “Sparrow:‎

distributed, low latency scheduling”.‎Proceedings‎SOSP‎'13.‎

[9] I. Sadooghi, K. Wang, S. Srivastava, D. Patel, D. Zhao, T. Li, and I.
Raicu,‎ “Fabriq:‎ Leveraging‎ distributed‎ hash‎ tables‎ towards‎ distributed‎
publish-subscribe‎ message‎ queues,”‎ IEEE/ACM‎ International‎
Symposium on Big Data Computing (BDC), 2015.

[10] T.‎Li,‎X.‎Zhou,‎et.‎Al.‎“ZHT:‎A‎light-weight reliable persistent dynamic
scalable zero-hop‎ distributed‎ hash‎ table,”‎ in‎ Proceedings‎ of‎ the‎ IEEE‎
IPDPS, 2013.

[11] L.‎Thai,‎B.‎Varghese,‎and‎A.‎Barker,‎“Executing‎bag‎of‎distributed‎tasks‎
on the cloud: Investigating the trade-offs between performance and
cost,”‎Proceedings‎of‎CloudCom,‎2014.

[12] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, et. al. Mesos: A
Platform for Fine-grained Resource Sharing in the Data Center. In
Proceedings‎of,‎NSDI’11,‎USENIX‎Association,‎pp.‎295–308.

[13] M. Schwarzkopf, A. Konwinski, M. Abd-ElMalek, and J. Wilkes.
Omega:‎ flexible‎ EuroSys‎ ’13,‎ pages‎ 351–364, New York, NY, USA,
2013. ACM.

[14] M. Frigo, et.‎ al,‎ “The‎ implementation‎ of‎ the‎ Cilk-5 multithreaded
language,”‎In Proc. (PLDI), pages 212–223. ACM SIGPLAN, 1998.

[15] R.‎D.‎Blumofe,‎et.‎al.‎“Scheduling‎multithreaded‎computations‎by‎work‎
stealing,”‎In Proc. 35th FOCS, pages 356–368, Nov. 1994.

[16] V. Kumar,‎ et.‎ al.‎ “Scalable‎ load‎ balancing‎ techniques‎ for‎ parallel‎
computers,”‎J. Parallel Distrib. Comput., 22(1):60–79, 1994.

[17] J.‎Dinan‎et.‎al.‎“Scalable‎work‎stealing,”‎In‎Proceedings of the HPDC,
2009.

[18] K.Wang, A. Rajendran, and I. Raicu. "MATRIX: Many-task computing
execution fabric at exascale". 2013.
http://datasys.cs.iit.edu/projects/MATRIX/index.html

[19] T.‎ Li,‎ et.‎ al.‎ “A‎ Convergence‎ of‎ Distributed Key-Value Storage in Cloud
Computing‎ and‎ Supercomputing”,‎ Journal‎ of‎ Concurrency‎ and‎
Computation‎ Practice and Experience (CCPE) 2015.

[20] K. Brandstatter, T. Li, X. Zhou, I. Raicu. Novoht: a lightweight dynamic
persistent‎NoSQL‎key/value‎store.‎In:‎GCASR’‎13, Chicago, IL 2013

[21] Amazon SQS, [online] 2014, http://aws.amazon.com/sqs/
[22] I.‎Sadooghi,‎S.‎Palur,‎et‎al.‎“Achieving‎Efficient‎Distributed‎Scheduling‎

with Message Queues in the Cloud for Many-Task Computing and
High-Performance‎Computing”,‎Proceedings‎of‎CCGRID,‎2014.

[23] M.‎Isard,‎M.‎Budiu,‎Y.‎Yu,‎A.‎Birrell,‎D.‎Fetterly.‎“Dryad:‎Distributed
Data-Parallel‎Programs‎from‎Sequential‎Building‎Blocks”,‎Euro.‎Conf.‎
on Computer Systems (EuroSys), 2007.

[24] V.K.‎ Vavilapalli,‎ “Apache‎ Hadoop‎ Yarn‎ – Resource‎ Manager,”‎
http://hortonworks.com/blog/apache-hadoop-yarn-resourcemanager/

[25] M. Noll. (2011, April) Benchmarking and Stress Testing an Hadoop
Cluster With TeraSort, TestDFSIO & Co. [Online].

[26] Amazon Elastic Compute Cloud (Amazon EC2), Amazon Web
Services, [online] 2013, http://aws.amazon.com/ec2/

[27] I.‎ Sadooghi,‎ J.‎ Martin,‎ T.‎ Li,‎ I.‎ Raicu,‎ et.‎ al.‎ “Understanding the
Performance and Potential of Cloud Computing for Scientific
Applications”,‎IEEE‎Transactions‎on‎Cloud‎Computing‎(TCC),‎2015

[28] I. Raicu, I. Foster, and Y. Zhao, ” Many-task computing for grids and
supercomputers”, In proceedings of MTAGS 2008,

[29] K.‎ Wang,‎ K.‎ Qiao,‎ I.‎ Sadooghi,‎ et.‎ al.‎ “Load-balanced and locality‐
aware scheduling for data‐intensive‎ workloads‎ at‎ extreme‎ scales”,‎
Journal of Concurrency and Computation Practice and Experience
(CCPE) 2015.

[30] T.‎ Li,‎ I.‎ Raicu,‎ L.‎ Ramakrishnan,‎ “Scalable‎ State Management for
Scientific Applications in the Cloud”, BigData 2014

[31] H. Eslami, A. Kougkas, et. al. "Efficient disk-to-disk sorting: a case
study in the decoupled execution paradigm." Proceedings of Workshop
on Data-Intensive Scalable Computing Systems, 2015.

